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Abstract

ISOPENTENYLTRANSFERASE (IPT) genes play important roles in the initial steps of cyto-

kinin synthesis, exist in plant and pathogenic bacteria, and form a multigene family in plants.

Protein domain searches revealed that bacteria and plant IPT proteins were to assigned to

different protein domains families in the Pfam database, namely Pfam IPT (IPTPfam) and

Pfam IPPT (IPPTPfam) families, both are closely related in the P-loop NTPase clan. To

understand the origin and evolution of the genes, a species matrix was assembled across

the tree of life and intensively in plant lineages. The IPTPfam domain was only found in few

bacteria lineages, whereas IPPTPfam is common except in Archaea and Mycoplasma bacte-

ria. The bacterial IPPTPfam domain miaA genes were shown as ancestral of eukaryotic

IPPTPfam domain genes. Plant IPTs diversified into class I, class II tRNA-IPTs, and Adeno-

sine-phosphate IPTs; the class I tRNA-IPTs appeared to represent direct successors of

miaA genes were found in all plant genomes, whereas class II tRNA-IPTs originated from

eukaryotic genes, and were found in prasinophyte algae and in euphyllophytes. Adenosine-

phosphate IPTs were only found in angiosperms. Gene duplications resulted in gene redun-

dancies with ubiquitous expression or diversification in expression. In conclusion, it is

shown that IPT genes have a complex history prior to the protein family split, and might have

experienced losses or HGTs, and gene duplications that are to be likely correlated with the

rise in morphological complexity involved in fine tuning cytokinin production.

Introduction

The evolution of gene families can be complex and may involve duplications within genomes

or through polyploidization and loss or conversion events, these being the major forces enlarg-

ing gene families, with mutations accumulating over time further differentiating individual

family members [1, 2]. ISOPENTENYLTRANSFERASE (IPT) enzymes regulate a rate limiting

step in the biosynthesis pathway of cytokinin, an important hormone [3]. They also have other

functions such as stabilizing codon recognition of tRNA through the modification of tRNA in

yeast. In mammals they are linked to mitochondrial diseases [4, 5]. Cytokinins are not only

found in plants, but also in plant pathogenic bacteria such as the crown-gall forming
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Agrobacterium tumefaciens (reviewed in [6]), the cyanobacterium Nostoc sp. PCC7120 [7], and

the slime-mold Dictyostelium discoideum [8].

IPT genes were first identified in A. tumefaciens [9, 10] and only much later in Arabidopsis
thaliana [11, 12], after the release of its genome sequence [13], and nine IPT genes were identi-

fied in the genome [14]. To date, IPTs have been studied in several angiosperms and mosses

(e.g., Arabidopsis thaliana [14]; Oryza sativa [15]; Physcomitrella patens [16]; Solanum lycoper-
sicum [17]), and were shown to belong to one multigene family [14, 15, 18, 19, 20, 21]. In A.

thaliana, they are classified into two types depending on the substrates they use; Adenosine-

phosphate IPTs (AP-IPTs) and tRNA-IPTs [14]. Agrobacterium tumefaciens also retaining AP-

IPT, preferentially uses AMP whereas those in plants prefer ATP and ADP as substrates [22].

In previous studies, Frébort et al. [18] classified IPT genes into five groups: ‘bacterial ade-

nylate IPTs‘, ‘plant adenylate IPTs‘, ‘eukaryotic origin plant tRNA IPTs‘, ‘bacterial tRNA IPTs‘,

and ‘prokaryotic origin plant tRNA IPTs‘, based on an unrooted gene tree reconstructed from

full sequence lengths, where members of two plant families (A. thaliana; O. sativa) were

included. Lindner et al. [19] carried out a more comprehensive analysis with 30 species across

kingdoms including 12 plant families, in which they separated plant IPTs into ‘class I tRNA-

IPTs‘, ‘class II tRNA-IPTs‘and ‘adenylate-IPTs‘, and bacteria IPTs into ‘bacterial tRNA-IPT-
s‘and ‘bacterial AMP-IPTs‘, using a midpoint rooted Bayesian inference tree. The cytokinin

synthesizing genes of the bacteria A. tumefaciens and the slime-mold D. discoideum were

found to belong to the AMP-IPT clade and were separated from plant IPT clades in Lindner

et al. [19]. The authors further showed that class I tRNA-IPTs are closely related to bacteria

tRNA-IPTs, and class II tRNA-IPTs to adenylate-IPTs [19].

The two different classifications by Frébort et al. [18] and Lindner et al. [19] are not fully

congruent, principally because they did not included the same groups of organisms (Table 1).

Furthermore, the evolutionary history of IPTs was not fully explained in the two studies since

the phylogenetic trees were unrooted, and the direction of evolution as well as the origin of the

gene family unexplored. A further complication might have been that the full sequence and

protein sequences between the different groups of IPTs are highly divergent and their align-

ment might have included ambiguous alignment information, obscuring the phylogenetic sig-

nal [23].

Therefore, this study focused on the conserved protein domain of the IPTs, to infer the

deep origin and evolution of this gene family. The conserved protein domain of IPT genes

across kingdoms were assembled with a focus on plants and the matrix included 37 plants (of

Table 1. Classification of ISOPENTENYLTRANSFERASE genes.

Gene classification in Frébort

et al. [18]

Gene classification in Lindner

et al. [19]

Gene classification in this

study

Clade/

Grade

Domain Lineages found in clade

Bacterial adenylate IPTs AMT-IPT Outgroup IPTPfam Bacteria; Slime-mold

Bacterial tRNA IPTs - BacteriamiaA grade A IPPTPfam Bacteria

Prokaryotic origin plant tRNA

IPTs

Class I tRNA-IPT Plant class I tRNA-IPT B IPPTPfam Algae; Mosses; Lycophytes; Gymnosperms;

Angiosperms

- - Unikont-SAR tRNA-IPT
grade

C IPPTPfam Mammals; Insect; Fungi; Slime-mold;

Zooplankton

- Class II tRNA-IPT Prasinophyte tRNA-IPT D IPPTPfam Prasinophyte algae

Eukaryotic origin plant tRNA

IPTs

Class II tRNA-IPT Plant class II tRNA-IPT E IPPTPfam Gymnosperms; Angiosperms

Plant adenylate IPTs ADP/ATP-IPTs Adenosine-phosphate IPT F IPPTPfam Angiosperms

IPTPfam, IPPTPfam–referring to Pfam protein families IPT and IPPT.

https://doi.org/10.1371/journal.pone.0201198.t001
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21 families), three animals, two fungi, one amoeba, and one zooplankton species, selected

across the evolutionary breadth of the tree of life [24, 25, 26]. The results of these domain

based phylogenetic analyses are discussed in the light of the frequency and timing of duplica-

tion events, and linked to expression patterns of the gene copies and their intron positions as

reported in previous studies. This is the first detailed analysis to illustrate the origin and pat-

tern of diversification of IPT genes in plants in a phylogenetic context.

Materials and methods

Genome resources

IPT genes were retrieved from publicly accessible genome or transcriptome databases. The list

of species analysed and the databases used in this study are listed in S1 Table. The gene acces-

sion numbers are listed in S2 Table.

Domain searches

Domain searches were carried out using deduced amino acid sequences in Pfam v.31.0 [27].

Since IPTs are mostly single-domain proteins and retain either IPTPfam (Pfam family IPT) or

IPPTPfam (Pfam family IPPT) domains, these were searched across kingdoms, including

Archaea, bacteria, plants, yeast, animals, and slime-molds (S2 Table). Proteins possessing the

IPTPfam domain are described as isopentenyl transferases or dimethylallyl transferases and

synthesise cytokinin, while those possessing the IPPTPfam domain are IPP transferases/tRNA

delta(2)-isopentenylpyrophosphate transferases and modify tRNA to stabilize codon recogni-

tion in a wide range of lineages (e.g., bacteria, fungi, mammals). They use AMP/ADP/ATP as

substrates and contribute to cytokinin synthesis in plants [3]. The genome and transcriptome

databases were BLAST searched (cut-off E< 0.1) using IPPTPfam and IPTPfam domains from

A. thaliana and A. tumefaciens. Sequence matches were re-evaluated in Pfam searches, and

only gene sequences clearly showing IPPTPfam and IPTPfam domain sequences were used for

this study (S2 Table).

Assessing relationships among domain families

The protein families in the clan P-loop NTPase (CL0023), including IPTPfam (PF01745) and

IPPTPfam (PF01715) protein domain families, were analysed. This clan included 217 protein

domain families in Pfam v.31.0, and their Hidden Markov Model (HMM) profiles were down-

loaded from the Pfam website. HMM profiles estimate the true frequency of protein residues

from the observed frequency by a Markov process with hidden status [28]. The HMM profile

relationships were analysed and a distance matrix of HMM profiles and its unrooted Neighbor

Joining tree generated using pHMM-tree [29].

Following the topology of the pHMM-tree, IPTPfam (PF01715) and IPPTPfam (PF01745)

domain sequences were analysed using VirEPfam (PF05272) domain sequences as outgroup to

focus on the phylogenetic relationship between IPTPfam and IPPTPfam. Sequences in the seed

alignments of the three families were combined into a matrix. The seed alignment of IPTPfam

contains seven, and that of VirEPfam six sequences and all were used in the analyses. The

IPPTPfam seed alignment is large and contains 1247 sequences, and only representative

sequences were selected for the analyses: to select sequences, preliminary phylogenetic analyses

were carried out on the IPPTPfam seed alignment using all sequences. Hypervariable regions of

the original IPPTPfam seed alignment were trimmed with BMGE v.1.12 [30], and a phyloge-

netic tree reconstructed with FastTree [31], and 162 topology-representative sequences

selected. Finally, the reduced IPPTPfam seed alignment (162 sequences), IPTPfam seed
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PLOS ONE | https://doi.org/10.1371/journal.pone.0201198 August 2, 2018 3 / 23

https://doi.org/10.1371/journal.pone.0201198


alignment (7 sequences), and VirEPfam seed alignment (6 sequences), were combined with the

MAFFT-merge subprogram in MAFFT v.7 [32], and the matrix was trimmed with BMGE

v.1.12 [30]. An ML tree estimated with PhyML v.3.0 [33] with Smart Model Selection (SMS)

[34] with the tree rooted on VirEPfam sequences. For branch support, values of an approximate

likelihood ratio test with non-parametric branch support based on a Shimodaira-Hasegawa-

like procedure (αLRT SH-like support) were estimated using PhyML. Additionally, an ultrafast

bootstrap (UFBT) analysis of 1,000 replicates was carried out in W-IQ-TREE [35].

Building IPPTPfam HMM alignments with extended N-terminus region

The IPPTPfam original seed alignment with 1247 sequences was reduced to 103 representative

sequences as described above. To confirm the similarity between the original (1247 sequences)

and the representative sequences, HMM profiles were built for the 1247 and 103 sequences

respectively, with hmmerbuild in HMMER v.3.0 [28], and HMM logos were generated with

Skylign [36] and the logos compared. After confirming their similarity, full-lengths of the 103

representative sequences were retrieved from the database and the N-terminus region aligned

manually. 101 out of the 103 sequences were found to have retained the approximately 40 AA

long conserved region located in front of the starting point of the original IPPTPfam HMM (Fig

1). A new HMM profile was built that included those 40 AA sequences with hmmerbuild, its

HMM logo generated, and the profile named IPPTPfam_N40.hmm. To annotate and check the

protein alignment, the protein structures of IPTPfam and IPPTPfam domains were retrieved

from the PDBsum-EMBL-EBI database (http://www.ebi.ac.uk/pdbsum), for IPTPfam from

Agrobacterium tumefaciens (PDBsum accession number: 2ze5) and for IPPTPfam from Escheri-
chia coli (3foz) as references.

Assessing plant IPTPfam domain in Pfam database

Fragmental IPTPfam domains were found in species in a few plant families in the Pfam database

(e.g.,Musa acuminata, Solanum lycopersicum). Those plant IPTPfam domain genes registered

in Pfam were retrieved and assessed with hmmersearch in HMMER v.3.0, which compares the

protein sequences with IPPTPfam.hmm and IPTPfam.hmm from Pfam, and IPPTPfam_N40.

hmm built in this study, to examine the similarities between the domain sequences and the

HMM profiles.

In addition, a phylogenetic analysis was carried out with plant genes registered under

IPTPfam domains in the database. The matrix was assembled with plant IPTPfam domain genes

together with the bacterial IPTPfam domain genes, the bacterial IPPTPfam genes (miaA), and

IPPTPfam genes from P. patens, A. thaliana, O. sativa, S. lycopersicum, S. tuberosum,M. acumi-
nata. The IPPTPfam and IPTPfam domain sequences were first aligned separately using the

hmmeralign in the HMMER v.3.0 with IPTPfam.hmm or IPPTPfam_N40.hmm. The two align-

ments were merged using MAFFT merge v.7 [32] and trimmed using BMGE v.1.12 [30]. The

WAG model was selected under the AIC criterion [37] using Prottest v.3.0 [38], and an ML

tree and αLRT SH-like support values were estimated with PhyML v.3.0 [33].

Detecting the presence of IPTPfam domain genes in bacteria and slime-

mold and their phylogenetic relationship to IPPTPfam domain genes

To show the presence or absence of IPPTPfam and IPTPfam domain genes in bacteria and slime-

mold, a species tree based on Battistuzzi et al. [39] and Tomitani et al. [40] was generated and

annotated with the presence and absence of the domain genes. Yeast was added as outgroup. A

Newick file was generated manually in a text editor and the tree modified in TreeView v.1.6.6

[41] and FigTree v.1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/).

Evolution of plant cytokinin biosynthesis genes
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The phylogenetic tree of IPPTPfam and IPTPfam domain sequences of bacteria, slime-mold

and yeast was build alongside the species tree generated above. IPPTPfam and IPTPfam domain

sequences were aligned separately using hmmeralign with IPPTPfam_N40.hmm or IPTPfam.

hmm. The two alignments were merged using MAFFT merge v.7 and trimmed using Gblocks

[42]. The LG model was selected under the AIC criterion using Prottest v.3.0, and an ML tree

estimated with PhyML v.3.0. αLRT SH-like support values were estimated using PhyML and

an UFBT analysis of 10,000 replicates carried out in W-IQ-TREE [35].

Comprehensive phylogeny of IPPTPfam domain genes across kingdoms

To build the comprehensive phylogenetic IPPTPfam domain gene tree, IPPTPfam domain genes

were retrieved from genome databases from algae to angiosperms. bacteria, animals, yeast,

slime-molds, and zooplankton genes were also included in the analyses (S2 Table). The matrix

was generated as described above for the bacterial IPPTPfam and IPTPfam phylogeny and

trimmed using BMGE v.1.12. The LG model was selected under the AIC criterion using

Fig 1. Domain sequences used for HMM profiles. Original IPPTPfam domain sequences were shorter than the IPTPfam domain by approximately 40 AA at the

N-terminus. The expanded profile was retrieved from full sequences and used for the new HMM profile (IPPTPfam_N40.hmm). Arrowhead indicates the starting

position of the original IPPTPfam.hmm. Box marked with an asterisk indicate the IPPTPfam region missing in the original IPPTPfam.hmm. Predicted positions of

α-helixes are indicated by ‘H’, and those of β-sheet by ‘S’.

https://doi.org/10.1371/journal.pone.0201198.g001
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Prottest v.3.0, and an IPTPfam rooted ML tree with branch support value estimated as above

with PhyML and W-IQ-TREE.

Estimating the timing of duplication of ISOPENTENYLTRANSFERASE in

plants

To estimate the number and timings of duplications of IPTs specifically among plants, gene

duplication and losses (DL) analyses were carried. Gene subtrees containing plant IPTs were

reconciled and rearranged with plant species trees separately for class I tRNA IPTs and class II

tRNA-IPT/AP-IPTs (S9–S14 Figs) in DL mode, considering duplications and losses, with

NOTUNG v.2.9 using default settings [43]. To allow the topological support existing within

the IPT clades to optimize the duplication-loss events, the αLRT SH-like branch support values

of the ML analysis were transferred to the gene subtree in the NOTUNG analyses.

To place the history of IPTs in a phylogenetic timeframe, divergence times for major line-

ages and species were referred from key published analyses (angiosperms-liverworts [44],

charophytes-red algae [45], eukaryotic lineages [46], prokaryotic lineages [39]), and a metric

summary tree of life phylogeny constructed and the transfer and duplication event placed in

that tree.

Intron distribution

Intron-exon structures were also examined, by interrogating databases and comparing

genome and transcribed sequences. The number of nucleotides in exons and introns were

determined and schematic illustrations based on their number, size and position drawn with

GSDS v.2.0 [47].

Diversification of expression patterns

Literature searches were carried out to obtain an overview of gene expression patterns in rela-

tion to the duplication history of IPT genes. For interspecific comparisons, the expression data

were categorised into root, leaf, flower, and fruit. For mosses, the protonema, mature gameto-

phytic stage, and sporophytic stage were reported and these categories were used here. The lit-

erature used in this study regarding gene expression patterns are summarized in S3 and S4

Tables.

Accession numbers

The accession numbers of the sequences used in this study are listed in S2 and S5 Tables.

Datasets used in this study

The matrixes and tree files used in this study are deposited in TreeBASE (study accession

http://purl.org/phylo/treebase/phylows/study/TB2:S22409). The files include a FastTree

inferred approximately-ML tree of the IPPTPfam domain seed alignment with 1247 sequences

(M46567), a IPPTPfam_N40.hmm new seed alignment with 103 sequences (M46568), the

IPPTPfam/IPTPfam/VirEPfam merged matrix (with 175 sequences) and tree shown in S3 Fig

(M46562, Tr112785), a plant IPTPfam domain matrix (with 101 sequences) and tree file shown

in S6 Fig (M46563, Tr112786), the bacterial IPTPfam/IPPTPfam domain matrix (with 64

sequences) and tree shown in Fig 2 and S7 Fig (M46565, Tr112787), and a IPTPfam/IPPTPfam

domain matrix (with 215 sequences) and tree across kingdoms shown in Fig 3, S8 Fig

(M46566, Tr112788).

Evolution of plant cytokinin biosynthesis genes
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Fig 2. ML tree of the bacterial IPTPfam and IPPTPfam domain genes. The αLRT (left) and UFBT values (right) are

shown along major branches. An asterisk indicates support values< 0.5 and< 50%. Thickened branches indicate

support values> 0.9 and> 90%, medium-thick branches indicate> 0.7 and> 70%. A tree with all support values is

shown in S7 Fig. The species with both IPTPfam and IPPTPfam domain genes are highlighted blue and yellow. The

classification of the species is indicated by two characters at the end of the gene names; Ac: Actinobacteria, Al: α-

Proteobacteria, Am: Amoebozoa, Aq: Aquficae, As: Ascomycota, Be: β-Proteobacteria, Ch: Chlamydiae, Cy:

Evolution of plant cytokinin biosynthesis genes
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Results

Protein domains of cytokinin biosynthesis genes

Both A. thaliana and A. tumefaciens IPTs (AtIPTs for A. thaliana, Tzs and Ipt for A. tumefa-
ciens) are single domain proteins of about 250–460 amino acid (AA) length (S1 Fig). We

found that the cytokinin biosynthesis IPT genes in A. thaliana, AtIPT, and Oryza sativa,
OsIPTs, possess an IPPTPfam domain, while these genes in A. tumefaciens, Ipt and Tzs, andNos-
toc sp. PCC7120 NoIPT1, have an IPTPfam domain (S6 Table). Thus, cytokinin biosynthesis

IPTs in plants and bacteria retain different domains.

IPPTPfam has a 228 AA long Hidden Markov Model (HMM) profile, and AP-IPT in A. thali-
ana has a truncated IPPTPfam domain lacking ca. 75–140 AA of the IPPTPfam HMM profile,

while those of tRNA-IPT have almost the full length of the IPPTPfam HMM profile (S1 Fig).

IPTPfam has a 233 AA HMM profile and Tzs or Ipt of A. tumefaciens possess almost the entire

region of the IPTPfam HMM profile. Both, the IPPTPfam and IPTPfam domain, belong to the P-

loop NTPase clan (CL0023) in the Pfam database v.31.0 [27]. This clan contains 217 families

and these often perform chaperone-like functions [48, 49]. The pHMM-tree analyses of the P-

loop NTPase clan suggested that IPPTPfam and IPTPfam HMM profiles are closely related and

appear as sisters in the Neighbor Joining tree (S2 Fig).

When adding VirEPfam sequences as outgroups to IPPTPfam and IPTPfam domain sequences,

the ML phylogenetic analyses performed using the protein domain sequence alignment

showed that IPPTPfam and IPTPfam domain sequences formed individual clades with high

branch support each (IPTPfam: αLRT SH-like = 0.89, UFBT = 99; IPPTPfam: αLRT SH-

like = 0.85, UFBT = 82) and were highly supported sister to each other (αLRT SH-like = 0.97,

UFBT = 100), suggesting that the origin of IPPTPfam and IPTPfam proteins could be traced back

to before the emergence of the protein families (S3 Fig).

IPPTPfam and IPTPfam domain proteins in plants and bacteria

The presence of IPPTPfam and IPTPfam domains assigned to IPTs was investigated across king-

doms including Archaea, bacteria, slime-mold, yeast, plants and animals. Intriguingly, IPTPfam

domain genes were only found in the genomes of bacteria and the slime-mold D. discoideum
(S1 Table), and in very few plant species: P. patens, S. lycopersicum, S. tuberosum, Musa acumi-
nata, and Oryza barthii and Oryza brachyntha (S5 Table). On the other hand, IPPTPfam

domain genes were found in most other organisms examined, except in Archaea and the

Mycoplasma lineage in Firmicutes of bacteria (S1 Table, S4 Fig).

The bacterial IPTPfam domain genes (e.g., Tzs and Ipt in A. tumefaciens; S1 Fig) are well

characterized, whereas those in plants only exist in a few species, many of those are located as

very fragmented proteins shorter than 100 AA. These sequences matched only positions 2 to

112 of the 288 AA IPTPfam.hmm, which indicated that they only retain the N-terminus region

of IPTPfam.hmm (S5 Table). In the seed alignment the IPTPfam domain was found to be about

40 AA longer than those of the IPPTPfam domain towards the N-terminus (Fig 1). Evaluation

of the sequences in the IPPTPfam seed alignment showed that the IPPTPfam HMM profile can

be extend towards the N-terminus to match the length of the IPTPfam.hmm (Fig 1, S5 Fig).

Thus, a new HMM alignment was built that included an additional 40 AA (IPPTPfam_N40.

hmm; S5 Fig). HMM searches revealed that plant IPTPfam domain gene sequences had a higher

or equivalent similarity to IPPTPfam_N40.hmm compared to IPTPfam.hmm (S5 Table). The

Cyanobacteria, Ep: ε-Proteobacteria, Fi: Firmicutes, Fu: Fusobacteria, Ga: γ-Proteobacteria, Sp: Spirochaetes, Th:

Thermotogae.

https://doi.org/10.1371/journal.pone.0201198.g002
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Fig 3. ML tree of IPPTPfam domain genes across kingdoms. IPTPfam domain genes were used as outgroup. The αLRT

(left) and UFBT support values (right), are shown along the major branches. An asterisk indicates support values< 0.5

and< 50%. Thickened branches indicate support values> 0.9 and> 90%, medium-thick branches indicate> 0.7

and> 70%. Trees with all support values are shown in S8 Fig. A. Bacterial IPPTPfam genes,miaA. B. Plant class I

tRNA-IPTs. Two IPPTPfam domain genes from Dictyostelium discoideum are nested in this clade (red arrow). The

Mosses IPPTPfam clade included multiple copies of tRNA-IPTs from Sphagnum fallax and Physcomitrella patens. C.
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ML tree also showed that the plant IPTPfam domain genes grouped together in the IPPTPfam

domain gene clade with a high support value (αLRT = 1), and not in the IPTPfam domain gene

clade (S6 Fig). Therefore, the plant IPTPfam domains might be mis-assigned in the IPTPfam

domains in the Pfam database since the original IPPTPfam.hmm lacks the N-terminus region

where IPPTPfam and IPTPfam domains have high similarities. However, our analyses indicated

that those mis-assigned plant IPTPfam domains were more similar to IPPTPfam domain genes.

Since those plant IPTPfam domains lack a functional annotation and are fragmental, these were

excluded from further analyses.

Across bacteria, D. discoideum, and yeast, the phylogenetic analyses of IPPTPfam and

IPTPfam domain genes showed that each clustered separately with maximal clade support

(αLRT = 1; UFBT = 100) (Fig 2, S7 Fig). The bacterial IPPTPfam domain genes, termedmiaA,

clustered predominantly following species tree relationships (S4 Fig; see [39, 50]), except for

those in ε-Proteobacteria (Ep) and Borrelia burgdorferi (Spirochaetes, Sp). IPTPfam domain

genes were only found in a few species: in Proteobacteria (α-Proteobacteria: Al, ß-Proteobac-

teria: Be, γ-Proteobacteria: Ga) they formed a clade (αLRT = 0.99; UFBT = 100), and with

Cyanobacteria (Cy) and Actinobacteria (Ac) in sister grades (Fig 2, S4 Fig). One gene of D. dis-
coideum (amoeba: Am) was also assigned to the IPTPfam domain clade.

Origin and diversification of ISOPENTENYLTRANSFERASEs

The cytokinin synthesizing IPTs in the plant species examined here all retained IPPTPfam

domains (S1 and S6 Tables). In the phylogenetic tree rooted on IPTPfam domain genes

(αLRT = 1; UFBT = 100), the IPPTPfam domain genes formed a maximally supported clade

(αLRT = 1; UFBT = 100) and could be divided into two grades and four clades with mostly

high branch support (Fig 3, Table 1, S8 Fig). The bacterialmiaA genes formed grades at the

base of the IPPTPfam clade and each of the two IPPTPfam subclades, one leading to plant class I

tRNA-IPTs (Fig 3 clade B, S1 Table), the other to Unikont-SAR tRNA-IPTs including animal,

fungi, zooplankton, and some copies from slime-mold (Fig 3 grade C). The prasinophyte

tRNA-IPTs followed in the next grade (Fig 3 clade D), to which euphyllophyte IPTs were sister

(Fig 3 clades E + F). Class II tRNA-IPTs (Fig 3 clade E) included genes from euphyllophytes,

i.e. monilophytes, gymnosperms, and angiosperms. The clade and grade structures shown in

Fig 3 is summarized along the tree of life in Fig 4.

Duplications of ISOPENTENYLTRANSFERASEs within plant clades

The high copy number of IPPTPfam genes found in mosses and angiosperms had different pat-

terns of distribution: the mosses Sphagnum fallax and Physcomitrella patens possessed five and

eight IPPTPfam genes respectively, all of which belonged to the class I tRNA-IPT clade (‘Mosses’

in Fig 3). Most angiosperms in this clade, on the other hand, had only single copies, except for

Brassica rapa and Sorghum bicolor which had two copies. Angiosperms, however, possessed

additional IPPTPfam genes across the class II tRNA-IPTs, and a high-copy number in the AP-

IPTs clade (Fig 3, S1 and S2 Tables). The basal angiosperm Amborella trichopoda possessed

Unikont-SAR IPTs. IPPTPfam domain genes of zooplankton, yeast, animals arranged in grades. One copy of the

IPPTPfam gene ofD. discoideum appeared as sister grade to the animal clade (red arrow). D. Prasinophyte algae tRNA-

IPTs. Prasinophyte clade indicated by asterisk and pink box in B and D. E. Plant class II tRNA-IPTs. F. AP-IPTs. Two

clades (F1, F2) were observed and the basal angiosperm Amborella trichopoda retained two copies, one belonging to

each clade (black arrows). Derived angiosperms retained diverged copies within F2 (F2a,b). The multiple copies of

Arabidopsis thaliana (grey arrows) andOryza sativa (green arrows) are indicated. Arrowheads indicate gene

duplication events inferred from NOTUNG analyses (see also Fig 5). Red arrowhead indicates gene duplication event

prior to class II tRNA-IPT and AP-IPT splits, and blue and green arrowhead indicates events within plant AP-IPTs.

https://doi.org/10.1371/journal.pone.0201198.g003
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Fig 4. Schematic dated tree of life with absence and presence of IPTPfam and IPPTPfam domain genes and IPPTPfam gene clades/grades shown in Fig

3. Grey-shaded or open squares indicate IPTPfam and IPPTPfam domain presence or absence respectively. Presence (coloured squares) or absence (open

squares) of class I tRNA-IPTs, class II tRNA-IPTs, and Adenosine-phosphate IPTs (AP-IPTs) for plants indicated by blue, green, or orange respectively.

Class I and class II tRNA-IPTs and AP-IPTs are IPPTPfam domain genes. Shaded-circles indicate the presence of the possible direct ancestral IPPTPfam

domain genes of plant class I and class II tRNA-IPTs. LECA: the last eukaryotic common ancestor, CK: point of cytokinin signal establishment [51].

Organism phylogeny is based on the Tree of Life Web Project [52], Qiu et al. [53] and Hug et al. [54], Popper et al. [55], Derelle et al. [56]. Dates are

transferred from Magallón et al. [44], Heron et al. [45], Parfrey et al. [46], Battistuzzi et al. [39].

https://doi.org/10.1371/journal.pone.0201198.g004
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two copies of AP-IPTs and each was assigned to a different clade (black arrows in Fig 3 clade

F), where otherwise extensive gene duplications had occurred. For instance, A. thaliana pos-

sessed four genes in clade F1 and three in clade F2, and Oryza sativa three in F1 and five in F2

respectively. Within the clades the gene trees roughly followed the species tree with some dis-

crepancies, but many of these branches were not highly supported or unsupported (S8 Fig).

The NOTUNG analyses provided some context for the interpretation of these discrepancies.

The reconciled NOTUNG tree for plant class I tRNA-IPT genes had a DL score (duplica-

tions and losses event score) of 48, and suggested 18 duplications and 21 losses. Rearranging

the tree topology around poorly supported branches resulted in a greatly reduced DL score of

23.5, with 13 duplications and 4 losses (S11 Fig). Most duplications were inferred in the moss

lineage, with two of the nine occurring at the time of diversification of Physcomitrella patens
and Sphagnum fallax and alone five in P. patens after its diversification from S. fallax (Fig 5).

Isolated duplications of class I tRNA-IPT inferred to have occurred once inMarchantia poly-
morpha. In angiosperms, class I tRNA-IPT duplications were rarely inferred, once prior or at

the time of diversification of Poaceae, once within Poaceae at or prior to the split between Zea
mays and Sorghum bicolor, and once in Brassica rapa after its split from A. thaliana (Fig 5).

For class II tRNA-IPTs/AP-IPTs, the reconciled NOTUNG tree prior rearrangement had a

DL score of 220.5, involving 61 duplications and 129 losses. After rearrangement, the DL score

was reduced to 88.5 with 39 duplications and 30 losses (S14 Fig). One early duplication of class

II tRNA-IPT and AP-IPT was inferred to have occurred after the acquisition of IPT genes by

euphyllophytes perhaps coinciding with the diversification of the lineage (S14 Fig, Figs 4 and

5, red arrowhead), with the monilophytes and gymnosperms appear to have consecutively lost

their AP-IPT copies. Two successive duplications were inferred for angiosperms prior or at the

time of their first diversification, the first giving rise to AP-IPT-1 (Fig 3F1) and AP-IPT-2 (Fig

3F2), the following one resulting in AP-IPT-2a (Fig 3F2a) and AP-IPT-2b (Fig 3F2b). Some lin-

eages such as Amborella trichopoda and monocots were inferred to have lost their AP-IPT-2b

copy (S14 Fig). More local duplications are scattered across the angiosperms. The monocot

lineage Poaceae and Brassicaceae showed a high clustering of duplications, with the former

having six duplication events prior or at the time of diversification and five such events were

inferred for the lineage of Brassica rapa (Fig 5).

The exon-intron structure showed that class I and class II tRNA-IPTs possessed multiple

introns, but in Poaceae intron losses occurred in class I tRNA-IPTs (S15 Fig, S2 Table). Unlike

tRNA-IPTs, AP-IPTs in general rarely possessed introns (S15 Fig, S2 Table). To understand

the differentiation and similarities of function of the multiple copies of IPT, published results

for gene expression patterns in moss, gymnosperm, and angiosperms were summarised along-

side the phylogenetic IPTPfam/IPPTPfam tree (S15 Fig).

Discussion

IPPTPfam and IPTPfam domains

The Pfam database v.31.0 (released on 8 March 2017) contains 16,712 protein families and 604

clans. Each family is based on the manually curated seed-alignment of protein domains and

thus each has a unique Hidden Markov Model (HMM) profile. A Pfam clan is a structural unit

of families that share a related structure, function, and significantly matching HMM profile,

suggesting that they have a single evolutionary origin [57, 58]. The two protein families,

IPPTPfam and IPTPfam, assigned for cytokinin biosynthesis IPT genes are both in the P-loop

NTPase clan and closely related, suggesting that genes in the IPPTPfam and IPTPfam families

share a common ancestor before the two protein families diverged, and followed independent
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Fig 5. Duplications and major losses in IPT genes inferred in NOTUNG analyses on the tree of life for plants. Gene duplication resulting in class

II tRNA-IPT and AP-IPT (red arrowhead), was followed by AP-IPT losses in ferns and gymnosperms (‘L‘in black). AP-IPTs duplications were

inferred before or at angiosperm diversification (blue and green arrowheads). D: gene duplications, L: gene losses, ‘D‘in black: duplication leading to

class II tRNA-IPT and AP-IPT, ‘D‘in blue: duplications within AP-IPT-1, ‘D‘in grey: duplications within AP-IPT-2, ‘D‘in red: duplication within

class II tRNA-IPT, ‘D‘in brown: duplications within class I tRNA-IPT.

https://doi.org/10.1371/journal.pone.0201198.g005
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evolutionary trajectories. This has been confirmed here in our analysis including the VirEPfam

family (S3 Fig).

IPTPfam domain genes are only found in a few bacteria, whereas IPPTPfam domain genes are

found in most organisms except the Archaea andMycoplasma lineages. It is unclear whether

IPPTPfam is lost in Archaea or gained in bacteria since the relationships between the two

groups are still unclear (e.g. [52]). It appears, however, to more likely represent a gain in bacte-

ria that spread into the eukaryote lineages (see e.g. [49]). The FirmicuteMycoplasma is known

to have a very small genome that is missing many genes, which might be a reason for the

absence of IPPTPfam domain genes here [59].

The IPTPfam domain genes are phylogenetically scattered and found only in some members

of Actinobacteria, Cyanobacteria, ɑ-Proteobacteria, β-Proteobacteria, and γ-Proteobacteria

and in the eukaryote D. discoideum. The IPTPfam domain clade showed long branches and its

topology was mostly congruent with the species tree. One could hypothesize that they were

present in the ancestor of bacteria, and as a result of a strong evolutionary selection only the

plant pathogenic lineages retained the IPTPfam domain genes, perhaps because of the impor-

tance of cytokinins in plant pathogenicity (e.g. [60]). However, this would require multiple

losses of IPTPfam domain genes in the other bacteria lineages. Overall, a more parsimonious

scenario would be HGTs that caused the scattered distribution of IPTPfam domain genes in

bacteria, perhaps events that occurred in the more distant past that allowed some phylogenetic

patterns to be retained among the IPTPfam domain genes. In support of this scenario, D. discoi-
deum could be cited where HGT events are widely observed in its genome and this might

explain the presence of IPTPfam in this organism [61].

One might expect that cytokinin synthesising genes in bacteria and plants are closely

related. However, bacteria and slime-mold cytokinin synthesising IPTs appear to be only dis-

tantly related to plant IPTs. Plant IPPTPfam domain IPTs were found indeed closer related to

bacteria IPPTPfam domainmiaA genes that however, do not synthesise cytokinins (Fig 3).

Thus we infer that the cytokinin synthesis pathways in plants and bacteria have evolved or

have been acquired twice independently.

Origins and early evolution of ISOPENTENYLTRANSFERASEs
The present study has shown that plants IPTs have two different evolutionary sources, class I

tRNA-IPTs originating from bacterialmiaA genes, and class II tRNA-IPTs and AP-IPTs linked

to the Unikont-SAR IPT grade (Fig 3C) through prasinophyte algae tRNA-IPTs (Fig 3D). The

class I tRNA-IPT clade included all plant lineages examined in this study, ranging from red

algae to angiosperms. The basal relationships of the tree of life around the last eukaryotic com-

mon ancestor (LECA) are still unresolved which somewhat hampers the clarification of the

origin of IPT genes as well as the limited sampling in non-plant lineages in this study. How-

ever, based on the distribution of the genes among lineages (Figs 3–5), several hypotheses can

be proposed (Fig 6): It is possible that plants have acquired class I tRNA-IPT genes from bacte-

ria through their LECA early on in time 1,900 MYA and then following the tree of life with

subsequent losses in the lineages leading to animals/fungi (Unikonts) and SAR (Fig 6A). Alter-

natively, plants could have acquired class I tRNA-IPTs via HGT from bacteria, perhaps before

the diversification of plantae 1,600 MYA (Fig 6B). In this case, the brown algae and slime mold

lineage would have acquired the genes independently, perhaps through further HGT events.

Also for the origin of plant class II tRNA-IPT/AP-IPT, two hypotheses for can be postulated

(Fig 6C and 6D): In one hypothesis, a common ancestor of the red algae and green plants

(green lineage) lost the original eukaryotic tRNA-IPT of the LECA, and around 411 MYA,

euphyllophytes secondarily acquired class II tRNA-IPTs by two HGT events from Unikont-
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Fig 6. Schematic summary of hypotheses for ISOPENTENYLTRANSFERASE gene evolution inferred in this study. Lines indicate possible

evolutionary pathways from bacterial or eukaryotic ancestral IPPTPfam domain genes to plant IPT genes with IPPTPfam domain. Open boxes: gene

loss, shaded boxes: gene gain, LECA: the last eukaryotic common ancestor. A, B. Hypotheses for class I tRNA-IPT evolution. A. class I tRNA-IPTs

in plants directly descended from LECA gene and loss in Unikont and SAR independently. B. class I tRNA-IPTs in plants acquired via HGT from

bacteria and secondary transfer to brown algae and slime molds. C, D. Hypotheses for class II tRNA-IPT/AP-IPT evolution. C. class II tRNA-IPTs

in euphyllophytes were obtained via HGT from eukaryotic organisms, using prasinophytes as stepping stone. D. class II tRNA-IPTs evolved

directly from LECA, but loss in brown algae, red algae and in several basal lineages of green plants independently.

https://doi.org/10.1371/journal.pone.0201198.g006
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SAR tRNA-IPT using the prasinophyte algae as stepping stone (Fig 6C). This hypothesis is sup-

ported by the unique genome structure of prasinophyte algae. It harbours large viral DNA in

addition to their own genome [62, 63], and HGT events are commonly observed between

eukaryote genomes and viral DNAs [62, 63, 64]. In an alternative hypothesis, class II tRNA-

IPT/AP-IPT could have originated by descent of the original eukaryotic tRNA-IPT from the

LECA, following the tree of life to the green lineages, but was later lost in several plant lineages

(Fig 6D). However, this would require seven independent losses of the genes, in red algae, core

chlorophytes and charophytes in green algae, liverworts, mosses, hornworts, and lycophytes

(Fig 6D). The fact that the publicly available 14 genomes of the seven lineages investigated here

all lack class II tRNA-IPT genes might suggest that the stepping-stone hypothesis is more likely

because it requires fewer events to explain the scenario. There is some controversy surround-

ing the paraphyly of bryophytes, with the latest work suggesting various scenarios [65, 66].

Even if they were monophyletic, this would reduce the number of losses of class II tRNA-IPT
genes by only two. Overall, a better understanding of the deep origin of tRNA-IPT genes can

only be gleaned once the number of available genomes increases in the future and a better res-

olution of the eukaryote origin is achieved.

Among plants, only prasinophyte algae, monilophytes, gymnosperms and angiosperms

possessed additional tRNA-IPTs besides class I tRNA-IPTs. In a previous study, these were

classified together as class II tRNA-IPTs [19]. The present study showed that prasinophyte

algae tRNA-IPTs formed a grade between Unikont-SAR tRNA-IPTs, and a clade with plant

class II tRNA-IPTs and AP-IPTs. None of the other algae lineages (i.e. red algae, core chloro-

phytes, charophytes), bryophytes, and lycophytes retained class II tRNA-IPTs and AP-IPTs

(Fig 4, S1 Table). A study on the evolution of cytokinin receptor genes suggested that the cyto-

kinin signal transduction pathway established later towards the evolution of land plants in

charophytes. Since prasinophytes algae lack the complete set of genes responsible for cytokinin

signal transductions [51, 67], the additional copies of tRNA-IPTs in prasinophyte algae might

not possess the function for cytokinin production but have their own as yet unknown roles.

Therefore, in this study prasinophyte algae tRNA-IPTs (Fig 3D) were placed in their own class,

‘prasinophyte tRNA-IPTs‘, separate from plant class II tRNA-IPTs (Table 1).

Duplication and redundancy of plant ISOPENTENYLTRANSFERASEs
The evolutionary history of IPTs in plants is marked by multiple gene duplication and major

loss events that strikingly differed between plant lineages (Figs 3 and 5). It was noticeable that

class I tRNA-IPTs showed many duplications in mosses, and very few in angiosperms, while

the reverse was the case for class II tRNA-IPT/AP-IPT genes. This might be linked to func-

tional redundancies (see below). The time of acquisition of a second set of tRNA-IPTs in

euphyllophytes was estimated to around 411 MYA, sometime after the emergence of land

plants [68], and coincided with a gene duplication event that gave rise to class II tRNA-IPT
and AP-IPT. The latter was apparently lost in monilophytes and gymnosperms (Figs 4 and 5,

S14 Fig), or not yet found at least in gymnosperms where only two genomes of one family,

Pinaceae, were available at present. Two further duplications among AP-IPTs led to a further

increase in copy numbers around the time of first divergence of angiosperms 194 MYA. Fur-

ther duplications occurred, often in parallel in AP-IPT-1 and AP-IPT-2 throughout the diver-

sification of angiosperms (Figs 3–5). Some of the earlier events might be linked to whole

genome duplications that have been indicated in the evolution of seed plants and angiosperms

(e.g. [69]]. The strong clustering of duplication events in Brassicaceae and Poaceae may stem

from the much denser genome data available for these lineages that included model plants

such as A. thaliana or O. sativa.
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Overall, the pattern of IPT gene duplications across plants showed a tendency of an

increased rate towards derived clades and increased morphological complexity with a peak in

the AP-IPT clade with some plants possessing more than 10 copies (Figs 3 and 5, S1 Table).

Comparing the function of these copies indicated that some IPTs show ubiquitous expression,

while others show tissue specific patterns, and great redundancies among copies (S15 Fig; [14,

20]). A tendency was observed in that copies with specific roles occur in the most derived class

of IPT genes in each species. For mosses it was the class I tRNA-IPTs, for gymnosperm class II

tRNA-IPTs, and for angiosperm AP-IPTs; e.g. suppression of PpIPT4 expression in the moss

sporophytic stage (S9 Fig; [21]), differential expression of PatIPT_IIa and PatIPT_IIb in female

cones (S9 Fig; [70]), and in angiosperms, AP-IPTs showed differential expression patterns in

different organs and differential response to external cytokinin treatments (S15 Fig, S4 Table).

This might be a typical pattern for gene duplications from a ubiquitously expressed copy that

allowed the acquisition of redundant copies to have a specific roles [71]. Thus, multiple but

specific plant IPT copies may be important in fine-tuning the cytokinin concentration locally.

Introns are rarely found in AP-IPTs in contrast to class II tRNA-IPTs (S15 Fig). Consider-

ing the more likely stepping stone origin for class II tRNA-IPTs through prasinophytes, the

lack of introns in prasinophytes might indicate that intron-gain in plant class II-IPTs is more

likely (Figs 2 and 5, S9 Fig) rather than the intron-loss in AP-IPTs. The expression of AP-

IPTs with few or no introns might be regulated by specific promoters reacting in the tempo-

ral-spatial manner at different plant growth stages (e.g. [20]). Considering the effects of pres-

ence and absence of introns, it was shown that rapidly transcribed genes retained lower

numbers of introns [72]. It can be speculated that intron-less AP-IPT genes might result in

more rapid transcription during different developmental stages when a finely tuned rapid

cytokinin production is required, for example during flower development or when respond-

ing rapidly to environmental changes (e.g. [73]). A unique case was found in the Poales clade

showing an absence of introns in class I tRNA-IPTs, whereas other lineages retained introns.

While AP-IPTs produce trans-zeatin or isopentenyladenine type cytokinins, which have been

considered as major cytokinins in angiosperms, tRNA-IPTs are thought to produce cis-zeatin

type cytokinin, which is supposed to have minor or no function as cytokinin [3]. However,

cis-zeatins are abundant in Poales [52, 74] and even retain their biological functions as cyto-

kinins [75]. It might just be that intron loss in Poales class I tRNA-IPTs affect the regulation

of cis-zeatin type cytokinin production in plants, an aspect that would be worthwhile testing

in the future.

Conclusions

The roles and functions of ISOPENTENYLTRANSFERASEs, key genes for the production of

cytokinins, have been studied intensively over the last two decades. The accumulating genome

knowledge of model and non-model plants and an accompanying advancement in statistical

analytical methodology applied here allowed us to reveal the phylogenetic origin and evolution

of these genes across the tree of life. This study revealed that plant IPTs are closely related to

bacteriamiaA genes (IPPTPfam) and not to bacteria IPT genes (IPTPfam). Further, plants pos-

sess two independent IPTs, class I tRNA-IPTs and class II tRNA-IPT/AP-IPTs. Their exact

deep origin could not be fully resolved due to uncertain relationships in basal eukaryotes.

However, class II tRNA-IPTs and AP-IPTs are the consequence of a gene duplication event at

the onset of euphyllophyte diversification. Further gene duplication events in the plant lineage

were inferred with increasing frequency towards angiosperms, coinciding with emerging

increased specialisation of functions. This study is an example for the elucidation of the deep

history of cytokinin synthesis genes that involved an interplay of possible horizontal gene
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transfers, gene duplications, losses and diversification in function in the evolution of a multi-

gene family.

Supporting information

S1 Fig. Domain structure of ISOPENTENYLTRANSFERASEs in Arabidopsis thaliana and

Tzs, Ipt, and miaA genes in Agrobacterium tumefaciens. Domains are shown as green boxes.

Coordinates to the Pfam HMM profiles are shown below the boxes.

(PDF)

S2 Fig. Neighbor-joining tree of HMM profiles of P-loop NTPases in the Pfam database.

The tree was calculated by pHMM-tree. IPTPfam and IPPTPfam families appeared as sister

clades (arrow).

(PDF)

S3 Fig. ML tree based on sequences of IPPTPfam, IPTPfam, and pVirEPfam seed alignments.

The tree is rooted on VirEPfam sequences. The αLRT SH-like values (left) and UFBT values

(right) are shown on major branches leading to each protein family. Branches with above 70%

support values are emphasized by a thick line.

(PDF)

S4 Fig. Species tree of bacteria. Species retaining the IPPTPfam domain gene are shown in

black, for species with both IPPTPfam and IPTPfam domain genes in orange, and for species

lacking IPPTPfam and IPTPfam domain genes in grey.

(PDF)

S5 Fig. Comparison of HMM logos between the original HMM registered in Pfam v.31.0

and the expanded HMM build in this study. IPTPfam.hmm and the original IPPTPfam.hmm

(1247 seed seq) were retrieved from Pfam v.31.0. IPPTPfam.hmm (103 seed seq) built with 103

representative out of 1247 seed sequences. Logos build from 1247 sequences in the original

seed alignment and the 103 representative sequences were very similar. New HMM profile

with extended N-terminus (IPPTPfam_N40.hmm) built in this study. N40: additional N-termi-

nus region in IPPTPfam_N40.hmm.

(PDF)

S6 Fig. ML tree calculated by PhyML including plant sequences registered in the IPTPfam

family of Pfam database. Plant sequences in IPTPfam family of Pfam indicated by red arrows,

and those shown in the IPPTPfam domain clade but not in the IPTPfam clade (αLRT SH-

like = 1).

(PDF)

S7 Fig. ML tree shown in Fig 2 with all support values. The αLRT (left) and UFBT values

(right) are shown along major branches. An asterisk indicates support values < 0.5

and< 50%. Thickened branches indicate support values > 0.9 and> 90%, medium-thick

branches indicate> 0.7 and> 70%. The classification of the species is indicated by two charac-

ters at the end of the gene names; Ac: Actinobacteria, Al: α-Proteobacteria, Am: Amoebozoa,

Aq: Aquficae, As: Ascomycota, Be: β-Proteobacteria, Ch: Chlamydiae, Cy: Cyanobacteria, Ep:

ε-Proteobacteria, Fi: Firmicutes, Fu: Fusobacteria, Ga: γ-Proteobacteria, Sp: Spirochaetes, Th:

Thermotogae.

(PDF)

S8 Fig. ML tree shown in Fig 3 with all support values. IPTPfam domain genes were used as

outgroup. The αLRT (left) and UFBT support values (right), are shown along the major
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branches. An asterisk indicates support values< 0.5 and< 50%. Thickened branches indicate

support values > 0.9 and> 90%, medium-thick branches indicate > 0.7 and> 70%.

(PDF)

S9 Fig. Species tree used for NOTUNG analyses of plant class I tRNA-IPTs.

(PDF)

S10 Fig. Gene tree used for NOTUNG analyses of plant class I tRNA-IPTs.

(PDF)

S11 Fig. NOTUNG DL analyses of plant class I tRNA-IPTs. Weak edges highlighted yellow.

Gene duplications marked by red ‘D’.

(PDF)

S12 Fig. Species tree used for NOTUNG analyses of plant class II tRNA-IPTs/AP-IPTs.

(PDF)

S13 Fig. Gene tree used for NOTUNG analyses of plant class II tRNA-IPTs/AP-IPTs.

(PDF)

S14 Fig. NOTUNG DL analyses of plant class II tRNA-IPTs/AP-IPTs. Weak edges

highlighted yellow. Gene duplication marked by red ‘D’.

(PDF)

S15 Fig. Summary of intron positions, expression patterns, cytokinin interaction of plant

ISOPENTENYLTRANSFERASEs alongside the phylogenetic tree. The tree is a cladogram of

the tree shown in Fig 3. Intron positions are shown as schematic illustrations. Asterisks indi-

cate absence of introns in the gene. Genes without intron information are shown with ‘?’.

Gene expressions are shown in square boxes: red indicates strong expression, orange indicates

medium expression or expression without quantification, white indicates very weak or no

expression in the tissues indicated (see also S3 Table). The response to external cytokinin treat-

ments are indicated by upper or lower triangles: Upper triangles indicate the responses in the

above ground parts of plants, and lower triangles indicate the responses in roots. Increase in

gene expression is shown in yellow, no change in blue, and reduced expression in white (see

also S4 Table).

(PDF)

S1 Table. List of species used in this study and their classification, with the numbers of

IPTPfam and IPPTPfam domain genes.

(PDF)

S2 Table. Gene accession numbers used in this study. Gene ID is the ID used in the large

phylogeny in Fig 3. Asterisks indicate the gene name retrieved from Frébort et al. (2011) [18].

(PDF)

S3 Table. References used for the summary of gene expressions in S15 Fig.

(PDF)

S4 Table. References used for cytokinin interactions in S15 Fig.

(PDF)

S5 Table. List of plant IPTPfam domain genes in the Pfam database and results of the

hmmsearch.

(PDF)
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S6 Table. Domains assigned in ISOPENTENYLTRANSFERASE genes in model plants and

cytokinin biosynthesizing bacteria.

(PDF)
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