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Abstract

The pyruvate dehydrogenase complex (PDC) is a multienzyme complex that plays a key

role in energy metabolism by converting pyruvate to acetyl-CoA. An increase of nuclear

PDC has been shown to be correlated with an increase of histone acetylation that requires

acetyl-CoA. PDC has been reported to form a ~ 10 MDa macromolecular machine that is

proficient in performing sequential catalytic reactions via its three components. In this study,

we show that the PDC displays size versatility in an ionic strength-dependent manner using

size exclusion chromatography of yeast cell extracts. Biochemical analysis in combination

with mass spectrometry indicates that yeast PDC (yPDC) is a salt-labile complex that disso-

ciates into sub-megadalton individual components even under physiological ionic strength.

Interestingly, we find that each oligomeric component of yPDC displays a larger size than

previously believed. In addition, we show that the mammalian PDC also displays this

uncommon characteristic of salt-lability, although it has a somewhat different profile com-

pared to yeast. We show that the activity of yPDC is reduced in higher ionic strength. Our

results indicate that the structure of PDC may not always maintain its ~ 10 MDa organiza-

tion, but is rather variable. We propose that the flexible nature of PDC may allow modulation

of its activity.

Introduction

The multienzyme pyruvate dehydrogenase complex (PDC) catalyzes the reaction that gener-

ates acetyl-CoA from pyruvate, the end-product of glucose breakdown. As such, the PDC

plays a central role as a gatekeeper of energy and glucose homeostasis. Consistent with its

important role in metabolism, low PDC activity arising from mutations of its components

causes a PDC deficiency (PDCD) [1]. PDCD patients have a low survival rate and suffer from

ataxia and neurodevelopmental delay. This arises from a failure to produce enough energy as

the tricarboxylic acid (TCA) cycle, which links glycolysis to electron transport chain for ATP
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synthesis, needs PDC to convert pyruvate into acetyl-CoA [1, 2]. Being a key enzyme in cellu-

lar metabolism, PDC is also considered a target for anticancer and antibacterial drugs [3, 4].

Furthermore, the level of nuclear PDC is correlated with that of histone acetylation as well as

its recruitment to some promoters upon induction possibly for local acetyl-CoA production

[5–8].

The central role of PDC in energy homeostasis necessitates a tight regulation of its activity.

Short-term regulation (minutes to hours) occurs through the inhibitory phosphorylation of

E1pα by pyruvate dehydrogenase kinases (PDKs) and phosphatases, while long-term regula-

tion of PDC activity can be exerted at transcriptional levels within days to weeks [9, 10]. PDKs

have been studied as potential drug targets as well because of their upregulation or activation

in diseases such as diabetes and cancer [11, 12].

The catalysis of PDC is performed by three separate enzymes E1p (pyruvate dehydroge-

nase), E2p (dihydrolipoamide acetyltransferase), and E3 (dihydrolipoamide dehydroge-

nase), which are linked together efficiently into a large multienzyme complex, where the

oligomeric E2p forms a structural core, to which multiple copies of the E1p, E3, and E3BP

(E3 binding protein) are bound [13]. The E1p performs the rate-limiting oxidative decar-

boxylation of pyruvate via thiamine pyrophosphate (TPP) and transfers the acetyl-group to

the lipoyl group of the E2p. Then the E2p transfers the acyl group to CoA while reducing its

lipoyl domain, which is then oxidized by the E3 which transfers electrons to NAD+ via its

cofactor FAD, resulting in the formation of NADH [14]. The formation of PDC not only

allows substrate channeling between neighboring enzymes but also connects remote E1p

and E3 within the complex by active-site coupling via flexible lipoyl domains of the E2p core

[15–17].

Attempts to study the PDC has primarily used structure analysis methods such as analytical

ultracentrifugation, Cryo-EM, crystallography, isothermal titration calorimetry, nuclear mag-

netic resonance spectroscopy, small-angle X-ray scattering and neutron scattering [18–24].

Interestingly, structural studies of the PDC have reported varying sizes of the complex [25–

30]. Stoichiometry of the PDC subunits in the complex was shown to vary when prepared

from E. coli [25, 26], and multiple sedimentation components of the bacterial PDC corre-

sponding to different sizes were observed [27, 28]. Intriguingly, a study imaged pig heart PDC

within sections of mitochondria where it displayed a size estimated to ~ 1–3 MDa in contrast

to ~10 MDa estimated from sedimentation studies [30]. In this study, we used size exclusion

chromatography (SEC) to examine the size of PDC in physiological condition. SEC is a well-

established flow-assisted separation technique that can determine protein heterogeneity by

separating native protein complexes in solution assisted by mass spectrometry [31]. Although

SEC does not provide a detailed molecular information, it can determine hydrodynamic sizes

of macromolecules from which oligomerization state(s) may be deduced. For a globular oligo-

meric complex like the PDC that may organize into multiform structures, SEC can give a good

approximation of their sizes.

In this work, by using calibrated SEC using a gel filtration column, we demonstrate that the

PDC displays size versatility in an ionic strength-dependent manner. Also, by performing

immunoprecipitation followed by mass spectrometry along with SEC, we show that the indi-

vidual PDC components can form sub-megadalton complexes in a physiological condition.

We examine the biological implications of these findings by showing that the activity of PDC

is reduced in high ionic strength. We propose that the versatile nature of PDC structure may

allow modulation of its activity and translocation.
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Materials and methods

Yeast strains and growth medium

Saccharomyces cerevisiae strains (BY4741) used in this study are listed in S1 Table in S1 File.

All single deletion mutants using KanMX4 marker were obtained from Open Biosystems

library maintained by Stowers Institute Molecular Biology facility. The remaining strains were

generated by targeted homologous recombination of PCR fragments with marker genes. The

deletion or tagged strains were verified by PCR with primer sets specific for their deletion or

tagging marker or coding regions. Growth and maintenance of S. cerevisiae strains were done

in Yeast extract–Peptone–Dextrose medium (YPD, 2% glucose).

Yeast cell extractions and subcellular fractionation

Yeast cells were grown in YPD medium at 30˚C to OD600 of 0.8. Cell pellet was washed and

resuspended in 40 ml per 1,000 OD600 of SB buffer (1.4 M Sorbitol, 40 mM HEPES, pH 7.5,

0.5 mM MgCl2, 10 mM β-mercaptoethanol) and spheroplasted with 2 mg/ml Zymolyase 20T

(Amsbio LLC, 120491–1) at 23˚C for 45 min. For whole cell extract, spheroplast was lysed with

glass beads in TAP50 buffer (50 mM NaCl, 40 mM HEPES pH 7.5, 10% Glycerol, 0.1% Tween-

20, 1 μg/ml pepstatin A, 2 μg/ml leupeptin, 1 mM PMSF) or EM150 (150 mM NaCl, 10 mM

MOPS buffer pH 7.2, 1 mM EDTA, 1% Triton X-100, 1 μg/ml pepstatin A, 2 μg/ml leupeptin,

1 mM PMSF) at 4˚C for 20 min. The whole cell extract was treated with 25 unit of Benzonase

(Millipore Sigma, 70664) and 5 μg of heparin per 1,000 OD cells at 23˚C for 15 min to remove

nucleic acid contamination and then clarified by ultracentrifugation at 45,000 rpm for 90 min

following a centrifugation at 20,000 g for 20 min. For the separation of high sedimentation rate

fraction (HS) and low sedimentation rate fraction (LS) fractions, spheroplast was resuspended

in 20 ml of homogenization buffer (10 mM Tris-HCl pH 7.4, 0.6 M sorbitol, 1 mM EDTA,

0.2% (w/v) BSA) and homogenized with 8 strokes of a revolving pestle at full speed per 1,000

OD600 cells. The homogenized spheroplast was centrifuged at 1,500 g for 5 min and the result-

ing pellet was collected as the LS fraction. The supernatant was further centrifuged at 3,000 g

for 5 min then at 12,000 g for 15 min, when the final pellet was collected as the HS fraction.

The HS fraction was washed with 6 ml of buffer C (0.25 M sucrose, 10 mM Tris pH 6.7, 0.15

mM MgCl2) and D (0.25 M sucrose, 10 mM Tris pH 7.6, 10 mM EDTA), then finally resus-

pended in 1 ml of EM buffer (10 mM MOPS buffer pH 7.2, 1 mM EDTA, 1% Triton X-100,

1 μg/ml pepstatin A, 2 μg/ml leupeptin, 1 mM PMSF) with 0 mM (EM), 150 mM (EM150), or

350 mM NaCl (EM350) and homogenized with 50 strokes and incubated for 1 hr in ice with 5

units of Benzonase. The crude HS fraction was clarified by ultracentrifugation at 50,000 rpm

for 30 min. The LS fraction was further clarified by washing the pellet with NP buffer (0.34 M

sucrose, 20 mM Tris pH 7.5, 50 mM KCl, 5 mM MgCl2) and homogenizing in H350 buffer (40

mM HEPES-KOH pH7.5, 10% glycerol, 350 mM KCl, 2 mM MgCl2, 1 mM EDTA, 0.02%

NP40), EM, or EM150 buffer with 25 strokes. The crude extract was incubated with 125 units

of Benzonase on a roller for 1 hr in 4˚C, then clarified by ultracentrifugation at 45,000 rpm for

90 min following a centrifugation at 20,000 g for 15 min.

FLAG purification

Clarified extract was incubated with anti-FLAG M2 agarose (Sigma-Aldrich, A2220) at 4˚C for

4 hr and washed two times with its resuspending buffer and once with E100 buffer (25 mM

HEPES-KOH pH7.5, 10% glycerol, 100 mM KCl, 2 mM MgCl2, 1 mM EDTA with Roche

cOmplete™, EDTA-free Protease Inhibitor Cocktail Tablets). The FLAG tagged proteins were

eluted with E100 buffer containing 400 μg/ml 3xFLAG peptide.
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Mammalian protein extraction and Halo purification

For Halo (HaloTag, Promega) purification, HEK293T cells at 40% confluency in a 100 mm

plate were transfected with 10 μg of plasmid containing ORF of PDHA1-HA-Halo or Halo-

PDHA1 in 1X BBS (from 2XBBS (0.28 M NaCl, 0.05 M N,N-bis-(2-Hydroxyethyl)-2-ami-

noethanesulfonic acid,1.5 mM Na2HPO4)) with 125 mM CaCl2. Cells were harvested by scrap-

ing in PBS following a PBS wash after 24 hr from transfection. For non-transfected cells, cells

were harvested at 100% confluency. Cell pellet was resuspended in 1 ml of Hypotonic buffer

(50 mM Tris-HCl pH 7.5, 0.1% NP-40) and centrifuged at 4000 rpm for 5 min. The resulting

pellet was resuspended in 1 ml of lysis buffer (50 mM Tris-HCl pH 7.5, 1% Triton X-100, 0.1%

Na-deoxycholate) with 0 mM, 150 mM, or 350 mM NaCl then clarified by centrifugation at

12,000 rpm for 30 min. The crude extract in the supernatant was treated with 125 units of ben-

zonase for 20 min in 4˚C, then clarified by centrifugation at 12,000 rpm for 10 min. The clari-

fied extract was either directly loaded onto Superose 6 column following pre-clearing with

150 μl of Sepharose CL-2B (GE Healthcare, 17-0140-01) or subjected to Halo purification by

incubating with 100 μl of HaloLink™ Resin (Promega, G1915) suspension overnight in 4˚C on

a rotator. The beads were washed 3 times then subjected for protein elution with 50 units of

AcTEV protease (Invitrogen, 12575–015) in PBS buffer by 8 hr incubation in 4˚C on a rotator.

Size-exclusion chromatography (SEC)

The size exclusion fractionation using Superose1 6 10/300 GL (GE17-5172-01) was performed

as previously described [32] with minor modification. It was calibrated with standard proteins

BSA (67 kDa), catalase (232 kDa), apoferritin (440 kDa), thyroglobulin (669 kDa, 1338 kDa)

and Blue Dextran 2000 (2 MDa). Cell extracts following a pre-clearing with 150 μl of Sepharose

CL-2B or elution from FLAG of Halo purification was loaded onto a Superose 6 size-exclusion

column (Amersham Bioscience) equilibrated with EM, EM50, or EM150 buffer for 0 mM, 50

mM, or 150 mM NaCl condition for yeast samples, PBS buffer or PBS minus NaCl and KCl for

150 mM or 0mM NaCl mammalian samples, or superose 6 buffer (350 mM NaCl, 40 mM

HEPES pH 7.5, 5% glycerol, 0.1% Tween 20) for 350 mM NaCl condition. The 500 μl fractions

eluted from the column were analyzed by western blots and multidimensional protein identifi-

cation technology as described in the results section.

Immunoblotting

SDS samples were run on 10% SDS-PAGE and transferred to 0.45 μm Immobilon-P PVDF

Membrane (Millipore Sigma, IPVH00010) and immunoblotted using anti-FLAG (Sigma-

Aldrich, A8592) at 1:10,000 dilution in 5% non-fat milk, anti-HA (Thermofisher Scientific,

26183-HRP) at 1:2,000 dilutions in 5% non-fat milk, anti-V5 (Abcam, ab9116) and anti-

MTCO2 (Abcam, ab110271) at 1:1,000 dilutions in 5% non-fat milk, anti-Lamin A (Abcam,

ab26300) and anti-E1α (Abcam, ab110330) at 1:500 dilution in 5% BSA (Sigma-Aldrich,

a9647), anti-E1β (Abcam, ab155996), anti-E2 (Santa Cruz Biotechnology, sc-271534), anti-E3

(Santa Cruz Biotechnology, sc-365977), anti-BAF155 (Santa Cruz Biotechnology, sc-9746) at

1:2,000 dilution in 5% BSA, or anti-Brg1 (Abcam, ab110641) at 1:2,000 dilution in 5% BSA.

PDC activity assay

Iodonitrotetrazolium chloride (INT)-based colorimetric assay was performed base on previous

publication [33] with minor modification. Briefly, yPDC was purified with FLAG M2 agarose

from whole cell extract of pkp2Δ/Pdb1-5xFLAG as described above. From 250 μl elution of

FLAG purification of Pdb1, 6 μl was used for the assay. Assay was performed in 20 μl reaction
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with 50 mM potassium phosphate buffer pH 7.5, 2.5 mM β-Nicotinamide adenine dinucleo-

tide (NAD+; Sigma Aldrich, N8410), 5 mM sodium pyruvate (Gibco, 11360070), 0.2 mM Thia-

mine pyrophosphate (TPP; Sigma Aldrich, C8754), 0.6 mM or 0.4 mM Iodonitrotetrazolium

chloride (INT) (Sigma-Aldrich, I8377), 6.5 μM Phenazine ethosulfate (PES; Sigma-Aldrich,

P4544), 0.1 mM Coenzyme A trihydrate (VWR, IC10480950), 1 mg/ml BSA (Sigma-Aldrich,

A9647), and 1 mM MgCl2 with 50 mM, 100 mM or 350 mM NaCl. The amount of INT-forma-

zan reduced by PES which was reduced by NADH from PDC activity was measured by the

absorbance value at 490 nm by NanoDrop 2000 (Thermofisher, ND-2000).

Proteomics analysis by multidimensional protein identification technology

(MudPIT)

TCA-precipitated protein pellets were solubilized using Tris-HCl pH 8.5 and 8 M urea, fol-

lowed by addition of TCEP (Tris(2-carboxyethyl)phosphine hydrochloride; Thermo Scientific,

20490) and chloroacetamide (CAM; Sigma-Aldrich, 22790) to final concentrations of 5 mM

and 10 mM, respectively. Proteins were digested using Endoproteinase Lys-C at 1:100 w/w

(Roche, 11058533103) at 37˚C overnight. Digestion solutions were brought to a final concen-

tration of 2 M urea and 2 mM CaCl2 and a second digestion was performed overnight at 37˚C

using trypsin (Promega, v5280) at 1:100 w/w. The reactions were stopped using formic acid

(5% final). Peptide samples were loaded on a split-triple-phase fused-silica micro-capillary col-

umn and placed in-line with a linear ion trap mass spectrometer (LTQ) (Thermo Scientific),

coupled with a Quaternary Agilent 1100 Series HPLC system. A fully automated 10-step chro-

matography run (for a total of 20 hr) was carried out, as described in [34]. Each full MS scan

(400–1600 m/z) was followed by five data-dependent MS/MS scans. The number of the micro

scans was set to 1 both for MS and MS/MS. The dynamic exclusion settings used were as fol-

lows: repeat count 2; repeat duration 30 sec; exclusion list size 500 and exclusion duration 120

sec, while the minimum signal threshold was set to 100.

MS/MS peak files were extracted with RawDistiller [35] and searched using ProLuCID (v.

1.3.3) [36] against a database consisting of 5945 S. cerevisiae non-redundant proteins (NCBI,

2017-05-16), 193 usual contaminants (such as human keratins, IgGs, and proteolytic enzymes),

and, to estimate false discovery rates (FDRs), 6138 randomized amino acid sequences derived

from each non-redundant protein entry. The human dataset was searched against a database

consisting of 36,628 Homo sapiens NR proteins (NCBI -released June 10, 2016), 193 usual con-

taminants, and randomized amino acid sequences derived from each NR protein entry. Mass

tolerance for precursor and fragment ions was set at 800 ppm. ProLuCID searches were set up

against a preprocessed database of tryptic peptides with K/R at both ends and with a differen-

tial modification of +16 Da on methionine residues. No maximum number of missed cleav-

ages were specified. To account for alkylation by CAM, 57 Da were added statically to the

cysteine residues.

Peptide/spectrum matches were sorted and selected using DTASelect/CONTRAST (v. 1.9)

[37] in combination with an in-house software, swallow (v. 0.0.1, https://github.com/tzw-wen/

kite), to filter spectra, peptides, and proteins at FDRs < 5%. Combining all runs, proteins had

to be detected by at least 2 peptides or by 1 peptide with 2 independent spectra. To estimate

relative protein levels, distributed normalized spectral abundance factors (dNSAF) were calcu-

lated for each detected protein, as described in [38]. The MS datasets for the human and yeast

analyses may be obtained from the MassIVE repository with accessions MSV000085125 and

MSV000085126, respectively (with password: JLE01146) and from the ProteomeXChange

with accessions PXD018125 and PXD018126.
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Results

Yeast PDC components display salt-lability

We analyzed the size of the yeast PDC by size exclusion chromatography (SEC) (Fig 1a and

S2a Fig in S1 File). To facilitate the detection of the PDC components, yeast BY4741 strains

were generated in which combinations of the E1p β subunit (E1pβ), E2p and E3 were epitope-

tagged at their endogenous locus with 3xHA, V5 and 5xFLAG, respectively. We verified the

epitope-tagging did not affect the growth by spotting assay of the tagged strains versus wild-

type on YPD plates (S1 Fig in S1 File). When PDC E1p or E3 subunits is deleted, yeast cells

become sensitive to rapamycin [39]. The PDC subunit tagged strains, however, did not display

such rapamycin sensitivity compared to wildtype (S1 Fig in S1 File), thus, the epitope tags did

not cause a cellular dysfunction of PDC. Next, whole-cell extracts of these strains were pre-

pared and loaded onto a Superose 6 column for SEC. The SEC fractions were analyzed by

immunoblotting using antibodies against the epitope tags on the PDC components (S2b Fig in

S1 File). Interestingly, all of the three PDC components eluted at two peak fractions belonging

to different sizes; one in the void volume at 8 ml (� 2 MDa) as expected for its well-known

Fig 1. Ionic strength dictates the elution profiles of yPDC components in size exclusion chromatography. (a) A

flowchart of experiments presented in Fig 1. For (b)-(e), size fraction profiles of yPDC components of Pdb1-3xHA/

Lat1-V5/Lpd1-5xFLAG strain from (b) the HS fraction in a buffer containing 0 mM NaCl, (c) the LS fraction in a

buffer containing 0 mM NaCl, (d) the HS fraction in a buffer containing 350 mM NaCl and (e) the LS fraction in a

buffer containing 350 mM NaCl. Elution volumes in the SEC via Superose 6 column for every 500 μl fraction are

indicated with the expected size of eluted proteins based on standard proteins. Boxes in dashed lines highlight the peak

fractions.

https://doi.org/10.1371/journal.pone.0243489.g001
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macromolecular structure and the other in the range of 14–15 ml elution volume. The two

clear peak elution volumes suggested a heterogeneity in the size of the PDC components,

hence we decided to investigate this further.

Recent reports have demonstrated the existence of PDC in the nucleus of mammalian cells

which is a non-canonical location for this mitochondrial complex [5–7]. We were curious

whether the two elution peaks observed resulted from PDC that belonged to the two different

subcellular organelles. To address this, we first fractionated subcellular organelles by differen-

tial sedimentation rates upon centrifugation [40]. Indeed, high sedimentation rate fraction

(HS) was enriched with mitochondria, while low sedimentation rate fraction (LS) was enriched

with nuclei (S2c Fig in S1 File). Each of the two enriched extracts was size-fractionated by SEC,

and the fractions were collected and probed for PDC components by immunoblotting against

their epitope tags (Fig 1b and 1e). From the (mitochondria-enriched) HS extract, the elution

of the PDC components peaked at 8 ml for several MDa (� 2 MDa) as well as at 11–12 ml for

~1 MDa proteins (Fig 1b), while from the (nuclei-enriched) LS fraction, the PDC components

were detected at 14–15 ml elution volume for ~230–440 kDa proteins (Fig 1e).

These results seemed to suggest that the size of the PDC differed when extracted from the

different subcellular organelles at a first glance, however, the difference in ionic strength

between the buffers for preparing the fractions (0 mM for HS fractions vs 350 mM for LS) may

have affected the apparent size difference observed. To address this possibility, HS and LS

extracts were prepared in the inversed salt conditions. Consequently, HS extract was prepared

in the presence of 350 mM NaCl, whereas the LS extract was prepared in 0 mM NaCl. Then

each extract was loaded onto a sizing column in the corresponding ionic strength. The eluted

fractions from SEC were collected and probed for the epitope-tagged PDC components by

immunoblotting (Fig 1c and 1d). All the PDC components of HS extract in 350 mM NaCl

mostly eluted at 14–15 ml corresponding to molecular weight of ~230–440 kDa (Fig 1d),

whereas those of LS extract in 0 mM NaCl eluted peak at 11–12 ml elution volume for ~1 MDa

(Fig 1c). This result suggested that indeed the PDC of HS fraction acquired a similar SEC elu-

tion profile to that of LS fraction in the same NaCl concentration. These data suggested that

the size of the PDC components can vary depending on ionic strength, rather than their source

of origination.

So far, we have observed that the PDC components in low ionic strength (0 or 50 mM

NaCl) eluted very differently compared to that in high ionic strength (350 mM NaCl) on a siz-

ing column. Next, we inquired how the elution profile would behave in a physiological salt

concentration of 150 mM NaCl. For this, whole-cell extract was prepared in a buffer contain-

ing 150 mM NaCl and subjected to SEC. The size-fractions were collected and immunoblotted

against PDC components via their epitope tags (S2d Fig in S1 File). Interestingly, all the PDC

components peaked at the elution volume of 14–15 ml for ~230–440 kDa in 150 mM NaCl.

This was clearly shifted to a smaller size compared to the peak elution in the low ionic strength,

at 8 ml (in 0 mM and 50 mM NaCl) and 11–12 ml elution volume (in 0 mM NaCl) (Fig 1b and

S2b Fig in S1 File), suggesting the decreased size of the PDC components in the physiological

salt condition. Notably, the size of the small PDC components was reminiscent of that

observed in the higher ionic strength (350 mM NaCl) (Fig 1d and 1e). Further, MDa sized

PDC components that were observed in lower ionic strength (Fig 1b and S2b Fig in S1 File)

were substantially reduced in the ionic strength of 150 mM NaCl.

Next, to verify the ionic strength-dependent size of the PDC components irrespective of the

origin of the extract, HS and LS extracts were prepared and subjected to SEC in 150 mM NaCl.

The size-fractions were collected and probed for the PDC components by immunoblotting

against their epitope tags (S2e-S2f Fig in S1 File). As in the SEC of whole-cell extract (S2d Fig

in S1 File), the elution peaks of the PDC components in both HS and LS extracts were shifted
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to a smaller size of 14–15 ml elution volume comparable to that in the high ionic strength (350

mM NaCl) buffer (Fig 1d and 1e). These results indicate that the molecular weight of the PDC

components responds to changes in the ionic strength. In fact, the physiological ionic strength

(150 mM NaCl) is enough to form sub-megadalton PDC components.

PDC is a salt-labile complex

Thus far, we observed that the size of the PDC components is dependent on ionic strength

using SEC of various extracts (Fig 1 and S2 Fig in S1 File). To examine whether the purified

complex also exhibits a similar behavior, we decided to affinity-purify PDC. For this, strains

each expressing a FLAG-tagged E1pβ and E3, were generated. Next, the PDC components

were affinity-purified (AP) from cell extracts and the purified complexes were subjected to a

mass spectrometry technique known as Multidimensional protein identification technology

(MudPIT) [34]. Consistent with the fact that E1p, E2p, and E3 interact with one another in the

complex, MudPIT detected all the PDC components in each of the purifications (S3a Fig in S1

File). Next, the purified complexes via E1pβ-5xFLAG (Fig 2a) and E3-5xFLAG (Fig 2b) were

size-fractionated in 350 mM NaCl and the fractions were probed for their elution profiles by

immunoblotting against FLAG. Indeed, both purifications of PDC via E1pβ and E3 showed a

Fig 2. Affinity-purified PDC in SEC and IP suggests that yPDC is a salt-labile complex. (a) Size fraction profiles of

FLAG affinity purified (AP) yPDC-E1β from Pdb1-5xFLAG strain in a buffer containing 350 mM NaCl. (b) Size

fraction profiles of FLAG purified yPDC-E3 from Lpd1-5xFLAG strain in a buffer containing 350 mM NaCl. (c) (Left

panel) Immunoprecipitation (IP) of yPDC-E1β via HA from Pdb1- 3xHA/Lat1-V5/Lpd1-5xFLAG strain in a buffer

containing 0 mM, 150 mM, or 350 mM of NaCl. (Right panel) The relative ratios of anti-V5 and anti-FLAG to anti-HA

signals are normalized to that of 0 mM and presented with error bars indicating standard deviation of three biological

replicates. (d) Size fraction profiles of FLAG AP yPDC-E3 from Pdb1- 3xHA/Lat1-V5/Lpd1-5xFLAG strain in a buffer

containing 0 mM NaCl. Asterisks denote non-specific signals. For (a), (b), and (d) elution volumes in the SEC via

Superose 6 column for every 500 μl fraction are indicated with the expected size of eluted proteins based on standard

proteins.

https://doi.org/10.1371/journal.pone.0243489.g002
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very similar elution profile to what we observed from the extracts in the same ionic strength

(Fig 1d–1e). This result suggests that the purified PDC is as salt-labile as its components.

Since the canonical PDC contains multiple copies of E1p, E2p, and E3 subunits, we set out

to determine whether the interactions among the subunits were reduced with increasing ionic

strength. If so, this would explain the decreased size of the complex observed. Consequently,

E1pβ was immunoprecipitated (IP) via HA from whole-cell extract in varying ionic strengths

and the amount of co-precipitated E2p and E3 subunits were examined by immunoblotting

against their epitope tags (Fig 2c). Indeed, the amount of co-precipitated E2p and E3 decreased

with increasing ionic strength, consistent with the decreased size observed by SEC. This result

suggests that the PDC in higher ionic strength might contain fewer copies of one or more sub-

units and thereby, have a smaller size. Collectively, these results suggest that the PDC is a salt-

labile complex which can dissociate in the physiological salt condition (150 mM NaCl). This

contrasts with many protein complexes (e.g. SAGA, SWI/SNF, etc) that are stable in similar

conditions [41].

To further validate whether the different sizes of the PDC components observed from cell

extracts resulted from the varying size of the complex, we purified the PDC via E3-5xFLAG

followed by SEC in 0 mM NaCl condition. The presence of the complex was detected by

immunoblotting against the epitopes of the co-purified PDC components (Fig 2d). Indeed, the

elution profiles of the purified PDC matched well with those obtained from extracts (Fig 1b),

suggesting that the complex eluted with a higher molecular weight (� 2 MDa and ~1 MDa) in

the lower ionic strength condition. Interestingly, while the E3-AP followed by SEC revealed

the complex of MDa sizes (Fig 2d), it was missing the elution peak of ~230 kDa at 15–16 ml

elution volume that was present in the SEC of E3-AP in 350 mM NaCl (Fig 2b). Similarly, the

E1pβ purified with the E3-AP in 0 mM NaCl (Fig 2d) did not display the peak of the SEC of

E1pβ-AP in 350 mM NaCl (Fig 2a) at 14–15 ml elution volume. We inquired whether the

small ~440 kDa entity in E1pβ-AP and the ~230 kDa entity in E3-AP observed only in the

high ionic strength (350 mM NaCl) were forming a complex. To answer that, we subjected the

peak sub-megadalton fraction of the SEC of each purification performed in 350 mM NaCl con-

dition (Fig 2a and 2b) to mass spectrometry (S3b Fig in S1 File). Surprisingly, the MudPIT

analysis revealed that in E1pβ purification, E1pα and E1pβ are the primary molecules in the

co-eluting entity at the elution volume of 14.5 ml. Likewise, in the E3 purification, E3 was the

main molecule at the elution volume of 16 ml. Based on the MudPIT data and previous studies

[14], the peak elution volume for each PDC purification at 350 mM NaCl (Fig 2a and 2b) likely

contained an oligomer of the bait subunit. Based on the elution volume, purified E1p eluted

with a size of ~440 kDa and purified PDC-E3 eluted with a size of ~230 kDa.

Taken together, our data establish that the PDC is salt-labile and its integrity as a megadal-

ton complex does not remain intact at the physiological ionic strength. Consequently, the size

and the number of subunits of the complex are highly dependent on ionic strength.

Mammalian PDC also exhibits salt lability that is similar, but not identical,

to that observed in yeast

PDC subunits in Baker yeast have conserved homology and sequence similarity with mamma-

lian counterparts. Hence, we wanted to test whether the observed salt-lability of PDC is a

unique property of yeast PDC (yPDC) or is conserved in the mammalian PDC (mPDC) as

well. For this, HEK293T lysate was prepared and subjected to SEC in high ionic strength (350

mM). Then the size fractionated PDC components were probed by immunoblotting (Fig 3a).

As in yeast, the mammalian E1p, mE1pα (PDHA1) and mE1pβ (PDHB1), and mE3 compo-

nents were detected mostly in sub-megadalton size fractions (~230 kDa) in the high ionic
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strength. Interestingly, the mE2p eluted only as a megadalton complex (� 2 MDa) even in the

high salt condition. When the same size-fractions were probed for the subunits of a well char-

acterized high molecular weight SWI-SNF complex, Brg1 and Baf155, by immunoblotting

(S4a Fig in S1 File), they were found in megadalton size (1.3–1.5 MDa) fractions as expected.

This result suggests that the mPDC components are more salt-labile than the SWI-SNF com-

plex components (S4b Fig in S1 File).

To verify whether the co-fractionated mPDC components (Fig 3a) were forming a complex,

purification of mPDC via mE1pα (PDHA1) was performed from HEK293T cells. The location

of the fused protein (HaloTag) for the purification was determined based on the localization of

the C-terminally YFP-tagged (PDHA1-YFP) and the N-terminally GFP-tagged (GFP-PDHA1)

mE1pα (S5a Fig in S1 File). The microscopy images revealed that C-terminal tagging allowed

the correct localization of the PDC component as suggested by the colocalization of PDHA1-

YFP with a mitochondrial staining dye mitotracker, while the N-terminal tagging resulted in

pan-cellular localization likely due to the unavailability of the mitochondrial localization

sequence at the N-terminus of the precursor of the mE1pα [42].

Consequently, the mPDC was purified via PDHA1-HA-Halo construct from HEK293T

cells in a buffer containing 150 mM NaCl and subjected to mass spectrometry (S5b Fig in S1

File). The MudPIT analysis identified all the subunits of mPDC, suggesting the intact complex

was purified. When the purification of the presumably-mislocalized Halo-PDHA1 was sub-

jected to mass spectrometry, MudPIT analysis (S5c Fig in S1 File) revealed that the amount of

co-purified PDC subunits was significantly less as expected. Next, the mPDC purified via

PDHA1-HA-Halo was subjected to SEC in high ionic strength (350 mM NaCl) and the eluted

fractions were probed by immunoblotting against its components (Fig 3b). The purified

mPDC essentially displayed the same profile to that acquired from the cell lysate (Fig 3a). The

purified mE1pα, mE1pβ and mE2p (Fig 3b) were eluted at 8–9 ml and 16–17 ml elution

Fig 3. SEC of mammalian PDC exhibits salt-lability similar, but not identical, to that observed in yPDC. (a) Size

fraction profiles of lysates of HEK293T cells in a buffer containing 350 mM NaCl. (b) Size fraction profiles of Halo

affinity purified (AP) mE1pα construct from HEK293T cells in a buffer containing 350 mM NaCl. (c) Size fraction

profiles of affinity purified mE1pα construct from HEK293T cells in a buffer containing 150 mM NaCl. Asterisks

denote non-specific signals. Elution volumes in the SEC via Superose 6 column for every 500 μl fraction are indicated

with the expected size of eluted proteins based on standard proteins. Boxes in dashed lines highlight the peak fractions.

https://doi.org/10.1371/journal.pone.0243489.g003
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volume which matched well with those in the SEC of cell lysate (Fig 3a). mE1pα and mE1pβ
were mostly co-eluted at fractions for a sub-megadalton (~ 230 kDa) protein, likely as

mE1pα2β2 tetramers in this high ionic strength condition. With an elution peak at the void

volume, the mE2p seemed to only co-elute with a complex of several megadaltons (� 2 MDa)

in size. These results suggest that mE1p is salt-labile while mE2p core is stable in high ionic

strength.

Next, we inquired how the mPDC would behave in the physiological condition at 150 mM

NaCl. To address that, the mPDC was purified via PDHA1-HA-Halo from HEK293T cells in a

buffer containing 150 mM NaCl and subjected to SEC. The size-fractions in 150 mM NaCl

were collected and probed for the mPDC components by immunoblotting (Fig 3c). As

observed with the yPDC, the mPDC displayed a similar elution profile in this physiological

condition as it did with the high ionic strength (350 mM NaCl) (Fig 3b). The mE1pα and

mE1pβ co-eluted in a sub-megadalton entity of ~230 kDa, while the mE2p eluted at 8–9 ml

elution volume with a complex of several megadaltons. The mPDC exhibited a striking differ-

ence as compared to yPDC in that the mE2p was more stable as a megadalton complex in high

ionic strength. However, mE1p also exhibited a sub-megadalton size in a physiological condi-

tion like yE1p. The mE3 in the mE1pα-AP was below detection level in western blots (not

shown). Next, the mPDC was purified via PDHA1-HA-Halo from HEK293T cells in low ionic

strength (0 mM NaCl). Both mE1pα and mE2p displayed SEC elution profile with increased

amount of MDa sizes compared to that in 350 mM and 150 mM condition (S6 Fig in S1 File).

These results suggest that the salt-lability is conserved from yeast to human and might be a

universal property of E1p, while the lability of E2p may differ between organisms.

The catalytic activity of PDC changes with ionic strength

Thus far, we have established that the PDC is a salt-labile complex compared to other protein

complexes such as the SWI/SNF which maintains its integrity in high salt conditions (S4 Fig in

S1 File). This finding led us to speculate whether the salt lability of the complex affects its activ-

ity. Previously, a non-canonically smaller PDC observed in the process of reassembling or dis-

assembling canonical PDC showed lower catalytic activity proportional to its size [43, 44].

Thus, we postulated that ionic strength, with which the size of the PDC can vary, can modulate

the activity of the PDC. To test this hypothesis, we performed in vitro catalytic activity assay of

the PDC. The yPDC was affinity-purified in a low salt condition (50 mM NaCl) from a PDC

kinase mutant via E1pβ (pkp2Δ/PDB1-5xFLAG) to account for the highly phosphorylated

inactive PDC in yeast [45]. To examine the effect of ionic strength on the PDC activity, the

assay was performed with a low (50 mM NaCl) and a high (350 mM) ionic strength.

Iodonitrotetrazolium chloride (INT)-salt adduct produced by the catalytic activity of PDC

was detected by absorbance at 490 nm over a time course (see Material and method for

details). Indeed, a lower activity was detected in the PDC in higher ionic strength (350 mM

NaCl) compared to that in lower ionic strength (50 mM NaCl) (Fig 4a). In the control experi-

ment in which the PDC was removed from the assay, the absorbance at 490 nm remained con-

stant in both ionic strength conditions. The amount of PDC used in the two assays was

verified to be equivalent by immunoblotting of the E1pβ-FLAG (S7 Fig in S1 File).

Next, to corroborate that it was the ionic strength imposed on the PDC that led to the

change in the activity, we performed the assay in two conditions with a single ionic strength

(100 mM NaCl), while the PDC was pre-incubated in a low (50 mM NaCl) or a high (350 mM

NaCl) ionic strength condition prior to the assay (Fig 4b). Indeed, the decrease in the activity

was observed when the PDC was exposed to a higher ionic strength prior to the assay. This

suggested that the high ionic strength decreased the activity of PDC. Taken together, these
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results suggest that the ionic strength that affects the size of PDC can modulate its catalytic

activity possibly by changing the number of subunits within the complex.

Discussion

The present study demonstrates the lability of the multienzyme PDC. Several reports have

shown that the PDC size, structure, and the number of its subunits can vary up to ~17% [29,

30, 46–49]. However, the present study is the first report that in a systematic way establishes

the lability of the PDC that forms sub-megadalton structure in the physiological ionic

strength.

The E1p is known to form a tetramer (E1pα2β2), which is calculated to be ~180 kDa, within

the yPDC. Interestingly, the yE1p we purified eluted at fractions for ~440 kDa proteins (Fig

2a) that mainly contained E1pα, E1pβ, and a nominal amount of E2p (S3b Fig in S1 File). PDC

kinases and phosphatases have been shown to be associated with PDC by binding to E2p, but

the regulatory proteins were not detected in our affinity purifications [50]. This suggests the

possibility of a larger oligomer of yE1p. The E3 is known to form a homodimer, which is calcu-

lated to be ~120 kDa. In our affinity purification, yE3 eluted at fractions for ~230 kDa, which

contained mostly E3 (S3b Fig in S1 File). This suggests a possible stable form of E3 as a tetra-

mer as well as a dimer. These possible variations of oligomeric states of the PDC components

further support our observation about the lability of the complex. The key conclusions of this

study are illustrated in the model (Fig 5).

Forming a massive complex can provide cells a concentrated catalytic potential with high

efficiency via substrate channeling and active-site coupling [14]. This notion is supported by a

Fig 4. The labile character of PDC is correlated with catalytic activity. The catalytic activity of yPDC measured by

absorbance at 490 nm via INT in the presence of (a) 0.6 mM INT and 50 mM or 350 mM NaCl or (b) 0.4 mM INT and

100 mM NaCl with yPDC preincubated with 50 mM or 350 mM NaCl. Error bars indicate standard deviations of three

replicates.

https://doi.org/10.1371/journal.pone.0243489.g004

Fig 5. A model of labile PDC in yeast and human. The yeast PDC (yPDC) and the human PDC (mPDC) forming

various structures dissociate in high ionic strength condition. The blue sphere represents E1pα2β2, the green sphere

represents E2p, and the orange sphere represents E3 dimer. E3BP is omitted for simplicity.

https://doi.org/10.1371/journal.pone.0243489.g005
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reassembled PDC with ~42–48 E1p heterotetramers and 6–12 E3 homodimers optimally fill-

ing 60 sites of E2p core exhibiting the maximal activity of the complex [51]. However, the labil-

ity of the PDC suggests that PDC may form structures with variable sizes that can occur

spontaneously. Each of the structures may be associated with a certain level of catalytic activity.

Interestingly, we show that the catalytic activity of the PDC decreases with an increased ionic

strength. This might be because higher ionic strength would allow fewer E1p, E2p, and/or E3

subunits in the complex leading to fewer active-site couplings, hence resulting in a less effi-

ciency or reduced activity [15, 16]. Consistent with this, pathogenic PDC variants have been

found associated with structural changes of PDC [52, 53]. The decreased activity of the PDC in

such patients suggests the association of the complex structure with the activity of the complex

[22]. E1p and E3 components can bind independently and competitively to the structural core

formed by the E2p oligomers with different interaction property: binding of E1p is enthalpy-

driven, while that of E3 is entropy-driven [20]. The varying number of E1p and E3 compo-

nents can also lead to a change in the overall activity of the complex as E1p catalyzes the rate-

limiting step of the overall catalysis. In fact, various combinations of the number of E1p and

E3 subunits in PDC have been reported [48]. Collectively, the size and the number of compo-

nent versatility of the PDC could be a means to modulate its activity. Taken together, the versa-

tile structure of the PDC may provide a dynamic mechanism to modulate its catalytic activity.

Recent studies reported that PDC in some mammalian cells is found in the nucleus under

circumstances such as in cancer and during zygotic activation in embryonic cells, potentially

as a whole ~10 MDa complex [5, 6]. However, it is indecipherable how a massive protein com-

plex with a ~450Å size could translocate from one subcellular organelle to another even when

considering the possible trafficking pathway via mitochondrial-derived vesicles (MDV) of

~100Å in size [54]. Interestingly, a rather pliable structure that can change the size of the com-

plex provides a means to translocate the otherwise massive protein complex. Perhaps, a smaller

non-conventional sized PDC complex can translocate into the nucleus.
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