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Abstract

Background: The rapid access to intrinsic physicochemical properties of molecules is highly desired for large scale
chemical data mining explorations such as mass spectrum prediction in metabolomics, toxicity risk assessment and
drug discovery. Large volumes of data are being produced by quantum chemistry calculations, which provide
increasing accurate estimations of several properties, e.g. by Density Functional Theory (DFT), but are still too
computationally expensive for those large scale uses. This work explores the possibility of using large amounts of
data generated by DFT methods for thousands of molecular structures, extracting relevant molecular properties and
applying machine learning (ML) algorithms to learn from the data. Once trained, these ML models can be applied
to new structures to produce ultra-fast predictions. An approach is presented for homolytic bond dissociation
energy (BDE).

Results: Machine learning models were trained with a data set of >12,000 BDEs calculated by B3LYP/6-311++G
(d,p)//DFTB. Descriptors were designed to encode atom types and connectivity in the 2D topological environment
of the bonds. The best model, an Associative Neural Network (ASNN) based on 85 bond descriptors, was able to
predict the BDE of 887 bonds in an independent test set (covering a range of 17.67–202.30 kcal/mol) with RMSD of
5.29 kcal/mol, mean absolute deviation of 3.35 kcal/mol, and R2 = 0.953. The predictions were compared with
semi-empirical PM6 calculations, and were found to be superior for all types of bonds in the data set, except for
O-H, N-H, and N-N bonds. The B3LYP/6-311++G(d,p)//DFTB calculations can approach the higher-level calculations
B3LYP/6-311++G(3df,2p)//B3LYP/6-31G(d,p) with an RMSD of 3.04 kcal/mol, which is less than the RMSD of ASNN
(against both DFT methods). An experimental web service for on-line prediction of BDEs is available at http://joao.
airesdesousa.com/bde.

Conclusion: Knowledge could be automatically extracted by machine learning techniques from a data set of
calculated BDEs, providing ultra-fast access to accurate estimations of DFT-calculated BDEs. This demonstrates how
to extract value from large volumes of data currently being produced by quantum chemistry calculations at an
increasing speed mostly without human intervention. In this way, high-level theoretical quantum calculations can
be used in large-scale applications that otherwise would not afford the intrinsic computational cost.
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Background
The rapid calculation of physicochemical properties of
atoms, bonds and molecules is required to process
thousands or millions of structures in data mining
explorations, or to establish data-driven sound relation-
ships between structure and observable properties.
Quantum chemistry calculations based on ab initio and
density functional theory (DFT) provide estimations of
several properties with increasing accuracy, but with a
high computational cost. Many different approximate
methods have been developed, such as semi-empirical
molecular orbital methods and the self-consistent-charge
density-functional tight-binding (SCC-DFTB) method
that are 2–3 orders of magnitude faster than DFT and
Hartree-Fock using medium-sized basis sets, although
with a lower accuracy [1]. Of course, the possibility of
applying a specific quantum chemistry method depends
on the sizes and numbers of involved molecules, compu-
tational resources, as well as time/accuracy requirements.
Density functional theory (DFT) of electronic structure,

using approximate exchange-correlation functionals, has
enabled the successful application of quantum mechanics
to a wide range of problems in chemistry at a fraction of
the computational requirements of the traditional Hartree-
Fock theory methods [2]. The B3LYP hybrid functional,
particularly, is arguably the most popular DFT functional,
and has been widely recognized as a cost-effective method.
However, DFT calculations are still too computationally
expensive (and difficult to automate) for increasingly
common data-mining tasks involving thousands/millions
of structures, which shall be performed on single worksta-
tions or small clusters in time scales of up to a few hours.
In fact, even semi-empirical methods are currently hardly
affordable in such situations.
At the same time, DFT and ab initio calculations are

continuously being carried out by many science profes-
sionals all over the world producing huge amounts of
data. A Big Data scenario can be envisaged in which
computational analytic techniques can extract inno-
vative knowledge from the large volumes of data
produced by these quantum calculations so that they
can be predicted in new situations 5–6 orders of mag-
nitude faster.
Here we present an implementation of this concept in

our lab, for the estimation of bond dissociation energies
(BDEs). A collection with thousands of molecular struc-
tures was retrieved from a public database, and energies
were calculated for molecules and fragments by DFT,
generating 93.2 GB of data. BDEs were calculated from
these data for all non-ring bonds of the compounds, and
incorporated into a data set of bonds represented by
topological bond descriptors. The data set was used for
training machine learning methods, such as Random
Forests [3] and Associative Neural Networks, [4] with
the goal of establishing models to predict the BDE from
the bond descriptors.
BDE is a fundamental thermodynamic property which

measures the strength of a chemical bond. It is one of
the factors playing a decisive role in the assessment of
chemical reactivity, with an impact in different fields,
e.g., in determining anti-oxidant activity [5] or identi-
fying the major possible metabolic sites of xenobiotics
[6]. The BDE has been used in computational mass
spectrometry for the challenging task of identifying un-
known compounds in the interpretation of metabolomics
data [7]. In order to identify a metabolite, its experimental
mass spectrum can be compared to the spectra simulated
for the structures of metabolites in large databases, to find
the best match. A strategy to identify unknown com-
pounds has consisted in the evaluation of a candidate by
generating all its possible topological fragments in order
to match the fragment mass with the measured peaks.
Candidates are then scored from the number of fragments
that explain peaks in the measured spectrum, and the
likelihood of the fragmentations has been approached by
crude estimations of bond dissociation energies [7].
Some methods have been proposed to predict the BDE,

mainly restricted to small data sets of specific types of
bonds. Cherkasov et al. [8] developed an additive empi-
rical relationship that was able to predict the homolytic
C-H bond dissociation energy within 3.75 kcal/mol for a
data set of 79 molecules. The coefficient of determination
R2 was 0.94. However, this relationship is only valid for
molecules where resonance contributions and captodative
stabilization are insignificant, and the energy range is from
76.4 kcal/mol to 106.7 kcal/mol. Xue et al. [9] developed a
Quantitative Structure–property Relationship model of
the O-H bond dissociation energy using 78 substituted
phenols and Support Vector Machines. A RMSD of
0.79 kcal/mol was achieved for the test set with the
dissociation energies ranging from 76.8 kcal/mol to
95.0 kcal/mol. Stanger et al. [10] developed a prediction
scheme based on low-level quantum chemistry compu-
tation of the hybridization which yielded a correlation
coefficient of 0.951 for 35 C-H BDEs. Przybylak et al. [11]
developed a relation between the C-H bond dissociation
energy of 43 ethers and spin density, which also requires
quantum chemistry calculations. Feng et al. [12] cons-
tructed a homolytic C-H and N-H bond dissociation
energy prediction model for strained hydrocarbons and
amines, which is based on quantum chemical descriptors.
Two separate models were constructed for hydrocarbon
C-H bonds, and amine N-H bonds. Predictions for 89 C-
H BDEs were achieved with a correlation coefficient of
0.927 and standard deviation of 2.7 kcal/mol for C-H
bonds. The two regression statistical properties are 0.878
and 2.7 kcal/mol for N-H bonds, respectively. Santos et al.
[13] studied the homolytic dissociation energies of O-H
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and S-H bonds in a set of di-substituted phenols and
thiophenols by density functional theory at the B3LYP/
6-311++G** level. A good agreement between B3LYP/
6-311++G** energy and experimental values was ob-
served. Correlations between the bond dissociation energy
and Hammet parameters were established in the same
work. The correlation coefficient was 0.842 and 0.949 for
phenols and thiophenols, respectively.
High-level quantum mechanics theory can be used to

directly calculate BDEs. However, as mentioned above,
the computational cost is still too high to be used, e.g.,
in mass spectrum prediction or drug design, which
require the ability of on-the-fly evaluation. High-level
quantum mechanics calculations require hours to deter-
mine the dissociation energy of an individual bond in a
small molecule containing 20 or 30 atoms. Unfortu-
nately, the number of atoms of typical drug molecules is
far more than 30. A large diverse data set of small
molecules and a suitable quantum method are essential
for our chemoinformatics data-driven approach, to
generate a good quality training set with a large number
of bond dissociation energies. The “Fragment-Like” sub-
set of the ZINC database is a practical choice since it
includes convenient low molecular weight molecules
encompassing a diversity of structural patterns compa-
tible with relevant applications [14,15].
Accurate prediction of bond dissociation energies

demands high-level post Hartree-Fork (HF) methods
because the electron correlation effects play an important
role in the bond breaking process. Coupled Cluster with
Single and Double and perturbative Triple excitations
(CCSD(T)) and Quadratic Configuration Interaction with
Single and Double and perturbative Triple excitations
(QCISD(T)) are good examples of such methods. They are
able to generate very accurate energies with a sufficient
large basis set. However, the choice of a computational
method is a balance between accuracy and computational
cost. Such methods scale as N7, where N measures the
system size, limiting their application to fairly small
species for routine use. Density Function Theory (DFT)
offers another method to take account of electron corre-
lation effects. DFT methods typically scale as N3 – N4 and
are able to yield significantly more accurate results than
Hartree-Fork (HF) theory. B3LYP is the most popular
density functional in chemistry, which has been widely
recognized as a cost-effective method and has been
successfully applied to a lot of bond dissociation energy
research work [2,11-13]. The work here presented
employs this method to calculate a database of bond
dissociation energies.
Our database involves thousands of species (molecules

and fragments). It is possible to calculate the energy for
these species using B3LYP. Nevertheless, B3LYP is still too
computationally expensive for the geometry optimization
and frequency analysis of so many species. The density
functional tight-binding (DFTB) is a semi-empirical
approximate quantum chemical method derived from
DFT by neglect, approximation and parametrization of
interaction integrals [1]. The self-consistent-charge density
functional tight-binding (SCC-DFTB), which can be
derived by a second order expansion of the DFT total
energy, extends the DFTB methods to charge self-
consistency. The third generation of DFTB methods
(DFTB3) was established in 2011 by third order expansion
in combination with other improvements, such as the
description of coulomb interaction. DFTB3 improves
transferability and overall accuracy for several properties.
In particular, geometries are usually reproduced excel-
lently [1]. However, because DFTB3 empirical parameter
is only available for elements C, H, O, N, S and P, and
performance for phosphorous-containing molecules is
often unsatisfactory, the current study was restricted to
molecules only containing atoms of C, H, O, N, or S.

Experimental
Data sets
All the chemical structures in the current study were
retrieved from the Fragment-Like database of the ZINC
database [14,15]. A subset with the Tanimoto cutoff level
of 80% was used, and 1,000 molecules were randomly
selected. This data set was randomly partitioned into a
training set with 900 molecules (8,336 unique bonds)
and a test set with 100 molecules (887 unique bonds).
The data sets of molecules were used to build data sets
of covalent bonds. In this work, bonds are the objects to
be processed by machine learning methods in order to
get predictions for their dissociation energies. Additional
molecules were retrieved from the Fragment-Like subset
to enrich the training set in underrepresented types of
bonds (based on atom types of the bond, atom types of
neighbors and bond orders). Globally charged molecules
and molecules containing elements other than C, H, O,
N, or S were discarded. After the enrichment, the train-
ing set was screened against itself for identical bonds,
which were identified and included only once, finally
yielding a training set with 12,834 unique bonds from
molecules different from the test set. The 3D structures
and BDEs used for training the models are available in
the MDL SDFile format in Additional file 1.

Geometry optimization
The ChemAxon Calculator Plugins were used to generate
3D structures from SMILES strings, and to propose low
energy conformers for structure property prediction and
calculation, Marvin 5.8.2, 2012, ChemAxon (http://www.
chemaxon.com) [16] was employed. For all the molecules
in the current study, the lowest energy conformer was
used as a starting point for geometry optimization. The

http://www.chemaxon.com
http://www.chemaxon.com
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geometries of all the species were optimized with the
DFTB+ program [17] in combination with the Atomic
Simulation Environment (ASE) package [18]. The DFTB+
program was used to calculate the DFTB3 energy and
gradient, while the Broyden-Flectcher-Goldfarb-Shanno
(BFGS) [19] and the Fast Inertial Relaxation Engine (FIRE)
[20] optimizers were used to update the coordinates. The
optimized structures were confirmed to be real minima by
vibrational frequency analysis (no imaginary frequency).
For the radical species with unpaired electrons, spin
polarization was enabled in the DFTB calculation.

Calculation of bond dissociation energies (BDEs) by
quantum methods
All DFT calculations were performed using the GAMESS
software package [21]. In the current study, the bond
dissociation energy is defined as the electronic structure
energy change of the following reaction in the vacuum

A−B→A:þ B:

in which A and B represent the two fragments formed by
breaking the A-B covalent bond in a molecule. The zero
point energy (ZPE) correction was not included. After the
geometry was optimized for the molecule, the target bond
was cut and the molecule was broken into two separate
fragments (saved into two SDF files). The geometries of
fragments were optimized with DFTB again. Single point
energies were calculated for the molecule and for the frag-
ments at B3LYP level in conjunction with the 6-311++G**
basis set. Only homolytic dissociation was considered.
Therefore, the charge states of both A and B fragments
are set to neutral. However, breaking of double bonds
originates fragments with two unpaired electron, and both
singlet and triplet states are possible. We performed
geometry optimization and DFT energy calculation for all
possible multiplicities, and used the most stable states to
calculate the BDEs.
To assess the reliability of the B3LYP/6-311++G**//

DFTB3 energy, bond dissociation energies were also
calculated at a higher theoretical level for the whole test
set. In those experiments, the geometry optimization
was performed at the B3LYP/6-31G** level, and the sin-
gle point energy was evaluated at the B3LYP/6-311++G
(3df, 2p) level.
For a comparison with faster quantum methods, bond

dissociation energies were also calculated for the test set
with the PM6 semi-empirical method [22]. For this
purpose, the MOPAC2009 program was used, [23] the
geometry was fully relaxed and confirmed to be real
minima by frequency analysis.
Both in the experiments at the B3LYP/6-31G** level

and with the PM6 method, some molecules failed to
converge in geometry optimization, or had an imaginary
frequency, and were not used in the comparisons – 787
bonds were used.

Bond descriptors
Bond descriptors are required for the processing of
bonds by machine learning techniques. Ultra-fast esti-
mation of bond energies cannot rely on computationally
expensive descriptors. Therefore, bond descriptors were
designed from the outset that: 1) use a simple algorithm;
2) not rely on quantum chemistry calculations; 3) not
rely on optimized 3D geometry so that they can be
directly calculated from the connection table; 4) not use
bond orders explicitly, thus avoiding different mesomers
to end up with different descriptors. As the homolytic
bond dissociation energy is independent of the bond
orientation (A-B or B-A), an additional requirement was
that bond descriptors be independent of the bond
orientation. With all requirements considered, a set of
descriptors was developed to encode a bond (the target
bond) based on counts of atom types and pairs of atom
types existing in the bond or in its neighborhood.
The software for the calculation of bond descriptors

was written in the Java programming language, and
relies on the Chemistry Development Kit (CDK) libraries
[24]. Therefore, in this implementation, definitions of
aromaticity and π-systems are provided by the CDK
CDKHueckelAromaticityDetector algorithm. The source
code to calculate bond descriptors is available at http://
sourceforge.net/projects/unlpredict.

Atom type
Two kinds of atom types are used in this work. The first
simply consists of classifying an atom according to its
element (C, H, O, N, S). The second definition of atom
type combines the element and the number of connec-
ted atoms. For example, the carbon atom in methane is
C4, the carbon atom in ethylene is C3 and the carbon
atom in acetylene is C2. There are 14 types defined in
the current study: C2, C3, C4, H1, N1, N2, N3, N4, O1,
O2, S1, S2, S3, S4. Hereafter, we will use the term
“connection number atom type” to refer to this latter
atom type system.

Spheres
To encode the distance between the target bond and
atoms in the molecule, descriptors are computed at
different layers (spheres). The classification of atoms into
different spheres is based on the distance to the target
bond (number of covalent bonds between the atom and
one atom of the target bond on the shortest possible
path). As shown in Figure 1, atoms 8 and 9 are involved
in the target bond and belong to sphere 0; atoms 5 and
10 are one bond away from bond 8–9 and belong to
sphere 1; sphere 2 includes the atoms 4, 6, 11, and 14.

http://sourceforge.net/projects/unlpredict
http://sourceforge.net/projects/unlpredict
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Initially, up to 7 spheres (from 0 to 6) were taken into
account.

Point descriptors
These are counts of specific atom types in a specific
sphere. If the number of atom types is N, the point
descriptors for a single sphere is an array of size N. This
descriptor can be calculated for the different systems of
atom types. Element point descriptors correspond to
point descriptors based on element atom types; con-
nection number point descriptors correspond to point
descriptors based on connection number atom types.
The descriptors can be restricted to subsets of the
molecule. For example, restriction to aromatic atoms
will result in aromatic point descriptors. Figure 1 shows
several examples of bond descriptors.

Pair descriptors
These are counts of atom pairs of specific atom types in
specific spheres at specific distances between them. Pair
descriptors for a sphere are defined so that one atom of
the pair belongs to the sphere and the other atom is in
the same or in a lower sphere. Pair descriptors are
specified for a distance, which is the number of bonds
between the two atoms of the pair on the shortest
possible path. Figure 1 illustrates element pair descrip-
tors. For example, for bond 8–9, the pair descriptor for
sphere 2, distance 2, atom types “C-C” is 4, which results
from counting atom pairs 4–6, 4–8, 6–8 and 11–9. In
this paper, we used pair descriptors with different
combinations of spheres, distances and atom types.
Pair descriptors can also be calculated without atom

types, i.e., counting all the pairs of specific spheres and
distances regardless of the atom types – no-type pair
descriptors. The main advantage of no-type pair descrip-
tors is low dimensionality; when compared with a large
atom type system, this reduction is particularly relevant.

Bond-breaking difference pair descriptors
To describe the bond breaking explicitly, and at the same
time obtain descriptors independent of the bond orien-
tation, descriptors were also defined as the difference
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between pair descriptors before and after breaking the
target bond – bond-breaking difference pair descriptors.
Breaking the bond generates two fragments, and pair
descriptors after the cleavage derive from atom pairs
residing on the same fragment.

Molecular descriptors
The number of atoms or pairs can also be counted in
the whole molecule without restriction to spheres of a
target bond. These are molecular descriptors, which are
the same for all the bonds in the same molecule. Exam-
ples of molecular point descriptors and molecular pair
descriptors are shown in Figure 1.

Fragment point descriptors
These are point descriptors calculated for individual
fragments after cleavage of the target bond. For each
specific point descriptor (defined for a sphere and atom
type) there are two values, one for each fragment. In
order to be independent from the bond orientation, the
two values are sorted. The main purpose of this descrip-
tor was to provide information on the distribution of
special functional structures, such as aromatic systems,
or conjugated π systems, by restricting the atoms
involved in the calculation of the descriptors.

Machine learning methods
The relationship between bond descriptors and DFT-
calculated bond dissociation energies was explored with
two different machine learning algorithms, Random Forests
(RF) [3] and Associative Neural Networks (ASNN) [4].
Random Forests (RF) were employed as ensembles of

unpruned regression trees created by using bootstrap
samples of the training data. The best split at each node
is defined among a randomly selected subset of descrip-
tors. Prediction is made by an average of the individual
regression trees in the forest. This is a high-dimensional
nonparametric method that works well on large numbers
of variables. The performance is internally assessed with
the prediction error for the objects left out in the boot-
strap procedure (out-of-bag estimation, OOB). Here, RFs
were grown with the R program version 2.14.1, [25] using
the randomForest library [26]. The number of trees in the
forest was set to 1,000, and the number of variables tested
for each split was set to default (square root of the number
of variables).
Associative Neural Networks (ASNNs) integrate an

ensemble of Feed-Forward Neural Networks (FFNNs)
with a memory of data. The ensemble consists of inde-
pendently trained FFNNs, which contribute to a single
prediction. The ASNN scheme is employed for composing
a prediction of the bond dissociation energy from a) the
outputs produced by the ensemble of NNs and b) the
most similar cases in the memory (here, the training set).
The ASNN program was kindly provided by Dr. Igor
Tetko. It was used with the Levenberg-Marquardt
algorithm to train fully connected FFNNs with an input
layer (including a bias equal to 1), one hidden layer (also
including a bias equal to 1), and one output neuron. The
presence of a bias enables to shift the activation function
upwards or downwards by an adjustable value. The num-
ber of hidden neurons was optimized based on the
training set, and in the final experiments was set to 6. The
logistic activation function was used and each input and
output variable was linearly normalized between 0.1 and
0.9 on the basis of the training set. Prior to the training of
each network, the program randomly divided the training
set into a validation set and a reduced training set with
approximately the same size. Full cross-validation of the
training set was performed using the leave-one-out
method (LOO). The training was stopped when there was
no further improvement in the root mean square
deviation (RMSD) for the validation set.

Results and discussion
Random forest prediction of bond dissociation energies
In a first experiment, random forests were trained with
an extensive pool of 3,675 bond descriptors, to predict
the bond dissociation energies calculated with B3LYP/6-
311++G(d,p)//DFTB. All the descriptors were based on
the connection number atom type system, and consisted
in 1) point descriptors (including molecular point des-
criptors), 2) point descriptors of atoms in ring systems,
3) point descriptors of atoms in π systems, 4) point
descriptors of atoms in aromatic systems, 5) pair
descriptors, 6) bond-breaking difference pair descriptors.
All the descriptors were calculated for 7 spheres (the
maximum sphere radius is 6 bonds). In pair descriptors,
interatomic distances were considered from 1 to 4 bonds.
Bonds with identical descriptors were detected and
included only once in the training set.
A random forest with 1,000 trees was able to predict

the B3LYP bond dissociation energy with Mean Absolute
Deviation (MAD) of 4.24 kcal/mol, and Root Mean
Square Deviation (RMSD) of 6.87 kcal/mol. These results
were obtained with the out-of-bag (OOB) validation on
the training set. The bond dissociation energies in the
training set cover a range between −9.19 kcal/mol and
226.88 kcal/mol. The minimum positive bond dissociation
energy is 0.45 kcal/mol. Only 14 bonds obtained negative
values, which are probably the result of numerical errors
of the B3LYP energy calculation, and in this experiment
they were included in the training set. All the 14 bonds
are weak, and ten of them are N-N2 bonds of azides. A
non-dynamical electronic correlation effect is likely to be
important – but DFT is a single configuration quantum
chemical method that only takes dynamical electronic
correlation into account. Another possible reason is the
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insufficient description of the non-covalent interactions of
B3LYP, such as hydrogen bonds, van der Waals interac-
tions, or charge-transfer interactions. Four of the 14 struc-
tures contain simultaneously atoms with formal positive
charge and atoms with formal negative charges, in which
non-covalent interactions are thus expected to occur. On
the other hand, it has been noted that B3LYP systematic-
ally underestimates BDEs [27] – the negative BDEs can be
viewed as a particular case of underestimation.
This first model employs a very large number of

descriptors. Although the encoding of all the relevant
information requires a sufficiently detailed representa-
tion of the bond atoms and neighborhood, it was
expected that a selection of descriptors could be found
that would enable at least the same quality of the predic-
tions. A series of experiments were carried out with that
goal. Replacement of descriptors based on connection
number atom types by simple element atom types
reduced the number of descriptors from 3675 to 615
(Selection 1). However, the accuracy of RF predictions
also deteriorated significantly. The MAD increased by
27%, while the RMSD increased by 30%, indicating that
the more sophisticated atom type system is vital for the
success of bond dissociation energy prediction. Then we
tried to use the connection number atom types for point
descriptors (the number of descriptors scales as O(N)),
the simple element atom types for pair descriptors of
distance 1, and no-type pair descriptors of larger
distances (2–7 bonds) (Selection 2). The number of pair
descriptors scales as O(N2). To some extent, the
aromatic and the π-system point descriptors overlap
with the general point descriptors, and were replaced by
fragment point descriptors. Table 1 shows the perfor-
mance of the two selection strategies compared to the
original model with all the descriptors. The second strategy
was much more successful. It could reduce the number of
descriptors to 293 while maintaining essentially the same
prediction accuracy (just a 2% increase for both MAD and
RMSD). Encouragingly, the maximum error decreased by
Table 1 Random Forest prediction of bond dissociation
energies with different selections of descriptors obtained
in the out-of-bag (OOB) validation procedure over the
training set a

Atom types No. of
descriptors

RMSD MAD MaxError

Connection Number 3675 6.87 4.25 71.58

Connection Number
(only point descriptors)

112 7.50 4.77 79.55

Simple Element
(Selection 1)

615 8.90 5.41 82.53

Selection of connection
number, element, and no-type
(Selection 2)

293 7.01 4.35 56.87

a Results are in kcal/mol.
14.71 kcal/mol, while it increased by 10.95 kcal/mol with
the first approach. Table 1 also shows some decrease in the
model performance when only connection number point
descriptors were used.
To test the importance of the various groups of

descriptors, we retrained the RF after selectively remo-
ving one group of descriptors from Selection 2, and this
was performed for each of 10 groups of descriptors
(Table 2). Clearly, the point descriptors based on
connection number atom types are more important than
the others, which is understandable since they provide a
detailed information on the availability of specific types
of atom in the bond and in the spheres around the bond.
Based on the relative importance of the groups of des-
criptors, and also on the number of descriptors in each
group, a new selection was put forward (Selection 3)
with connection number atom types point descriptors,
element pair descriptors, aromatic fragment point
descriptors (with the corresponding molecular descrip-
tors), no-type pair descriptors, and π system fragment
point descriptors (with the corresponding molecular
descriptors). The new selection consisted of 209 descrip-
tors, and enabled to train an RF yielding essentially the
same prediction accuracy (Table 2). The absence of bond-
breaking difference pair descriptors in this selection sug-
gests that the relevant information they would possibly
encode is included in the patterns generated by other
groups of descriptors. It was found that the π system
fragment point descriptors could be merged for the two
fragments (summing their values - π total number
descriptors) without changing results (201 descriptors).
Another important factor regarding the size of the

descriptor set is the number of spheres used. Table 3 shows
results for different number of spheres. It can be concluded
that reducing the maximum number of spheres to 4 does
not significantly affect the quality of predictions, but
further reduces the number of descriptors considerably –
it is a satisfying balance of accuracy and model size, and is
kept for further studies. Finally, the 90 most important
descriptors reported by this last RF were selected according
to the Mean Decrease Accuracy (%InMSE), and were used
to build the final random forest model. Table 4 shows the
number of selected descriptors from each group.
Out-of-bag validation yielded RMSD of 7.09 kcal/mol,

MAD of 4.46 kcal/mol, R2 = 0.952 and the maximum
error was 56.29 kcal/mol. At the end, the model was
tested with the independent test set consisting of bonds
from 100 molecules. The RMSD was 6.04 kcal/mol, the
MAD was 3.84 kcal/mol, R2 = 0.939 and the maximum
error was 37.07 kcal/mol. The better results for the test
set, comparing to the training set, may be due to the
high diversity of the training set, which was designed to
include reasonable numbers of underrepresented, hard-
to-predict types of bonds.



Table 2 Impact of individual groups of descriptors on random forest prediction of bond dissociation energies a

No. of descriptors RMSD MAD MaxError

Selection 2 b 293 7.01 4.35 56.87

Selection 2 - CN point 209 9.06 5.50 80.97

Selection 2 - Element pair 218 7.18 4.48 57.13

Selection 2 - Fragment point 288 7.02 4.36 58.75

Selection 2 - Aromatic fragment point 279 7.07 4.39 62.14

Selection 2 - In-ring fragment point 281 7.03 4.36 55.31

Selection 2 - No-type pair 269 7.06 4.43 58.95

Selection 2 - No-type bond-breaking difference pair 284 6.96 4.32 57.70

Selection 2 - π fragment point 281 7.03 4.37 58.59

Selection 2 - Molecular element pair 263 6.96 4.31 57.86

Selection 2 - Molecular CN fragment point 265 7.04 4.35 57.77

Selection 3 c 209 7.00 4.32 58.36
a Results are in kcal/mol, and were obtained in the out-of-Bag (OOB) RF validation procedure over the training set.
b Combination of the following descriptors: 1) Connection number point descriptors, 2) Simple element pair descriptors, 3) Fragment point descriptors (only the
field with the lower value is used), 4) Aromatic fragment point descriptors with corresponding molecular descriptors, 5) In-ring fragment point descriptors, 6) No-
type pair descriptors, 7) No-type bond-breaking difference pair descriptors, 8) Conjugated π system fragment point descriptors with corresponding molecular
descriptors, 9) Simple element molecular pair descriptors, 10) Molecular connection number fragment point descriptors. Descriptors 1, 4, 5, are calculated for
spheres from 0 to 5. Descriptors 2, 3, 6, 8 are calculated for spheres from 1 to 5. Descriptor 2 only involves pairs at a distance of one bond. Descriptor 7 involves
pairs with interatomic distances from 2 to 7. Descriptor 9 involves pairs with interatomic distances of 1–2.
c Combination of Descriptors 1, 2, 4, 6, 8.
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Prediction of bond dissociation energies with Associative
Neural Networks
The results could be further improved by training an
Associative Neural Network (ASNN) model with the 90
descriptors previously selected (five descriptors were fur-
ther removed due to high correlation to other descrip-
tors). The number of hidden neurons was set at 6, and
125 networks were used in the ensemble. The ASNN
could predict the bond energies of the independent test
with RMSD 5.29 kcal/mol, MAD 3.35 kcal/mol, and R2

0.953. Figure 2 illustrates the distribution of errors in
the test set. In terms of computation time, the whole pro-
cedure for the 100 molecules of the test set, starting from
the MDL SDFiles takes less than 5 s in a contemporary
Table 3 Random forest prediction of BDEs with
descriptors encoding different spheres around the target
bond

Nr of spheres No. of descriptors RMSD MAD MaxError

1 31 11.97 7.91 121.82

2 60 7.95 5.22 56.00

3 94 7.21 4.59 55.62

4 129 7.10 4.46 59.41

5 165 7.04 4.38 60.22

6 201 7.00 4.33 57.67

7 240 7.01 4.32 57.33

8 278 7.01 4.34 57.59

9 316 7.03 4.35 57.41

10 354 7.04 4.35 57.20
PC (Intel Core i7-870 2.93 GHz, 8 GB RAM). The accur-
acy of the predictions obtained by this ultra-fast model
were compared with calculations obtained by the semi-
empirical PM6 method. The results are presented in
Table 5 and Figure 3. While the PM6 shows a systematic
deviation from the B3LYP energy, the ASNN model
reproduces the bond dissociation energy accurately, and is
superior even by comparing R2 values. The accuracy of
the predictions is well maintained for different types of
bonds (Table 5), with the exception of O-H, N-H and N-
N bonds. For these, the PM6 method achieved better
predictions according to the R2 parameter (and for the O-
H bonds also according to RMSD). A reason for the diffi-
culties in predicting O-H and N-H bonds can be hydrogen
bonds. These can significantly influence bond energies, but
depend on 3D geometries and through-space interactions
between atoms further apart than our bond descriptors
can account for. In a big data scenario, ASNNs have the
interesting possibility of gradually incorporating more data
in its memory, for more accurate predictions, without
retraining the networks.
Table 4 Descriptors selected by random forest to predict
bond dissociation energies

Group of descriptors Available Selected

CN point desc. 56 39

Element pair desc. 45 23

Aromatic fragment point desc. 10 10

No-type pair desc. 15 15

π Total number desc. 3 3



Figure 2 Distribution of ASNN BDEs errors in the test set.
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For simple applications, typical energies for bonds of
specific orders between atoms of specific elements are
often used as “fixed” predictions. This possibility was
evaluated by calculating the average bond energy in the
training set for bonds of specific orders between atoms
of specific elements, and using these “fixed” values as
predictions for the bonds of the same type in the test
set – Table 6. For example, the average of BDEs for
Table 5 Accuracy of dissociation energies predicted by ASNN
BDEs) for different types of bonds a,b

PM6

RMSD Max Error MAD R2 RMSD Max er

C-C 21.38 49.57 19.27 0.806 6.64 23.83

C-H 18.06 35.48 17.15 0.869 3.77 19.79

C-N 17.30 39.60 15.10 0.919 8.52 26.15

C-O 13.97 24.54 12.45 0.969 6.73 21.10

C-S 7.78 14.83 6.42 0.881 5.99 14.30

N-H 12.04 20.45 11.03 0.799 8.39 37.07

O-H 10.73 15.45 9.58 0.975 12.35 24.78

N-N 13.06 22.99 10.21 0.779 13.03 21.95

N-O 10.51 18.85 8.72 0.635 5.01 9.11

S-O 25.90 26.04 25.90 1.000 0.69 0.78
a 787 bonds were used for the comparison, from the molecules of the test set that
b Each line corresponds to a type of bond between atoms of specific elements (all
carbon-nitrogen single bonds in the training set is
82.95 kcal/mol, therefore the “fixed” prediction for all
carbon-nitrogen single bonds in the test set is
82.95 kcal/mol. Table 6 confirms that the quality of the
ASNN model is far superior to that of the fixed values.
To assess the reliability of the B3LYP/6-311++G**//

DFTB3 energy, bond dissociation energies were also
calculated at a higher theoretical level for the whole test
, RF and calculated by PM6 (against B3LYP-calculated

RF ASNN

ror MAD R2 RMSD Max error MAD R2

4.69 0.907 5.47 22.95 3.72 0.938

2.34 0.942 3.68 22.64 2.20 0.944

5.87 0.928 6.70 17.33 5.02 0.955

4.96 0.971 5.42 16.67 3.87 0.979

4.53 0.887 4.29 10.46 3.20 0.950

5.47 0.576 8.31 34.99 5.19 0.586

9.02 0.704 12.46 22.54 9.53 0.586

12.14 0.514 10.10 15.12 8.47 0.736

3.89 0.912 7.58 17.63 5.07 0.827

0.69 1.000 1.94 2.01 1.94 1.000

could be calculated with PM6.
bond orders included).



Figure 3 ASNN and PM6 predictions of BDEs versus B3LYP calculations.
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set (geometry optimized at the B3LYP/6-31G** level,
and the single point energy evaluated at the B3LYP/6-
311++G(3df, 2p) level). Correlations between these
results, the DFTB3 calculations, the PM6 calculations,
and the ASNN predictions are displayed in Table 7,
represented as RMSD, MAD, and R2. They show that
the DFTB3 calculations approach the higher-level
Table 6 Comparison between BDEs predicted by ASNN
and BDEs predicted as the average of BDEs for the bonds
of the same type in the training set a

Fixed values ASNN

Bonds RMSD MaxError MAD RMSD MaxError MAD R2

C-C 21.64 62.88 16.56 5.47 22.95 3.72 0.938

C-H 15.48 58.64 12.94 3.68 22.64 2.20 0.944

C-N 20.57 65.28 15.65 6.70 17.33 5.02 0.955

C-O 14.18 46.63 10.87 5.42 16.67 3.87 0.979

C-S 11.03 23.36 8.85 4.29 10.46 3.20 0.950

H-N 13.20 33.17 10.17 8.31 34.99 5.19 0.586

H-O 22.65 44.56 15.62 12.46 22.54 9.53 0.586

N-N 21.81 42.80 18.12 10.10 15.12 8.47 0.736

N-O 8.65 15.21 7.44 7.58 17.63 5.07 0.827

O-S 1.85 2.55 1.58 1.94 2.01 1.94 1.000
a Each line corresponds to a type of bond between atoms of specific elements
and of a specific order.
calculations with an RMSD of 3.04 kcal/mol, which is
less than the RMSD of ASNN (against both methods).
It indicates that training of ASNN with more accurate
data would probably not improve the performance of
the ASNN. It also demonstrates how ultra-fast data-
driven chemoinformatics methods can be competitive
with semi-empirical methods.
A web service incorporating the new ultra-fast

methods has been made available for online estimation of
BDEs - http://joao.airesdesousa.com/bde. For operational
reasons, it was more convenient to implement the web
service based on an ensemble of FFNNs with the Weka
package [28]. A bootstrap aggregating ensemble (bagging)
was formed with 75 neural networks containing 6 hidden
neurons each. It was further improved by additive regres-
sion which consists of 5 iterations (bagging ensembles). It
was confirmed that the quality of the predictions was
essentially the same as with the ASNN.

Limitations of the current model
In order to build a fast data-driven method, the repre-
sentation of molecular structures must be simplified.
The main simplification was the definition of descriptors
from the connection table regardless of any 3D struc-
ture. Trans and cis isomerism is also not accounted for.
Furthermore, during the selection of descriptors, the

http://joao.airesdesousa.com/bde


Table 7 Correlations between BDEs calculated at different levels of theory and estimations by PM6 and ASNN a

B3LYP/6-311++G(3df,2p)//B3LYP/6-31G(d,p) B3LYP/6-311++G(d,p)//DFTB

RMSD MAD MaxError R2 RMSD MAD MaxError R2

B3LYP/6-311++G(d,p)//DFTB 3.04 1.82 21.41 0.985

PM6 16.88 15.46 46.03 0.901 17.52 15.98 49.57 0.890

ASNN 5.18 3.38 33.58 0.956 5.16 3.21 34.99 0.954
a 787 bonds were used for the comparison, from the molecules of the test set that could be calculated with all DFT and PM6 methods.
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maximum sphere around the target bond was reduced
to 3. This occurred probably because most of the factors
determining bond energies (up to a certain level of
accuracy) are within 3 bonds of the target bond. How-
ever, such a reduction precludes the model from distin-
guishing bonds whose differences are only outside of the
3rd sphere. The following two examples illustrate some
of these limitations.
The molecule displayed in Figure 4 is symmetrical and

includes two topologically equivalent N-H bonds. How-
ever, in the lowest energy conformer, one of the two is
involved in a hydrogen bond with the hydroxyl group,
which leads to an extra energy cost for bond disso-
ciation. As a result, the dissociation energies of the two
N-H bonds differ by 10.29 kcal/mol. Because the calcu-
lation of descriptors depends solely on connectivity, the
descriptors are the same for the two bonds, and there is
no way for our model to predict any difference in the
bond dissociation energy. This means the current model
cannot be expected to predict bond dissociation energies
that are strongly conformation-dependent.
In Figure 5 we focus on two similar N-H bonds in

two different molecules. The local environments are
quite similar for the two bonds, and one might antici-
pate the bond dissociation energies to be similar.
Surprisingly, they differ up to 28.80 kcal/mol at the
B3LYP/6-311++G** level. Because the nearest differ-
ence starts 4 bonds away from the target N-H bonds,
their BDEs should be controlled by a remote group
effect. Because all the atoms and their connections are
Figure 4 Example of a symmetrical molecule with different
BDEs for two topologically equivalent bonds due to
hydrogen bonding.
the same within 3 bonds, there will be no difference in
the descriptors of the two bonds, and the ASNN
predictions will be the same. Even if two bonds are only
slightly different within 3 bonds, but the bond disso-
ciation energies are controlled by remote group effects,
the similar difficulties would appear. So we will not
expect this model to predict BDEs controlled by remote
group effects.
Finally, the new data-driven models are expected to be

limited by the limitations of the DFT method that was
used to generated the training set. For example, Feng et al.
reported that B3LYP systematically underestimates BDEs
[27] by about 1–4 kcal/mol – the models are therefore
assumed to inherit the same systematic deviation.

Conclusions
Knowledge could be automatically extracted from a data
set of > 12,000 BDEs calculated with DFT methods by
machine learning techniques such as Random Forests
and Neural Networks. The models could be applied to
an independent test set achieving a root mean square
deviation of 5.29 kcal/mol, a mean absolute deviation of
3.35 kcal/mol, and R2 = 0.953. Similar quality of predic-
tions was observed across different types of bonds
(RMSD 1.94–7.58 kcal/mol) except for N-H, O-H, and
N-N bonds. Predictions were particularly accurate for C-
H bonds (RMSD 3.68 kcal/mol, MAD 2.20 kcal/mol). The
deviations between the ASNN predictions and the DFT
(B3LYP) values are quite close to reported deviations
(for simpler molecules) between B3LYP calculations and
Figure 5 Examples of two bonds with identical descriptors in
the final model, but very different BDEs due to remote
group effects.



Qu et al. Journal of Cheminformatics 2013, 5:34 Page 12 of 13
http://www.jcheminf.com/content/5/1/34
experimental values (MAD 3–8 kcal/mol) [27,29]. Even
for experimental BDEs, uncertainties of 1–2 kcal/mol are
rather common. Differently from quantum methods, the
new machine learning models can provide ultra-fast
estimations of BDEs. The ASNN predictions also exhi-
bited better accuracy than PM6, except for O-H, N-H,
and N-N bonds. A reason for the more problematic
prediction of these bonds may reside in their frequent
involvement in hydrogen bonding – determined by 3D
through-space interactions not currently encoded by our
descriptors.
Comparison of B3LYP/6-311++G(d,p)//DFTB calcula-

tions with B3LYP/6-311++G(3df,2p)//B3LYP/6-31G(d,p)
revealed a smaller deviation than the observed error for
the ASNN predictions, which confirms that the chosen
method for building the database of theoretical calcula-
tions is a reasonable compromise between accuracy and
computational cost.
This work combines chemoinformatics and theoretical

chemistry methodologies utilizing the currently available
computational power. We believe it demonstrates a way
to use high-level theoretical quantum calculations in
large-scale applications that otherwise would not afford
the intrinsic computational cost.

Additional file

Additional file 1: Molecular structures with the calculated BDEs
used for training machine learning methods.
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