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ARTICLE

A New Method to Model and Predict Progression Free 
Survival Based on Tumor Growth Dynamics

Jiajie Yu1,*, Nina Wang1 and Matts Kågedal1,*

Progression-free survival (PFS) has been increasingly used as a primary endpoint for early clinical development. The aim of 
the present work was to develop a model where target lesion dynamics and risk for nontarget progression are jointly modeled 
for predicting PFS. The model was developed based on a pooled platinum-resistant ovarian cancer dataset comprising four 
different treatments and a wide range of dose levels. The target lesion progression was derived from tumor growth dynamics 
based on the Response Evaluation Criteria in Solid Tumors (RECIST) criteria. The nontarget progression hazard was correlated 
to the first derivative of target lesion tumor size with respect to time. The PFS time was determined by the first occurring 
event, target lesion progression, or nontarget progression. The final joint model not only captured target lesion tumor growth 
dynamics but also predicted PFS well. A similar approach can potentially be used to predict PFS in future oncology studies.

Progression-free survival (PFS) has been increasingly used 
as a primary endpoint for early clinical development to 
evaluate efficacy of different cancer treatments. Although 
overall survival (OS) remains the gold standard for eval-
uating new oncology therapies, using OS as the primary 
endpoint can be challenging, requiring a larger sample 
size and longer follow-up time, and increasing line of ther-
apies may confound the OS result.1 In contrast, PFS can 
be accessed in a relatively short follow-up time, avoiding 
any confounding effects of subsequent lines of therapy. 
Therefore, as an important surrogate endpoint for OS, 
PFS has been increasingly used in early clinical develop-
ment stages as the primary endpoint to accelerate drug 
approval, particularly in disease areas where treatment op-
tions are limited.

In parallel, efforts have been made to use longitudinal tumor 
size data as a biomarker to quantitatively predict clinical 

endpoints, such as OS.2–6 There has been an increasing in-
terest in applying the approach in the clinical development 
of oncology products from both the industry and regula-
tory agencies.7 This quantitative modeling approach linking 
tumor growth dynamics to OS could potentially inform early 
decision making in clinical development and subsequently 
guide the design of pivotal trials.4–6 However, most of the 
previous works have aimed at modeling and predicting OS 
with limited focus on PFS.3,7–9

Platinum-resistant ovarian cancer is defined as disease 
progression during or within 6 months after completion of 
prior platinum-based chemotherapy. Patients with plat-
inum-resistant ovarian cancer have a poor prognosis with 
limited treatment options. Current standard of care, such as 
pegylated liposomal doxorubicin (doxorubicin), has a < 20% 
overall response rate and a median PFS of 3.7 months.10,11 
In this setting, PFS currently is an acceptable endpoint for 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  There has been an increasing interest toward using 
tumor size data as a biomarker to predict clinical out-
comes. The focus has primarily been on overall survival, 
whereas predicting progression-free survival (PFS) has 
not been thoroughly investigated.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  Is there a way to predict PFS based on a joint model 
where progression is either derived from target lesion 
growth or predicted from a nontarget progression hazard?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  The study suggests PFS could be jointly modeled 
as target lesion and nontarget progressions. The target 

lesion progression could be derived from tumor growth 
dynamics following the Response Evaluation Criteria in 
Solid Tumors (RECIST) criteria. The nontarget progression 
could be predicted by modeling nontarget progression 
hazard as a function of tumor growth dynamics metrics. 
The PFS time would be determined by the first occurring 
progression event.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,  
DEVELOPMENT, AND/OR THERAPEUTICS?
✔  The proposed method can be used to provide early 
predictions of PFS before the PFS data are mature, hence 
supporting early decision making in future oncology 
studies.
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regulatory decisions.12 The risk of a PFS event can be linked 
to tumor growth dynamics using a hazard function, which is 
similar to what has been done for predicting OS.2,7 However, 
PFS events are often triggered by growth of target lesions. 
Hence, once a tumor dynamics model has been developed, 
it can be used to predict target lesion progressions directly 
by applying the Response Evaluation Criteria in Solid Tumors 
(RECIST) criteria.13 To fully account for PFS, however, the 
PFS events not be related to the target lesions need to be 
modeled using the time-to-event methodology. In this work, 
using a pooled platinum-resistant ovarian cancer data set, 
we investigated whether PFS could be jointly modeled as 
target lesion progression and nontarget progression, where 
target lesion progression was directly derived from tumor 
growth dynamics. Our goal was to develop a modeling ap-
proach that not only utilizes available information from tumor 
growth dynamics but also applies the RECIST criteria. The 
method can be considered for early decision making in fu-
ture studies when PFS is deemed to be critical.

METHODS
Platinum-resistant ovarian cancer data set
A pooled data  set was created from three phase I and 
one phase II studies conducted by Genentech among pa-
tients with platinum-resistant ovarian cancer over the last 
decade. The three phase I studies were dose-escalating 
studies of anti-MUC16 antibody-drug conjugate (ADC; 
NCT01335958), anti-MUC16 THIOMAB-drug conjugate 
(TDC; NCT02146313), and anti-NaPi2b ADC (NCT01363947). 
The phase II study compared the safety and activity of 
 anti-NaPi2b ADC to doxorubicin (NCT01991210). Besides 
patients with platinum-resistant ovarian cancer, the phase 
I studies had also enrolled patients with pancreatic cancer 
and patients with non-small cell lung cancer, which were ex-
cluded from the pooled data  set. Additionally, 23 subjects 
had been evaluated with a weekly dosing schedule (Q1W) 
during the anti-MUC16 ADC phase I study; and one subject 
in anti-NaPi2b ADC phase II study had data errors in PFS 
information. These 24 subjects were also excluded from the 
pooled data set. In the final pooled data set, a total of 230  
subjects were included, where 43 subjects received 
 anti-MUC16 ADC, 65 received anti-MUC16 TDC, 76 received 
 anti-NaPi2b ADC, and 46 received doxorubicin. The ADC and 
TDC were dosed i.v. every 3 weeks (Q3W), whereas doxoru-
bicin was dosed i.v. every 4 weeks (Q4W) with a 40 mg/m2 
single dose level. Because the data set contained three phase 
I studies, it presented a wide range of dose levels ranging 
from 0.2 to 5.6 mg/kg for ADCs (Table S1). Tumor assess-
ments were scheduled at screening and then every 6 weeks 
after the starting of the study treatment in the phase I studies 
or every 8 weeks after the starting of the study treatment in 
the phase II study. All clinical trials were conducted in accor-
dance with the Declaration of Helsinki and in compliance with 
good clinical practice guidelines and quality assurance pro-
cedures. More details on the studies included in the data set 
can be found in the previous clinical publications.14–18

Modeling software
The model was developed using the nonlinear mixed- 
effects modeling software (NONMEM), version 7.4 (ICON 

Development Solutions, Ellicott City, MD). The first-order 
conditional estimation with interaction combined with the 
Laplace method was used for parameter estimations. Perl-
speaks-NONMEM version 4.8.1 (https://uupha rmaco metri 
cs.github.io/PsN/) and Pirana version 2.9.9 (Certara USA, 
Princeton, NJ) were used to manage NONMEM runs.19,20 
The R software package version 3.5.1 (http://www.r-proje 
ct.org/) was used to assemble the pooled data set and per-
form model diagnosis.

Model evaluation
The likelihood ratio test was used to select between 
nested models based on the principle that the difference 
in NONMEM objective function values (ΔOFV) between 
two nested models approximately follows a χ2 distribu-
tion.21 The model performance was evaluated using the 
visual predictive check (VPC) technique.22 For tumor 
growth dynamics VPC, the 5th percentiles, median, 95th 
percentiles, and proportion of data that are below the 
lower limit of quantification (BLOQ) were compared be-
tween observed values of longitudinal sum of the longest 
diameter (SLD) data and 95% confidence interval (CI) of 
model simulation. For PFS Kaplan–Meier VPC, 95% CI 
of model simulation was compared with observed PFS 
Kaplan–Meier result.

General method for modeling PFS
A modeling approach was developed in which three 
possible outcomes defined PFS: (1) target lesion progres-
sion, (2) nontarget related progression (or death), and (3) 
dropout. For target lesions, as per the RECIST criteria 
version 1.1, progression was defined as at least a 20% 
increase in the SLD, taking as reference the smallest ob-
served SLD (including baseline) in the study. Additionally, 
the absolute increase of SLD must be at least 5  mm13  
(Figure 1a).

A patient was considered to have a nontarget progression 
when the target lesion progression criteria were not met, but 
any of following conditions were present: growth of nontar-
get lesion, new lesion, symptomatic deterioration, or death 
(Figure 1b). PFS information would be censored if a patient 
withdrew from the study before having either target lesion 
progression or nontarget progression (Figure 1c). When 
simulating from the model, the PFS time would be deter-
mined by target lesion progression or nontarget progression, 
whichever occurs first.

Model of the tumor growth dynamic
The longitudinal tumor size data were described based 
on a modified version of the model developed by Claret 
et al.4 The model assumes that the tumor growth dynam-
ics are governed by a first-order tumor growth, a drug 
exposure related tumor killing, and a time-dependent re-
sistance to the drug treatment. The final model equations 
are listed below:

dSLD

dt
=kg×SLD−ks×DOSEadj×SLD

ks=ks0×e
−Gamma×t

https://uupharmacometrics.github.io/PsN/
https://uupharmacometrics.github.io/PsN/
http://www.r-project.org/
http://www.r-project.org/
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where, SLD is the sum of the longest diameters of tar-
get lesions measured according to the RECIST criteria 
version  1.1.13 The SLD value at screening was used as 

the baseline. The kg is the tumor growth rate constant, 
whereas ks is the drug-induced tumor killing rate. The 
value of ks decreases exponentially with time (t) from 
the initial value (ks0), the rate of decrease being con-
trolled by the parameter Gamma. Consistent with the 

DOSEadj=DOSE×POTdrug

Figure 1 Illustration of progression-free survival (PFS) components in the model. (a) Patients having target lesion progression as 
defined by the Response Evaluation Criteria in Solid Tumors (RECIST) guidance. (b) Patients having nontarget progression. (c) Patient 
dropout (censored). SLD, sum of the longest diameter.

Figure 2 Visual predictive check of tumor growth dynamics based on 100 simulations. (a) Longitudinal sum of the longest diameter 
(SLD) data with shaded areas showing 95% confidence interval (CI) of 95th, median, and 5th percentiles of simulated data. Dashed 
and solid line represent 95th percentile, median, and 5th percentiles of observations. The red horizontal line represents the lower limit 
of quantification of SLD value. (b) Proportion of SLD data that are below the lower limit of quantification (BLOQ) over time with solid 
line representing observations and shaded area representing 95% CI of model simulations. Simulated SLD data were included up to 
the first PFS events (target progression, nontarget progression, or dropout).
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cytotoxic mechanism of action for the drugs included in 
the analysis, the drug effect was introduced on the killing 
parameter ks. Due to differences in drug-antibody ratios 
(DARs), pharmacokinetics, and dosing frequency among 
ADC, TDC, and doxorubicin, a drug-specific relative po-
tency parameter (POTdrug) was used to account for the 
tumor killing difference between different treatments. 
Because anti-NaPi2b ADC had the greatest number of 
subjects, it was used as the reference drug with a relative 
potency value set to 1. The adjusted dose level (DOSEadj) 
is the product of nominal dose level that each patient re-
ceived (DOSE) and drug-specific relative potency. Tumor 
killing has a linear relationship with the drug exposure, 
which is represented by the potency-adjusted dose 
level that each patient received (DOSEadj). The growth 
rate constant kg and the resistance parameter Gamma 
were shared across all treatments. Per RECIST criteria 
version 1.1, the lower limit of quantification (LLOQ) of 
SLD is 5 mm.13 The probability of SLD being BLOQ was 
estimated using the NONMEM M3 method.23 The interin-
dividual variability of model parameters was assumed to 
follow a log-normal distribution as follows:

where, �pi denotes the difference between the parameter 
(Pi) of individual i and the typical value in the population  
(�p), and is assumed normally distributed with mean zero 
and variance �2

p
. Additive, proportional, and combined 

 additive plus proportional error models were tested to 
 explain the residual error.

Time to event analysis
The hazard for nontarget lesion progression (HZNTLP) was 
linearly associated with the first derivative of the tumor 
growth dynamics as:

When a patient has an increase in target lesion tumor 
growth rate over time, the hazard for the nontarget pro-
gression also increases. When a patient has target lesion 
shrinkage with negative dSLD

dt
, the hazard for nontarget pro-

gression decreases with a lower bound set to zero. Several 
other models and covariates were also tested, including 
constant hazard, SLD relative to baseline, relative SLD 
change over time 

(

dSLD

dt×SLD

)

, baseline albumin level, baseline 
Eastern Cooperative Oncology Group status, and baseline 
total protein level. The survival model for nontarget lesion 
progression was implemented in NONMEM, and parameter 
values were simultaneously fitted with the tumor growth dy-
namic model parameters.

A parametric survival model for patient dropout was de-
veloped in R. The exponential, Weibull, logistic, log-normal, 
and log-logistic accelerated failure time models were fitted to 
the patient dropout data, and the model selection was based 
on the Akaike Information Criterion. The dropout model was 
used in the simulations for VPC and diagnostic plots.

RESULTS

The Claret et al. model with a treatment-specific rela-
tive potency parameter was able to adequately describe 
the longitudinal SLD profile over time for the population 
(Figure 2) and for individual patients (Figure S1). The pro-
portional residual error model with interindividual variability 
was selected based on OFV and VPCs. For SLD measure-
ment, the LLOQ is 5 mm per RECIST criteria version 1.1. 
The BLOQ data seemed to be adequately captured using 
the M3 method with a slight underprediction of the fraction 
below 5 mm. This is consistent with the slight overpredic-
tion of SLD as indicated by the VPC for the tumor dynamics 
(Figure 2).

To model the hazard for the patients having nontarget 
progression, a linear model linking the first derivative of 
the SLD over time to nontarget progression hazard was 
the best model to describe the data. Adding baseline 
albumin level, baseline Eastern Cooperative Oncology 
Group status, or baseline total protein level as a covari-
ate in the model did not improve the model fit. The final 
parameter estimates of the joint model fit are presented in 
Table 1. Relative standard errors obtained from bootstrap 
suggested that parameters were estimated with good 
precision. In order to simulate realistic clinical outcomes, 
patient dropout was modeled using the exponential time 
to event model (Figure S2). The same dropout rate was 
assumed for different drugs as there was no statistically 
significant difference in patient dropout between treat-
ments (Figure S3).

The final model performance was also evaluated by a PFS 
Kaplan–Meier plot VPC (Figure 3) showing a good agree-
ment between overall simulated and observed data. Patient 

Pi =�p×exp (�pi ).

HZNTLP=
dSLD

dt
×slope+ intercept

HZNTLP≥0.

Table 1 Final parameter estimates

Parameter name (unit)
Model 

estimate
SE by 

bootstrap (%)
Shrinkage 

(%)

kg (day-1) 0.002 7.01 −

ks (day-1) 0.00151 5.31 −

Gamma 0.00421 7.95 −

Proportional error 0.129 5.68 −

Relative potency 
doxorubicin to NaPi2b

0.048 8.25 −

Relative potency 
MUC16-TDC to  
NaPi2b ADC

0.571 9.44 −

Relative potency 
MUC16-ADC to  
NaPi2b ADC

0.705 10.9 −

Nontarget progression 
hazard slope

0.0556 29.1 −

Nontarget progression 
hazard slope intercept

0.00352 16.2  

IIV kg 0.204 12.1 52.5

IIV ks 0.406 14.0 31.6

IIV on proportional error 0.62 12.1 10.5

ADC, antibody-drug conjugate; IIV, interindividual variability; kg, tumor 
growth rate constant; ks, drug-induced tumor killing rate. 
Bootstrap standard errors were obtained based on 500 simulations.
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dropout was incorporated by using the exponential model in 
the simulation. In addition, the PFS Kaplan–Meier VPC were 
stratified by treatments (Figure 4) as well as dose levels 
(Figure S4) to verify that the model can capture the treat-
ment difference as well as the dose response. The triggers 
for patients having a PFS event have also been compared 
between the model simulation and observed data (Figure 5). 
In general, model simulation is consistent with the actual 
clinical outcome, not only in overall PFS but also in terms 
of PFS event triggers. The overall frequency for patients 

having target lesion progression (105 of 230 subjects) and 
nontarget lesion progression (80 of 230 subjects) are similar 
between simulated and observed data, which suggests that 
the model has adequately captured the clinical outcome.

DISCUSSION

Although previous works have successfully modeled and 
predicted OS using different metrics derived from tumor 
growth dynamics as significant covariates,2,3 predicting 

Figure 3 Visual predictive check of progression-free survival (PFS) Kaplan–Meier plot based on 100 simulations showing observations 
(solid line) and 95% (CI) confidence interval (shaded area) of model simulations.

Figure 4 Visual predictive check of progression-free survival (PFS) Kaplan–Meier plot stratified by treatment based on 100 simulations 
showing observations (solid line) and 95% confidence interval (shaded area) of model simulations. ADC, antibody-drug conjugate; 
TDC, THIOMAB-drug conjugate.
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PFS in a similar setting has been less investigated. In this 
work, we proposed a method to predict PFS by categoriz-
ing disease progression into target lesion progression and 
nontarget progression. By this approach, we modeled the 
tumor growth dynamics based on longitudinal SLD data 
and directly obtained target lesion progression based on 
the RECIST criteria. The hazard for nontarget progression 
was modeled as a function of tumor growth dynamics. This 
joint model successfully described the treatment response 
in patients with platinum-resistant ovarian cancer in terms 
of both tumor growth dynamics and PFS outcome. During 
the model development process, several crucial steps 
were identified to ensure modeling success. Based on the 
RECIST criteria, the LLOQ of SLD is 5 mm. A BLOQ sam-
ple is clinically meaningful because it suggests that the 
patient’s SLD meets the complete response criteria at the 
time. Therefore, treating the BLOQ samples as categori-
cal data is useful for not only improving the model fit, but 
also the clinical interpretation of the modeling result. In the 
simulations, it also proved important to ensure that target 
lesion progression was triggered according to the RECIST 
criteria. Previously, an additive error model has been fre-
quently used when modeling tumor growth dynamics to 
predict OS. In this study, using an additive error model 
induced unrealistically large numbers of target lesion pro-
gressions during the simulation, particularly for patients 

with low baseline SLD values. Therefore, the proportional 
error model was selected as the appropriate error model.

It should be noted that death events defining PFS are 
different than the death events defining OS. For PFS, only 
death events occurring before any other disease progres-
sion events are relevant. In this work, death was treated as 
nontarget progression, because in the pooled data set there 
were only three subjects having PFS time defined by death. 
For simplicity, nominal dose was used as the exposure met-
ric in this work without accounting for dose interruptions/
reductions. For model predictions, the nominal dose can be 
used under the assumption that dosing pattern will be sim-
ilar in the new study, as in the study which the analysis was 
based on.

Two generations of ADCs were included in the pooled 
data  set. The anti-MUC16 ADC and anti-NaPi2b ADC are 
traditional ADCs with heterogeneous mixtures of DAR rang-
ing from 0 to 8. The anti-MUC16 TDC was generated by 
THIOMAB™ specific conjugation technology that yielded a 
homogeneous DAR ratio of 2.15 Although both MUC16 and 
NaPi2b are reported to be highly expressed on ovarian cancer 
cells, expression levels can be different and patient-specific 
in clinical studies. The fitted relative potency value in the 
model suggests that a 1 mg/kg Q3W dose of MUC16-ADC 
may provide similar tumor killing efficacy as 0.7 mg/kg Q3W 
NaPi2b ADC. Similarly, 1  mg/kg Q3W MUC16-ADC dose 

Figure 5 Comparison of clinical outcomes between model simulation (black line) and observation (blue dashed line). (a) Percentage 
of subjects with target lesion progression. (b) Percentage of subjects with nontarget progression only. (c) Percentage of subjects 
censored before having a progression-free survival event. (d) Percentage of subjects with no events after 631 days, which is the 
longest follow-up time in the data set.
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may have an equivalent efficacy of around 0.8 mg/kg Q3W 
MUC16-TDC. However, this kind of interpretation should be 
performed with caution because the data  set was pooled 
from separate clinical trials.

The results suggest that the risk of nontarget progres-
sion is correlated to the rate of target lesion growth over 
time. Although drug exposure and potency-related pa-
rameters were necessary to describe treatment effects on 
target lesion tumor growth dynamics, a direct drug effect on 
nontarget lesion progression was not needed in the model. 
Therefore, for future studies in the same disease setting, it 
may be possible to predict patient PFS time based on tumor 
growth dynamics data alone, before the PFS data are fully 
mature. The tumor growth dynamics model needs to be de-
veloped and used to derive target lesion progression time 
for each patient. The time to nontarget progression can be 
predicted based on the nontarget lesion progression survival 
model developed in this work under the assumption that 
the correlation between tumor growth dynamics and non-
target progression is drug independent. The PFS time can 
be predicted based on target lesion progression and nontar-
get progression time, whichever occurs first. The proposed 
method accounts for the full time course of tumor dynamics, 
and, hence, has the potential to improve PFS predictions 
over simpler approaches that focus on early response (e.g., 
overall response rate or tumor size ratio at an early time 
point). This will be of particular importance if the difference 
between drugs is more related to durability of response 
rather than the initial tumor size reduction. Further evaluation 
of the predictive power of the proposed method including 
comparisons with other approaches would be important to 
understand in what situations the proposed method would 
be most useful. The present results also support the notion 
that comparisons between drugs in this patient population 
can be focusing on target lesions, because they seem to 
capture the treatment effect on PFS.

In summary, we have proposed a new method to predict 
the PFS based on tumor growth dynamics, where PFS can 
be modeled based on target lesion and nontarget progres-
sions. The model successfully captures both tumor growth 
dynamics and PFS of a pooled platinum-resistant ovarian 
cancer data  set. The method can potentially be used to 
provide earlier predictions of PFS and, hence, support early 
decision making for indications where PFS is an important 
clinical endpoint.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).

Figure S1. Diagnostic plot of individual SLD fit for first 56 subjects in 
the data set.
Figure S2. Exponential model fit (green dashed line) overlaid with 
Kaplan–Meier plot for patient dropout.
Figure S3. Kaplan–Meier plot for patient dropout stratified by 
treatments.
Figure S4. Visual predictive check of PFS Kaplan–Meier plot stratified 
by dose level based on 100 simulations showing observations (solid line) 
and 95% CI (shaded line) of model simulations. Dose levels are listed in 
mg/kg unit, except for doxorubicin (40 mg/m2).

Table S1. Number of subjects by study and treatment groups.
Supplemental Material.
Supplemental Figure Legends.
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