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Categorization enables listeners to efficiently encode and respond to auditory stimuli.
Behavioral evidence for auditory categorization has been well documented across a
broad range of human and non-human animal species. Moreover, neural correlates of
auditory categorization have been documented in a variety of different brain regions in
the ventral auditory pathway, which is thought to underlie auditory-object processing
and auditory perception. Here, we review and discuss how neural representations of
auditory categories are transformed across different scales of neural organization in the
ventral auditory pathway: from across different brain areas to within local microcircuits.
We propose different neural transformations across different scales of neural organization
in auditory categorization. Along the ascending auditory system in the ventral pathway,
there is a progression in the encoding of categories from simple acoustic categories to
categories for abstract information. On the other hand, in local microcircuits, different
classes of neurons differentially compute categorical information.
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INTRODUCTION
Auditory categorization is a computational process in which
sounds are classified and grouped based on their acoustic fea-
tures and other types of information (e.g., semantic knowledge
about the sounds). For example, when we hear the word “Hello”
from different speakers, we can categorize the gender of each
speaker based on the pitch of the speaker’s voice. On the other
hand, in order to analyze the linguistic content transmitted by
speech sounds, we can ignore the unique pitch, timbre etc. of each
speaker and categorize the sound into the distinct word category
“Hello.” Thus, auditory categorization enables humans and non-
human animals to extract, manipulate, and efficiently respond to
sounds (Miller et al., 2002, 2003; Russ et al., 2007; Freedman and
Miller, 2008; Miller and Cohen, 2010).

A specific type of categorization is called “categorical percep-
tion” (Liberman et al., 1967; Kuhl and Miller, 1975, 1978; Kuhl
and Padden, 1982, 1983; Kluender et al., 1987; Pastore et al.,
1990; Lotto et al., 1997; Sinnott and Brown, 1997; Holt and
Lotto, 2010). The primary characteristic of categorical percep-
tion is that the perception of a sound does not smoothly vary
with changes in its acoustic features. That is, in certain situ-
ations, small changes in the physical properties of an acoustic
stimulus can cause large changes in a listener’s perception of a
sound. In other situations, large changes can cause no change in
perception. The stimuli, which cause these large changes in per-
ception, straddle the boundary between categories. For example,

when we hear a continuum of smoothly varying speech sounds
(i.e., a continuum of morphed stimuli between the phoneme
prototypes “ba” and “da”), we experience a discrete change
in perception. Specifically, a small change in the features of
a sound near the middle of this continuum (i.e., at the cate-
gory boundary between a listener’s perception of “ba” and “da”)
will cause a large change in a listener’s perceptual report. In
contrast, when that same small change occurs at one of the
ends of the continuum, there is little effect on the listener’s
report.

Even though some perceptual categories have sharp bound-
aries, the locations of the boundary are somewhat malleable. For
instance, the perception of a phoneme can be influenced by the
phonemes that come before it. When morphed stimuli, which are
made from the prototypes “da” and “ga,” are preceded by pre-
sentations of “al” or “ar,” the perceptual boundary between the
two prototypes shifts (Mann, 1980). Specifically, listeners’ reports
are biased toward reporting the morphed stimuli as “da” when it
is preceded by “ar.” When this morphed stimulus is preceded by
“al,” listeners are biased toward reporting the morphed stimulus
as “ga.”

Categories are not only formed based on the perceptual fea-
tures of stimuli but also on more “abstract” types of information.
An abstract category is one in which a group of arbitrary stimuli
are linked together as a category based on some shared fea-
tures, a common functional characteristic, semantic information,
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or acquired knowledge. For instance, a combination of physical
characteristics and knowledge about their reproductive processes
puts dogs, cats, and killer whales into one category (“mam-
mals”), but birds into a separate category. However, if we use
different criteria to form a category of “pets,” dogs, cats, and
birds would be members of this “pet” category but not killer
whales.

Behavioral responses to auditory communication signals (i.e.,
species-specific vocalizations) also provide evidence for abstract
categorization. One example is the categorization of food-related
species-specific vocalizations by rhesus monkeys (Hauser and
Marler, 1993a,b; Hauser, 1998; Gifford et al., 2003). In rhe-
sus monkeys, a vocalization called a “harmonic arch” trans-
mits information about the discovery of rare, high-quality food.
A different vocalization called a “warble” also transmits the
same type of information: the discovery of rare, high-quality
food. Importantly, whereas both harmonic arches and warbles
transmit the same type of information, they have distinct spec-
trotemporal properties. Nevertheless, rhesus monkeys’ responses
to those vocalizations indicate that monkeys categorize these
two calls based on their transmitted information and not their
acoustic features. In another example, Diana monkeys form
abstract-categorical representations for predator-specific alarm
calls independent of the species generating the signal. Diana
monkeys categorize and respond similarly to alarm calls that sig-
nify the presence of a leopard, regardless of whether the alarm
calls are elicited from a Diana monkey or a crested guinea
fowl (Zuberbuhler and Seyfarth, 1997; Züberbuhler, 2000a,b).
Similarly, Diana monkeys show similar categorical-responses to
eagle alarm calls that can be elicited from other Diana mon-
keys or from putty-nose monkeys (Eckardt and Zuberbuhler,
2004).

In order to better understand the mechanisms that underlie
auditory categorization, it is essential to examine how neural rep-
resentations of auditory categories are formed and transformed
across different scales of neural organization: from across dif-
ferent brain areas to within local microcircuits. In this review,
we discuss the representation of auditory categories in different
cortical regions of the ventral auditory pathway; the hierarchical
processing of categorical information along the ventral pathway;
and the differential role that excitatory pyramidal neurons and
inhibitory interneurons (i.e., different neuron classes) contribute
to these categorical computations.

The ventral pathway is targeted because neural computations
in this pathway are thought to underlie sound perception, which
is critically related to auditory categorization and auditory scene
analysis (Rauschecker and Scott, 2009; Romanski and Averbeck,
2009; Bizley and Cohen, 2013). The ventral auditory pathway
begins in the core auditory cortex (in particular, the primary
auditory cortex and the rostral field R) and continues into the
anterolateral and middle-lateral belt regions. These belt regions
then project either directly or indirectly to the ventral prefrontal
cortex (Figure 1) (Hackett et al., 1998; Rauschecker, 1998; Kaas
and Hackett, 1999, 2000; Kaas et al., 1999; Romanski et al.,
1999a,b; Rauschecker and Tian, 2000; Rauschecker and Scott,
2009; Romanski and Averbeck, 2009; Recanzone and Cohen,
2010; Bizley and Cohen, 2013).

NEURAL TRANSFORMATIONS ACROSS CORTICAL AREAS IN
THE VENTRAL AUDITORY PATHWAY
In this section, we discuss how auditory categories are processed
in the ventral auditory pathway. More specifically, we review
the representation of auditory categories across different regions
in the ventral auditory pathway and then discuss the hierarchi-
cal processing of categorical information in the ventral auditory
pathway.

Before we continue, it is important to define the concept of a
“neural correlate of categorization.” One simple definition is the
following: a neural response is “categorical” when the responses
are invariant to the stimuli that belong to the same category. In
practice, neuroimaging techniques define “categorical” responses
as equivalent activations of distinct brain regions by within-
category stimuli and the equivalent activation of different brain
regions by stimulus exemplars from a second category (Binder
et al., 2000; Altmann et al., 2007; Doehrmann et al., 2008; Leaver
and Rauschecker, 2010). At the level of single neurons, a neuron
is said to be “categorical” if its firing rate is invariant to different
members of one category and if it has a second level of (invari-
ant) responsivity to stimulus exemplars from a second category
(Freedman et al., 2001; Tsunada et al., 2011). The specific mecha-
nisms that underlie the creation of category sensitive neurons are
not known. However, presumably, they rely on the computations
that mediate stimulus invariance in neural selectivity and per-
ception (Logothetis and Sheinberg, 1996; Holt and Lotto, 2010;
Dicarlo et al., 2012). Moreover, because animals can form a wide
range of categories based on individual experiences, a degree of
learning and plasticity must be involved in the creation of de-novo
category selective responses (Freedman et al., 2001; Freedman and
Assad, 2006). Indeed, when monkeys were trained to categorize
stimuli with different category boundaries, boundaries for cat-
egorical responses in some brain areas (e.g., the prefrontal and
parietal cortices) also changed (Freedman et al., 2001; Freedman
and Assad, 2006).

HOW DO DIFFERENT CORTICAL AREAS IN THE VENTRAL AUDITORY
PATHWAY SIMILARLY OR DIFFERENTIALLY REPRESENT CATEGORICAL
INFORMATION?
It is well known that neurons become increasingly sensitive to
more complex stimuli and abstract information between the
beginning stages of the ventral auditory pathway (i.e., the core)
and the latter stages (e.g., the ventral prefrontal cortex). For exam-
ple, neurons in the core auditory cortex are more sharply tuned
for tone bursts than neurons in the lateral belt (Rauschecker
et al., 1995), whereas lateral-belt neurons are more sensitive
to the spectrotemporal properties of complex sounds, such as
vocalizations (Rauschecker et al., 1995; Tian and Rauschecker,
2004). Furthermore, beyond the auditory cortex, the ventral
prefrontal cortex not only encodes complex sounds (Averbeck
and Romanski, 2004; Cohen et al., 2007; Russ et al., 2008a;
Miller and Cohen, 2010) but also has a critical role for attention
and memory-related cognitive functions (e.g., memory retrieval)
which are critical for abstract categorization (Goldman-Rakic,
1995; Miller, 2000; Miller and Cohen, 2001; Miller et al., 2002,
2003; Gold and Shadlen, 2007; Osada et al., 2008; Cohen et al.,
2009; Plakke et al., 2013a,b,c; Poremba et al., 2013).
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FIGURE 1 | The ventral auditory pathway in the monkey brain.

The ventral auditory pathway begins in core auditory cortex (in
particular, the primary auditory cortex A1 and the rostral field R).
The pathway continues into the middle-lateral (MLB) and

anterolateral (ALB) belt regions, which project directly and indirectly
to the ventral prefrontal cortex. Arrows indicate feedforward
projections. The figure is modified, with permission, from Hackett
et al. (1998) and Romanski et al. (1999a).

These observations are consistent with the idea that there
is a progression of category-information processing along the
ventral auditory pathway: brain regions become increasingly sen-
sitive to more complex types of categories. More specifically, it
appears that neurons in core auditory cortex may encode cat-
egories for simple sounds, whereas neurons in the belt regions
and the ventral prefrontal cortex may encode categories for more
complex sounds and abstract information.

Indeed, neural correlates of auditory categorization can be
seen in the core auditory cortex for simple frequency contours
(Ohl et al., 2001; Selezneva et al., 2006). For example, in a study
by Selezneva and colleagues, monkeys categorized the direction
of a frequency contour of tone-burst sequences as either “increas-
ing” or “decreasing” while neural activity was recorded from the
primary auditory cortex. Selezneva et al. found that these core
neurons encoded the sequence direction independent of its spe-
cific frequency content: that is, a core neuron responded similarly
to a decreasing sequence from 1 to 0.5 kHz as it did to a decreasing
sequence from 6 to 3 kHz. In a second study, Ohl et al. demon-
strated that categorical representations need not be represented in
the firing rates of single neurons but, instead, can be encoded in
the dynamic firing patterns of a neural population. Thus, even in
the earliest stage of the ventral auditory pathway, there is evidence
for neural categorization.

Although the core auditory cortex processes categorical infor-
mation for simple auditory stimuli (e.g., the direction of fre-
quency changes of pure tones), studies using more complex
sounds, such as human-speech sounds, have shown that core neu-
rons primarily encode the acoustic features that compose these
complex sounds but do not encode their category membership
(Liebenthal et al., 2005; Steinschneider et al., 2005; Obleser et al.,
2007; Engineer et al., 2008, 2013; Mesgarani et al., 2008, 2014;
Nourski et al., 2009; Steinschneider, 2013). That is, the catego-
rization of complex sounds requires not only analyses at the level
of the acoustic feature but also subsequent computations that
integrate the analyzed features into a perceptual representation,
which is then subject to a categorization process. For example,

distributed and temporally dynamic neural responses in indi-
vidual core neurons can represent different acoustic features
of speech sounds (Schreiner, 1998; Steinschneider et al., 2003;
Engineer et al., 2008; Mesgarani et al., 2008, 2014), but the cate-
gorization of the speech sounds requires classifying the activation
pattern across the entire population of core neurons.

Categorical representations of speech sounds at the level of
the single neuron or local populations of neurons appear to
occur at the next stage of auditory processing in the ventral audi-
tory pathway, the lateral-belt regions. Several recent studies have
noted that neural activity in the monkey lateral-belt and human
superior temporal gyrus encodes speech-sound categories (Chang
et al., 2010; Steinschneider et al., 2011; Tsunada et al., 2011;
Steinschneider, 2013). For example, our group found that, when
monkeys categorized two prototypes of speech sounds (“bad”
and “dad”) and their morphed versions, neural activity in the
lateral belt discretely changed at the category boundary, suggest-
ing that these neurons encoded the auditory category rather than
smoothly varying acoustic features (Figure 2).

Human-neuroimaging studies have also found that the supe-
rior temporal sulcus is categorically activated by speech sounds,
relative to other sounds (Binder et al., 2000; Leaver and
Rauschecker, 2010). Specifically, the superior temporal sulcus was
activated more by speech sounds than by frequency-modulated
tones (Binder et al., 2000) or by other sounds including bird
songs and animal vocalizations (Leaver and Rauschecker, 2010).
Furthermore, activity in the superior temporal sulcus did not
simply reflect the acoustic properties of speech sounds but,
instead, represented the perception of speech (Mottonen et al.,
2006; Desai et al., 2008).

Additionally, studies with other complex stimuli provide fur-
ther evidence for the categorical encoding of complex sounds
in the human non-primary auditory cortex, including supe-
rior temporal gyrus and sulcus, but not in the core auditory
cortex (Altmann et al., 2007; Doehrmann et al., 2008; Leaver
and Rauschecker, 2010). These studies found that complex
sound categories were represented in spatially distinct and widely
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FIGURE 2 | Categorical neural activity in the monkey lateral belt

during categorization of speech sounds. (A) An example of the activity
of a lateral belt neuron. The speech sounds were two human-speech
sounds (“bad” and “dad”) and their morphs. Neural activity is
color-coded by morphing percentage of the stimulus as shown in the
legend. The raster plots and histograms are aligned relative to onset of
the stimulus. (B) Temporal dynamics of the category index at the

population level. Category-index values >0 indicate that neurons
categorically represent speech sounds (Freedman et al., 2001; Tsunada
et al., 2011). The thick line represents the mean value and the shaded
area represents the bootstrapped 95%-confidence intervals of the mean.
The two vertical lines indicate stimulus onset and offset, respectively,
whereas the horizontal line indicates a category-index value of 0. The
figure is adopted, with permission, from Tsunada et al. (2011).

distributed sub-regions within the superior temporal gyrus and
sulcus (Obleser et al., 2006, 2010; Engel et al., 2009; Staeren
et al., 2009; Chang et al., 2010; Leaver and Rauschecker, 2010;
Giordano et al., 2013). For example, distinct regions of the
superior temporal gyrus and sulcus are selectively activated by
musical-instrument sounds (Leaver and Rauschecker, 2010), tool
sounds (Doehrmann et al., 2008), and human-speech sounds
(Belin et al., 2000; Binder et al., 2000; Warren et al., 2006);
whereas the anterior part of the superior temporal gyrus and
sulcus is preferentially activated by the passive listening of conspe-
cific vocalizations than other vocalizations (Fecteau et al., 2004).
Similar findings for con-specific vocalizations have been obtained
in the monkey auditory cortex (Petkov et al., 2008; Perrodin et al.,
2011). Consistent with these findings, neuropsychological studies
have shown that human patients with damage in the temporal
cortex have deficits in voice recognition and discrimination (i.e.,
phonagnosia Van Lancker and Canter, 1982; Van Lancker et al.,
1988; Goll et al., 2010). Thus, hierarchically higher regions in
the auditory cortex encode complex-sound categories in spatially
distinct (i.e., modular) and widely distributed sub-regions.

Moreover, recent studies posit that the sub-regions in the
non-primary auditory cortex process categorical information in a
hierarchical manner (Warren et al., 2006). A recent meta-analysis
of human speech-processing studies suggests that a hierarchi-
cal organization of speech processing exists within the superior
temporal gyrus: the middle superior temporal gyrus is sensi-
tive to phonemes; anterior superior temporal gyrus to words;
and the most anterior locations to short phrases (Dewitt and

Rauschecker, 2012; Rauschecker, 2012). Additionally, a different
hierarchical processing of speech sounds in the superior temporal
sulcus has also been articulated: the posterior superior tempo-
ral sulcus is preferentially sensitive for newly acquired sound
categories, whereas the middle and anterior superior temporal
sulci are more responsive to familiar sound categories (Liebenthal
et al., 2005, 2010). Thus, within different areas of the non-
primary auditory cortex, multiple and parallel processing may
progress during auditory categorization.

Beyond the auditory cortex, do latter processing stages (e.g.,
the monkey ventral prefrontal cortex and human inferior frontal
cortex) process categories for even more complex sounds? A re-
examination of previous findings from our lab (Russ et al., 2008b;
Tsunada et al., 2011) indicated important differences in neural
categorization between the lateral belt and the ventral prefrontal
cortex (Figure 3). We found that, at the population level, the
category sensitivity for speech sounds in the prefrontal cortex
was weaker than that in the lateral belt although neural activ-
ity in the prefrontal cortex transmitted a significant amount of
categorical information. Consistent with this finding, a human-
neuroimaging study also found that neural activity in the superior
temporal gyrus is better correlated with a listener’s ability to dis-
criminate between speech sounds than the activity in the inferior
prefrontal cortex (Binder et al., 2004). Because complex sounds,
including speech sounds, are substantially processed in the non-
primary auditory cortex as discussed above, the prefrontal cortex
may not represent, relative to the auditory cortex, a higher level of
auditory perceptual-feature categorization.
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FIGURE 3 | Category sensitivity for speech sounds in the prefrontal

cortex (right) is weaker than that in the lateral belt (left). Temporal
dynamics of the category sensitivity at the population level are shown.

Category sensitivity was calculated using a receiver-operating-characteristic
(ROC) analysis (Green and Swets, 1966; Tsunada et al., 2012). Larger ROC
values indicate better differentiation between the two categories.

Instead, the prefrontal cortex may be more sensitive to cat-
egories that are formed based on the abstract information that
is transmitted by sounds. For example, the human inferior pre-
frontal cortex may encode categories for abstract information
like emotional valence of a speaker’s voice (Fecteau et al., 2005).
Furthermore, human electroencephalography and neuroimaging
studies have also revealed that the inferior prefrontal cortex plays
a key role in the categorization of semantic information of multi-
sensory stimuli (Werner and Noppeney, 2010; Joassin et al., 2011;
Hu et al., 2012): Joassin et al. showed that the inferior prefrontal
cortex contains multisensory category representations of gender
that is derived from a speaker’s voice and from visual images of a
person’s face.

Similarly, the monkey ventral prefrontal cortex encodes
abstract categories. We have found that neurons in the ventral
prefrontal cortex represent categories for food-related calls based
on the transmitted information (e.g., high quality food vs. low
quality food) (Gifford et al., 2005; Cohen et al., 2006). A more
recent study found that neural activity in the monkey prefrontal
cortex categorically represents the number of auditory stimuli
(Nieder, 2012). Thus, along the ascending auditory system in
the ventral auditory pathway, cortical areas encode categories for
more complex stimuli and more abstract information.

NEURAL TRANSFORMATIONS WITHIN LOCAL
MICROCIRCUITS
In this section, we discuss how the categorical information
represented in each cortical area of the ventral auditory path-
way is computed within local microcircuits. First, we briefly
review the cortical microcircuit. Next, we focus on the role
that two main cell classes of neurons in cortical microcircuits
(i.e., excitatory pyramidal neurons and inhibitory interneurons)
and discuss how different classes of neurons process categorical
information.

HOW DO DIFFERENT CLASSES OF NEURONS IN LOCAL
MICROCIRCUITS PROCESS CATEGORICAL INFORMATION?
A cortical microcircuit can be defined as a functional unit
that processes inputs and generates outputs by dynamic and
local interactions of excitatory pyramidal neurons and inhibitory
interneurons (Merchant et al., 2012). Consequently, pyramidal
neurons and interneurons are considered to be the main elements
of microcircuits. Pyramidal neurons, which consist ∼70–90% of
cortical neurons, provide excitatory-outputs locally (i.e., within
a cortical area) and across brain areas (Markham et al., 2004).
On the other hand, interneurons, which consist small portion
of cortical neurons (∼10–30%), provide mainly inhibitory-
outputs to surrounding pyramidal neurons and other interneu-
rons (Markham et al., 2004).

From a physiological perspective, pyramidal neurons and
interneurons can be classified based on the waveform of their
action potentials (Mountcastle et al., 1969; McCormick et al.,
1985; Kawaguchi and Kubota, 1993, 1997; Kawaguchi and Kondo,
2002; Markham et al., 2004; González-Burgos et al., 2005). More
specifically, the waveforms of pyramidal neurons tend to be
broader and slower than those seen in the most interneurons.
Using this classification, several extracellular-recording studies
have been able to elucidate roles of pyramidal neurons and
interneurons for visual working memory in the prefrontal cor-
tex (Wilson et al., 1994; Rao et al., 1999; Constantinidis and
Goldman-Rakic, 2002; Diester and Nieder, 2008; Hussar and
Pasternak, 2012), visual attention in V4 (Mitchell et al., 2007),
visual perceptual decision-making in the frontal eye field (Ding
and Gold, 2011), motor control in the motor and premotor cor-
tices (Isomura et al., 2009; Kaufman et al., 2010), and auditory
processing during the passive listening in the auditory cortex
(Atencio and Schreiner, 2008; Sakata and Harris, 2009; Ogawa
et al., 2011). Interestingly, most of these studies showed differ-
ential roles in pyramidal neurons and interneurons.
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Recently, using differences in the waveform of extracellularly-
recorded neurons, we found that putative pyramidal neurons
and interneurons in the lateral belt differentially encode and
represent auditory categories (Tsunada et al., 2012). Specifically,
we found that interneurons, on average, are more sensitive for
auditory-category information than pyramidal neurons, although
both neuron classes reliably encode category information
(Figure 4).

Unfortunately, to our knowledge, there have not been other
auditory-category studies that have examined the relative cate-
gory sensitivity of pyramidal neurons vs. interneurons. However,
a comparable visual-categorization study on numerosity in the

prefrontal cortex (Diester and Nieder, 2008) provides an oppor-
tunity to compare results across studies. Unlike our finding,
Diester and Nieder found greater category sensitivity for putative
pyramidal neurons than for putative interneurons.

The bases for these different sets of findings are unclear.
However, three non-exclusive possibilities may underlie these
differences. One possibility may relate to differences in the local-
connectivity patterns and interactions between pyramidal neu-
rons and interneurons across cortical areas (Wilson et al., 1994;
Constantinidis and Goldman-Rakic, 2002; Diester and Nieder,
2008; Kätzel et al., 2010; Tsunada et al., 2012). Indeed, in the
prefrontal cortex, simultaneously recorded (and, hence, nearby)

FIGURE 4 | Category sensitivity in interneurons is greater than that

seen in pyramidal neurons during categorization of speech sounds in

the auditory cortex. The plots in the left column of panel (A,B) show
the mean firing rates of an interneuron (A) and a pyramidal neuron (B) as
a function of time and the stimulus presented. The stimuli were two
human-speech sounds (“bad” and “dad”) and their morphs. Neural
activity is color-coded by morphing percentage of the stimulus as shown
in the legend. The inset in the upper graph of each plot shows the
neuron’s spike-waveform. The right column shows each neuron’s

category-index values as a function of time. For all of the panels, the two
vertical dotted lines indicate stimulus onset and offset, respectively. (C)

Population results of category index. The temporal profile (left panel) and
mean (right) of the category index during the stimulus presentation are
shown. Putative interneurons and pyramidal neurons were further
classified as either “increasingly responsive” or “decreasingly responsive”
based on their auditory-evoked responses. Error bars represent
bootstrapped 95% confidence intervals of the mean. The figure is
adopted, with permission, from Tsunada et al. (2012).
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pyramidal neurons and interneurons have different category pref-
erences (Diester and Nieder, 2008). In contrast, in the auditory
cortex, simultaneously recorded pairs of pyramidal neurons and
interneurons have similar category preferences (Tsunada et al.,
2012). Thus, there may be different mechanisms for shaping cat-
egory sensitivity across cortical areas. Second, the nature of the
categorization task may also affect, in part, the category sen-
sitivity of pyramidal neurons and interneurons: our task was
a relatively simple task requiring the categorization of speech
sounds based primarily on perceptual similarity, whereas Diester
and Nieder’s study required a more abstract categorization of
numerosity. Finally, the third possibility relates to differences
between stimulus dynamics: the visual stimuli in the Diester and
Nieder’s study were static stimuli, whereas our speech sounds
had a rich spectrotemporal dynamic structure. To categorize
dynamic stimuli, the moment-by-moment features of stimuli
need to be quickly categorized. Thus, the greater category sen-
sitivity of interneurons along with their well-known inhibitory
influence on pyramidal neurons (Hefti and Smith, 2003; Wehr
and Zador, 2003; Atencio and Schreiner, 2008; Fino and Yuste,
2011; Isaacson and Scanziani, 2011; Packer and Yuste, 2011;
Zhang et al., 2011) may underlie the neural computations needed
to create categorical representations of dynamic stimuli in the
auditory cortex.

CONCLUSIONS AND FUTURE DIRECTIONS
Different neural transformations across different scales of neu-
ral organization progress during auditory categorization. Along
the ascending auditory system in the ventral pathway, there is a
progression in the encoding of categories from simple acoustic
categories to categories representing abstract information. On the
other hand, in local microcircuits within a cortical area, different
classes of neurons, pyramidal neurons and interneurons, differen-
tially compute categorical information. The computation is likely
dependent upon the functional organization of the cortical area
and dynamics of stimuli.

Despite several advances in our understanding of neural mech-
anism of auditory categorization, there still remain many impor-
tant questions to be addressed. For example, it is poorly under-
stood how bottom-up inputs from hierarchically lower areas,
top-down feedback from higher areas, and local computations
interact to form neural representations of auditory categories.
Answering this question will provide a more thorough under-
standing of the information flow in the ventral auditory pathway.
Another important question to be tested is what neural cir-
cuit mechanisms produce different category sensitivity between
pyramidal neurons and interneurons, and functional roles of
pyramidal neurons and interneurons in auditory categorization.
Relevant to this question, the role that cortical laminae (another
key element of local microcircuitry) play in auditory categoriza-
tion should be also tested. Recent advances in experimental and
analysis techniques should enable us to clarify the functional role
of different classes of neurons in auditory categorization (Letzkus
et al., 2011; Znamenskiy and Zador, 2013) and also test neural
categorization across cortical layers (Lakatos et al., 2008; Takeuchi
et al., 2011), providing further insights for neural computations
for auditory categorization within local microcircuits.
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