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Abstract: Design requirements for different mechanical metamaterials, porous constructions and
lattice structures, employed as tissue engineering scaffolds, lead to multi-objective optimizations, due
to the complex mechanical features of the biological tissues and structures they should mimic. In some
cases, the use of conventional design and simulation methods for designing such tissue engineering
scaffolds cannot be applied because of geometrical complexity, manufacturing defects or large aspect
ratios leading to numerical mismatches. Artificial intelligence (AI) in general, and machine learning
(ML) methods in particular, are already finding applications in tissue engineering and they can
prove transformative resources for supporting designers in the field of regenerative medicine. In this
study, the use of 3D convolutional neural networks (3D CNNs), trained using digital tomographies
obtained from the CAD models, is validated as a powerful resource for predicting the mechanical
properties of innovative scaffolds. The presented AI-aided or ML-aided design strategy is believed
as an innovative approach in area of tissue engineering scaffolds, and of mechanical metamaterials in
general. This strategy may lead to several applications beyond the tissue engineering field, as we
analyze in the discussion and future proposals sections of the research study.

Keywords: artificial intelligence (AI); machine learning (ML); tissue engineering; tissue engineering
scaffolds; 3D convolutional neural networks (3D CNNs)

1. Introduction

Artificial intelligence (AI) and machine learning (ML) methods are reshaping data
management, product design, materials science and mechanical engineering, among other
industrially and socially relevant fields. As regards AI-aided discovery of materials, the
Materials Genome Initiative [1–3] stands out as one of the pioneering large-scale projects,
which has inspired other technological breakthroughs in innovative materials for advanced
industrial applications [4,5]. Usually, AI and ML have been applied to the prediction of
final properties and performance of materials from the chemical composition of the bulk
materials under study [6–8]. In some cases, mechanical properties have been also predicted
with ML techniques [9,10]. More recently, our team has focused on the forecasting of
tribological properties of hierarchical topographies, advancing in the AI-aided design of
textured surfaces and materials [11]. Besides, the progressive application of AI to the
prediction, design and control of mechanical properties is already making an impact in
the growing family of mechanical metamaterials [12,13], whose application fields include
transport, energy, space and health, to cite a few.

Authors consider similar holistic approaches, aimed at promoting accelerated materi-
als development through an intensive use of AI, if further research focusing on materials
microstructures and mechanical properties can prove transformative towards high perfor-
mance materials and devices in several industries.
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The biomedical area can greatly benefit from innovative hierarchical mechanical meta-
materials, whose multi-scale porous and lattice structures are essential for mimicking
the biomechanical properties of human tissues and organs. This recapitulation of the
mechanical properties of the cell microenvironment, through implanted artificial materials,
constructs or “scaffolds”, helps the cells of damaged tissues receive the adequate mechan-
ical stimuli and is one of the essential strategies in tissue engineering and regenerative
medicine [14,15].

The design of successful tissue engineering scaffolds is a challenging engineering
task, due to the complexity of the original tissues they aim to repair and the intricate
connections between designed geometries, bulk materials and manufacturing tools. FEM
simulations are commonly applied to CAD models of tissue engineering scaffolds, so as to
analyze their prospective mechanical properties, usually focusing on their stiffness, as a
parameter to optimize for enhanced biomimetic behavior [16,17]. However, there are many
occasions in which FEM simulations cannot be applied to scaffolding structures or do not
adequately predict final performance, due to geometrical complexity, large aspect ratios, or
presence of manufacturing defects. Therefore, the use of AI and ML can prove valuable
for deciphering this complexity of scaffolding structures and thus supporting bioinspired
design approaches.

To mention some examples, AI and ML have been applied to the tissue engineering
field for different purposes, in general related with the enhanced design of scaffolds:
the ML-guided 3D printing of scaffolding geometries for minimizing defects has been
reported [18], to predict vascularization in repair strategies [19] and to correlate in vitro
performance with physico-chemical properties [20]. Conventional artificial neural networks
are the most used methods for these AI-ML strategies. Nevertheless, the prediction of
scaffolds’ mechanical performance directly from the CAD models, especially for cases in
which FEM cannot be applied, may require advanced ML tools capable of using more
complete descriptions of these complex geometries as input, and not just representative
parameters. Quite recently, 2D convolutional neural networks (CNNs), with images as
input, have been effectively applied to predicting multiple properties of porous materials,
which constitutes a fundamental advance [21].

In the authors’ view, the use of 3D CNNs can constitute a novel and alternative (or
complementary) method for predicting the properties of complex porous materials and
structures, especially the mechanical properties of tissue engineering scaffolds. Taking
into account the success of deep CNNs or 3D CNNs using medical images (i.e., computed
tomography-CT-) as input for diagnostic purposes [22–24], similar ML strategies and
schemes may apply to materials science and engineering.

Our rationale is as follows: the computed tomography of physical objects generates
layered 2D images representing the whole geometry of a real object, proving useful as
input for 3D CNNs for diagnostic purposes. Then, the use of digital tomography to obtain
layered 2D images of virtual CAD models, like the CAD models of tissue engineering
scaffolds, may be used as input for successfully predicting, in silico, the properties of the
designed geometries.

To demonstrate our driving hypothesis, in this study, we create and characterize a
collection of tissue engineering scaffolds and employ digital tomography to obtain the
layered 2D images defining the geometries of the scaffolds of the collection. The 3D CNNs
are trained using the layered images as input and the characterized properties, namely
Young’s modulus, shear modulus and porosity, as outputs. Once trained and validated,
employing a varied set of training and validation strategies, the predicting potential of the
obtained 3D CNNs is tested with a new set of designs of tissue engineering scaffolds. To
rapidly generate the tomographies from the virtual models, we apply a 3D printing slicer
software in an innovative way, using the digital masks as the actual layered images that
recreate the 3D geometry of each construct. The performance achieved, both in terms of
predicting ability, computational speed and global cost, is remarkable.
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To the authors’ best knowledge this study represents the first application of 3D
CNNs to the AI-aided design of tissue engineering scaffolds. It is also an innovative
approach in the area of mechanical metamaterials and may lead to a wide set of applications
beyond the tissue engineering realm, as we analyze in the discussion and future proposals
sections of the study. The following section describes the materials and methods employed,
before dealing with the presentation and discussion of research results. Finally, the more
relevant pending challenges, as well as some proposed and expected research directions,
are also presented.

2. Materials and Methods
2.1. Creating a Library of Tissue Engineering Scaffolds with Well-Known Properties

Computer-aided design and finite element simulations are performed with the support
of Autodesk Inventor 2021 (academic license). A collection of 20 lattices or scaffolding
geometries is created by means of solid- and matrix-based operations and using Boolean
tools. Geometrical diversity is sought, for which some designs have periodic features and
remarkable symmetry, while others are conceived as irregular interconnections of trusses
to increase the desired diversity. Some lattices are obtained by subtraction of already
designed scaffolds to a bulk cubic geometry. In any case, all designed geometries can be
considered tissue engineering scaffolds for different tissue repairs, as they resemble the
common geometries used for 3D printed scaffolds for regenerative medicine. The cell units
of the 20 designed scaffolds are shown in Figure 1, which summarizes the collection of
CAD geometries. All of them are inscribed in a cube of 5 × 5 × 5 mm3.

Once designed, different properties of the scaffolding units are obtained. Porosity,
defined as % of void within the 5 × 5 × 5 mm3 working volume, is directly measured
with the CAD software. Two main mechanical properties are obtained for each lattice, the
compression modulus and the shear modulus. The compression modulus of an elastic
material is defined as the ratio between applied stress and resulting strain when that
material is under compression. The shear modulus is defined as the ratio between applied
shear stress and resulting shear strain. Due to the varied mechanical stimuli that tissue
engineering scaffolds suffer in service, both properties are interesting from a biomechanical
point of view.

The mechanical characterization of the different lattices, for obtaining the compression
and shear moduli, is done in silico, using the FEM simulation capabilities of the used
software. Lattices are meshed using tetrahedral elements of 0.05 mm. ABS, as conventional
thermoplastic, is employed as bulk material. A normal or transversal distributed load
of 25 N is applied, leading to an equivalent normal or shear stress considering that the
lattices occupy a section of 5 × 5 mm2. As boundary condition, each lattice is fixed on
the face opposite to the face where the force is applied. Once simulated, the equivalent
compression or shear moduli are obtained. Dividing them by the actual compression or
shear moduli of the bulk material used for the simulation (ABS) eliminates the influence of
the raw material, leading to relative values only dependent on the actual lattice geometry,
which are typically used for comparing mechanical metamaterials and in some materials
selection strategies and in Ashby’s diagrams.

The results from in silico characterization for the different lattices are included in
Table 1 and subsequently used for training the 3D CNNs. For training purposes, such
values are normalized or scaled to the [0, 1] range, as this leads to better and faster 3D CNN
convergence. For further processing, the CAD models of the designed lattices or unit cells
are stored as binary .stl (standard tessellation language or stereolithography) files with
a mesh precision of 0.05 mm, which proves adequate for employing Chitubox as slicing
software for the digital tomographs, as explained further on.
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Table 1. Summary of lattices’ properties, characterized employing CAD measurement and FEM tools.

Lattice nº Relative Porosity (%)
Relative Compression

Modulus
E_Relative (%)

Relative Shear
Modulus

G_Relative (%)

Lattice 1 35.2000 39.5401 13.0767
Lattice 2 64.8000 18.5385 3.1629
Lattice 3 48.0000 35.8848 5.9301
Lattice 4 52.0000 30.0935 6.1656
Lattice 5 64.8000 7.9094 2.0723
Lattice 6 40.0864 8.8467 9.8194
Lattice 7 59.9136 8.1076 3.4133
Lattice 8 22.7736 29.9924 19.2402
Lattice 9 77.2264 10.4106 0.9591
Lattice 10 42.8672 21.1969 12.3903
Lattice 11 28.6480 48.9160 18.4019
Lattice 12 71.3520 14.3817 2.1877
Lattice 13 36.9416 25.2379 14.4458
Lattice 14 63.0584 18.2058 2.43572
Lattice 15 6.31440 88.0836 33.2377
Lattice 16 93.6864 1.4064 0.0704
Lattice 17 45.7240 29.0857 11.1030
Lattice 18 57.0864 26.7598 4.6127
Lattice 19 45.3984 10.3383 6.9349
Lattice 20 45.1312 20.6479 7.1886

2.2. From 3D CAD Files to Digital Tomographies as Input for 3D CNNs

Chitubox v.1.8.1 basic (Chitubox, Zhongcheng Future Industrial Park, Hangcheng
Avenue, Baoan District, Shenzhen, Guangdong, China 518128) is a free 3D printing software
designed to edit and slice 3D CAD models. It also provides tools for CAD transformation
including rotating, scaling, mirroring, repairing, hollowing, cloning, etc. With the help
of Chitubox, the designed lattices are sliced, transforming their 3D geometry into a set
of black and white images that resemble the layered images of CT-scans or MR imaging.
A resolution of 1440 × 1440 pixels per slice is chosen and a distance of 0.25 mm between
slices, along z-axis, is selected. Each slice is a cut of a scaffold, with a section of 5 mm2, and
generates an image of 1440 × 1440 pixels. Thus, each pixel has a lateral size of 5 mm/1440.
This leads to a set of 20 images per lattice capable of representing the 3D geometries with a
remarkable level of detail, at least similar to the level of detail used when actually printing
similar tissue engineering scaffolds.

Figure 2 provides examples of these digital tomographies, for different 3D CAD
models of the designed lattices, achieved employing Chitubox as lithographic slicer for
3D printing. Results for lattices 1, 2 and 20 (from Figure 1) are presented in Figure 2 by
means of example. Each lattice is transformed into 20 slices, many of which are coincident
due to the periodic nature of these lattices. In these images, as happens in real CT-scans
and in the Hounsfield scale utilized for the dicom (digital communications in medicine)
standard, black represents empty spaces or voids and white corresponds to the actual
scaffolding material. These sets of images are used as input for the 3D CNNs, for describing
the geometries of the different lattices, while the in silico obtained properties (porosity,
compression and shear moduli) are used as output, for training and validating purposes,
as detailed in the following subsection.
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Figure 2. Examples of digital tomographies, for different 3D CAD models of the designed lattices,
achieved employing a lithographic slicer for 3D printing. Results for lattices 1, 2 and 20 (see Figure 1)
are presented by means of example. Each lattice is transformed into 20 slices, many of which are
coincident due to the periodic nature of the lattices.

The approach resembles pioneering experiences of 3D CNNs in medicine, but employ-
ing digital slices of CAD models, instead of real CT images.

2.3. Structuring and Training 3D CNNs for Predicting Mechanical Properties

For the development of the artificial intelligence/machine learning model, the Python
programming language in version 3.8.5 (Phyton Software Foundation) is employed. This
is the most used language in machine and deep learning since it is open source and
provides the necessary tools to carry out this type of process effectively and relatively
easily, thanks to available powerful dedicated libraries. Besides, Python interpreter allows
to run programs written in Python language [25]. Different libraries for data analysis, data
processing and deep learning are also employed, whose main features and application
purposes are described below:

NumPy version 1.19.2: specialized in numerical calculation and data analysis for
large volumes of data. This library incorporates matrices (arrays) that allow to represent
data collections of the same type in several dimensions. It also incorporates very efficient
functions for manipulating arrays [26]. This library is fundamental in study since a 3D
CNN understands a 3D image as a 3D array.

Matplotlib version 3.3.4: develops quality 2D and 3D graphics with a few lines of
code, uses static, animated and interactive figures, allows to take full control of line styles,
axis properties, among other options [27]. In short, this library allows the visualization of
data and results.

Scikit-learn version 0.24.1: main machine learning library in Python, providing dif-
ferent tools for predictive data analysis and calculation of metrics, such as mean square
error [28], needed in supervised learning. It includes generalized linear regression models.

Scikit-image version 0.18.1: dedicated to image processing, it allows reading and
displaying images from a file, binarizing, resizing, segmenting images, adjusting their
contrast and color and other typical image processing operations [29].

TensorFlow version 2.3.0: compiles and trains artificial intelligence models with
ease, using intuitive and high-level application programming interfaces (APIs), such
as Keras, with immediate execution and allowing immediate model iteration and easy
debugging [30].
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Keras version 2.4.0: part of the TensorFlow library from TensorFlow version 2.0.0 and
it has a more friendly code. It covers every step of the deep learning workflow, from data
management, training, configuration and evaluation of the model to obtaining predictions
or testing the artificial intelligence model. This makes it a widely used deep learning
framework, whose guidelines are public [31].

For the installation of all the previous libraries, a Python distribution called Anaconda
is used, which already includes the Python interpreter installed and the Numpy and
Matplotlib libraries used. The other libraries are installed thanks to the Anaconda package
manager called conda. In this case, the package manager is conda version 4.10.1.

Anaconda, in addition to the package manager, includes a desktop application called
Anaconda Navigator, which allows to manage packages, as well as run applications such
as the Jupyter Notebook development environment. In this case, Anaconda Navigator has
Jupyter Notebook version 6.3.0 and it is the development environment used.

Once the software and libraries are installed, data are preprocessed and augmented,
the structure for the 3D CNNs are defined. Finally, training, validation and testing strategies
are designed and implemented.

Since each slice has very large dimensions (1440 × 1440 pixels), images are resized
to 32 × 32 pixels using Scikit-image library again. Although the resolution is lower, the
network is able to understand patterns and learns faster during training. Then, considering
that 3D CNNs understand images as arrays, the 20 slices of each lattice are concatenated
along a new axis, in this case the z axis. A total 20 3D arrays of 0 s and 1 s are obtained that
represent the 20 CAD cellular scaffolds. The Numpy library is used for this operation.

Regarding the architecture for the 3D CNNs, we opt for a structure involving input
images (representative of the 3D geometries), convolutional and max pooling layers and
fully connected dense layers leading to the outputs (porosity and mechanical properties),
as schematically presented in Figure 3.

Materials 2021, 14, x FOR PEER REVIEW 8 of 22 
 

 

predict any new input data (problem well-known as overfitting). This succession of layers 
is then repeated, but this time the convolutional layer uses 32 random filters. Then it is 
repeated again, but the convolutional layer uses 64 random filters and the max pooling 
layer maintains the last dimension of the data it receives to avoid obtaining a negative 
dimension. Otherwise, there would be no dimensions to apply the max pooling layer. The 
combination of the three package of layers described adopts the shape of bottleneck, be-
cause the greater the depth of the convolutional neural network, the greater the abstrac-
tion. To extract all the feature information the deeper is the layer, smaller are the filters 
used per convolution layer and it is often used with a larger amount of filters. Finally, a 
flatten layer is placed, a succession of dense layers with 32 and 64 neurons respectively, 
and another dense layer with 3 neurons because the network predicts three variables (pro-
vides 3 outputs) from each input (lattice geometry as slices). All dense layers use a Leaky 
Relu activation function. Main features of CNN are seen in Figure 3, where the output 
shape of the layers is shown around the different blocks of convolution and the flatten 
layer. 

Taking into account that a library of 20 scaffolding lattices may be limited as training 
and validation set for AI/ML strategies, data augmentation is performed. Such data ex-
pansion is achieved through rotations around z-axis, zooms and resizing, vertical flips, 
rotations around x- and y-axes, to cite some options used. Different examples of these data 
augmentation strategies are shown in Figure 4 by means of example and summarized in 
Table 2. 

 
Figure 3. Proposed structure for the 3D CNNs: from 3Dslices models to useful performance properties. Block diagram, 
structure and details of convolutional neural network. 

The CNN shown above is designed based on two main examples [35,36]. The struc-
ture is adapted to solve the question dealt in this paper, using an iterative process to find 
a good performance. With the selected model, six training and validation strategies are 
carried out. The six strategies consist of expanding the training data and modifying the 
validation data randomly as summarized in Table 2 below. 

Table 2. Summary of the six training and validation strategies employed. 

Strategy 

Number of 

Lattices 

Used 

Number of 

Lattices Used for 

Training 

Number of 

Lattices Used for 

Validation 

Data Augmentation Strategy 

1st strategy 20 14 random ones 6 random ones - 

2nd strategy 120 114 random ones 6 random ones Rotations around z-axis (15°, 30°, 45°, 60°, 75°) 

3rd strategy 240 234 random ones 6 random ones Previous rotations plus zoomed-in lattices 

Figure 3. Proposed structure for the 3D CNNs: from 3Dslices models to useful performance properties. Block diagram,
structure and details of convolutional neural network.

Summarizing, the design of 3D CNNs’ architectures and their training and validation
is carried out thanks to Keras library. To analyze which is the best model of all those
designed, the following strategy is carried out. A total 70% of the 3D structures without
any transformation are used as training data and 30% of them as validation. Regarding
the loss function and the metric, the selected model is the one whose mean square error in
training and validation is closer to 0 and the lowest. Moreover, if it is possible the validation
MSE should be slightly lower than that of training. This means that the convolutional
neural network “learns” from the training data and can generalize to data outside of that
set. Therefore, the cross-validation method is used to estimate the precision of the different
models. Data segregation, from the total training data set into training and validation data,
is done using Scikit-learn library. The selected model consists of a 3D convolutional layer
with 16 filters each with dimensions 3 × 3 × 3 pixels. A Relu activation function is used,
and filters weights are applied randomly.
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Subsequently, a 3D max pooling layer with a filter dimension of 2 × 2 × 2 pixels is
placed. After this layer, a batch normalization layer is used and then a dropout layer with
an index equal to 0.3. The batch normalization layer normalizes and scales its inputs by
applying a transformation that keeps the mean output close to 0 and the output standard
deviation close to 1 [32]. Standardizing the activations of the previous layer means that
the subsequent layer makes about the propagation and distribution of the inputs during
the weight update will not change dramatically. This has the effect of stabilizing and
accelerating the deep neural network training process [33].

The dropout layer randomly sets the input units to 0 with a rate of speed at each step
during the training time, which helps prevent overfitting. The inputs that are not set to 0 are
scaled by 1/(1-rate) so that the sum of all the inputs does not change [34]. A dropout layer
supposes the unlearning of the neural network, which prevents the network from learning
in excess from the training data, “memorizing them”, and not being able to predict any new
input data (problem well-known as overfitting). This succession of layers is then repeated,
but this time the convolutional layer uses 32 random filters. Then it is repeated again, but
the convolutional layer uses 64 random filters and the max pooling layer maintains the last
dimension of the data it receives to avoid obtaining a negative dimension. Otherwise, there
would be no dimensions to apply the max pooling layer. The combination of the three
package of layers described adopts the shape of bottleneck, because the greater the depth
of the convolutional neural network, the greater the abstraction. To extract all the feature
information the deeper is the layer, smaller are the filters used per convolution layer and it
is often used with a larger amount of filters. Finally, a flatten layer is placed, a succession of
dense layers with 32 and 64 neurons respectively, and another dense layer with 3 neurons
because the network predicts three variables (provides 3 outputs) from each input (lattice
geometry as slices). All dense layers use a Leaky Relu activation function. Main features
of CNN are seen in Figure 3, where the output shape of the layers is shown around the
different blocks of convolution and the flatten layer.

Taking into account that a library of 20 scaffolding lattices may be limited as training
and validation set for AI/ML strategies, data augmentation is performed. Such data
expansion is achieved through rotations around z-axis, zooms and resizing, vertical flips,
rotations around x- and y-axes, to cite some options used. Different examples of these data
augmentation strategies are shown in Figure 4 by means of example and summarized in
Table 2.

The CNN shown above is designed based on two main examples [35,36]. The structure
is adapted to solve the question dealt in this paper, using an iterative process to find a good
performance. With the selected model, six training and validation strategies are carried
out. The six strategies consist of expanding the training data and modifying the validation
data randomly as summarized in Table 2 below.

Table 2. Summary of the six training and validation strategies employed.

Strategy Number of
Lattices Used

Number of Lattices
Used for Training

Number of Lattices
Used for Validation Data Augmentation Strategy

1st strategy 20 14 random ones 6 random ones -

2nd strategy 120 114 random ones 6 random ones Rotations around z-axis (15◦, 30◦,
45◦, 60◦, 75◦)

3rd strategy 240 234 random ones 6 random ones Previous rotations plus
zoomed-in lattices

4th strategy 360 354 random ones 6 random ones
Previous rotations and zooms (240
lattices) plus vertical flips without

zoom (120 lattices more)

5th strategy 480 474 random ones 6 random ones Addition of horizontal flips (120
lattices more)

6th strategy 680 674 random ones 6 random ones
Addition of rotated initial lattices

around x- and y-axes (15◦, 30◦,
45◦, 60◦, 75◦, 200 lattices more)
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Figure 4. Examples from data augmentation strategies: (a) Rotation around z axis and resizing. (b) Zoom. (c) Zoom, rotation
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2.4. Testing and Validation of the Global Strategy

Once trained, the 3D CNNs are tested, and their predicting ability validated, in a real
use case scenario. For this purpose, a new library of scaffolding geometries with 8 lattices
(see Figure 5a), completely different from those included in the initial collection of 20, is
designed. These lattices are sliced (see examples from Figure 5b), following the procedure
described in Section 2.2 and the different 3D CNNs are employed to predict their properties.
In parallel, the methods from Section 2.1 are applied to in silico characterize these new
lattices. The obtained properties (Table 3) are compared to the predicted ones. The precision
of the different 3D CNNs, obtained as detailed in Section 2.3 employing varied training
strategies, is analyzed. Results are presented and discussed in the following section.
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Table 3. Summary of new lattices’ properties, characterized employing CAD measurement and
FEM tools.

Lattice nº Relative Porosity (%)
Relative Compression

Modulus
E_Relative (%)

Relative Shear
Modulus

G_Relative (%)

New Lattice 1 35.1376 42.6450 13.7545
New Lattice 2 47.5272 21.5032 8.9878
New Lattice 3 28.6504 52.3093 18.7747
New Lattice 4 38.6408 35.7584 14.7934
New Lattice 5 64.8624 18.4618 3.1262
New Lattice 6 52.4728 25.2521 4.6577
New Lattice 7 71.3496 14.3355 2.1183
New Lattice 8 61.3592 17.7851 1.1427

3. Results and Discussion
3.1. CAD Models, Digital Tomographies, and Training and Validation of 3D CNNs

The initial CAD library of 20 scaffolding geometries, used for training and validating
the 3D CNNs, is already an interesting result, which improves with the addition of the
eight additional new scaffolds of Figure 5a, designed for testing the global AI/ML strategy.
This designed collection of microstructured geometries is a starting point, aimed at creating
the most comprehensive library of tissue engineering scaffolds with information about
their biomechanical performance, which can be continuously updated. Such updates can
be used for further training the 3D CNNs, once additional designs, simulation and testing
results upon CAD files or physical prototypes are available. The scaffolds’ library already
includes several CAD files in .ipt (Inventor parts) and .stl (standard tessellation language
-or stereolithography-) formats, as well as their equivalent slices (or digital tomographies)
stored in the form of arrays. The library, and its future additions, are openly available for
researchers in the field, wishing to collaborate or test related approaches, linked to the AI-
or ML-aided development of tissue engineering scaffolds and metamaterials.

Among other remarkable results of the study, authors would like to highlight the
possibility of recapitulating the three-dimensional geometries of complex CAD objects
by using a 3D printing slicer, Chitubox in this case, and employing the obtained slices
as input for 3D CNNs. Examples of the application of the slicer are shown in Figure 2
for the initial training library and in Figure 5b for the new lattices used for testing the
global AI-ML strategy. The use of digital tomographies is demonstrated useful for training,
validating and testing deep convolutional neural networks, as the employment of images
from CT scans had already proven highly useful for the progressive application of AI/ML
methods in diagnostic medicine. Although recent studies have also combined machine
learning and FEM simulations to predict the mechanical properties of biomaterials lattices
and biomechanical structures [37,38], they have normally relied on conventional artificial
neural networks (ANNs) with a few parameters as inputs/outputs that describe slight
variations in thickness, size, length or density. Moreover, 3D CNNs, loaded with digital
slices, receive the whole geometry as input and outperform simpler ANNs, especially when
the geometrical complexity increases and when the diversity of geometrical inputs does
not allow for a parametrization. It is also well-known that CNNs achieve better results in
image processing than ANNs because CNNs preserve and analyze the sequence of data.
These types of algorithms recognize the position and relationship between near pixels of
the inputs.

Arguably, CT scans or magnetic resonance (MR) images carried out upon physical
samples, materials, products and real patients, may synergize with the use of digital to-
mographies, like those obtained using 3D printing slicers upon CAD files, for fostering
the application of AI/ML methods in a wide set of scientific-technological disciplines,
from materials science and engineering to regenerative medicine. The training and val-
idation work properly, the initial library of scaffolds and the errors decreasing with the
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addition of lattices to the training set, as seen in Figure 6a, thanks to the strategies for data
augmentation described in Section 2.3.

Materials 2021, 14, x FOR PEER REVIEW 14 of 22 
 

 

relationships between different pixels, their positioning, their colors and not by the fact of 
moving away or approaching. 

Interestingly, although physical properties like Young’s modulus are not scale inde-
pendent and although authors used the zoom as an option for data augmentation, but 
without initial high expectations about its potential benefits, its employment has shown 
some benefits. We explain this considering that the zoom may help the network to predict 
some phenomena like stress concentration, in which the details of the connections be-
tween trusses play a relevant role, even if further studies are still needed to analyze this 
possibility and the potential generalization problems that using a zoom and other data 
augmentation strategies might generate. 

The metric mean absolute error (MAE) for the strategies is included in Table 4. MAE 
would provide a fast and easy outlook about the performance in the different scenarios. 
As it can be seen in Figure 6, the analysis of the MSE, MAE metrics revealed the increased 
power for predicting the output when 3D CNN is trained with more varied data, thanks 
to the use of data augmentation. The 6th strategy outperforms the others in all outputs 
with a global MAE of 7.057. The strategy global MAE is calculated as the average of the 
MAE for the three outputs and presented in more detail in the Appendix A. 

Table 4. Report of mean absolute error. Characterized vs predicted values for the different proper-
ties of the new lattices. Please see Appendix A for additional details, metrics and information 
about different strategies and lattices. 

Strategy Relative Porosity MAE 
Relative Elastic  

Modulus MAE 

Relative Shear  

Modulus MAE 
Strategy Global MAE  

1st strategy 39.073 26.814 13.193 26.360 

2nd strategy 18.476 18.926 9.263 15.555 

3rd strategy 17.646 20.207 5.634 14.496 

4th strategy 14.577 12.108 6.823 11.169 

5th strategy 15.496 18.713 9.289 14.500 

6th strategy 7.665 10.264 3.242 7.057 

 

 
(a) 

Materials 2021, 14, x FOR PEER REVIEW 15 of 22 
 

 

 
(b) 

Figure 6. Comparative performance of the different strategies. (a) Results from 3D CNNs training and validation according 
to the 6 detailed strategies with increasing number of input lattices (see Section 2.3). (b) Final performance, comparing the 
testing errors with those from previous training and validation processes for the different trained and validated 3D CNNs. 
Mean square errors (MSE) in % are presented. 

4. Challenges and Future Proposals 
4.1. Potentials, Limitations, and Challenges of the Study 

AI and ML techniques have intrinsic limits, including the need of large data for 
achieving desired results, the “black box” problem, issues with over fitting, interpolative 
nature, making them work adequately only for data with similar features to those used 
for training, among others, which we have tried to avoid along our research. However, 
such common AI and ML drawbacks may lead to the failure of similar learning strategies 
to those applied here, once translated to other problems in the tissue engineering field or 
in connection with the prediction of properties for mechanical metamaterials. 

Although the data set used started with a library of just 20 geometries, the employ-
ment of varied data augmentation processes proved useful for minimizing errors and 
leading to acceptable results, despite the considerable overfitting to the validation sets 
perceived. Considering the preliminary nature of the study, which aims at validating an 
innovative strategy for the AI-aided design of tissue scaffolds, we believe that the study 
may be of interest for researchers in the field and for progressing towards the AI-aided 
design of other porous materials and metamaterials. In any case, for solving related prob-
lems by applying similar methods, it would be important to count with larger data sets or 
to expand them even more for enhancing results. 

In spite of the intrinsic limitations of AI and ML techniques in general, and of the 3D 
CNNs employed here in particular, for some applications they may outperform other well 
established simulation methods. For example, FEM simulations may lead to unaffordable 
computational costs when evaluating highly complex geometries, especially when aspect 
ratios are high or when multi-scale “fractal-like” features are present, for which the use of 
AI methods may prove competitive indeed, if they were adequately trained and validated. 
Such multi-scale and fractal-like features are common in the tissue engineering field, as 
the scaffolds are normally designed to mimic the intricate geometries of nature. Apart 
from the applicability of these tools to biomechanical problems, other studies have also 

Figure 6. Comparative performance of the different strategies. (a) Results from 3D CNNs training and validation according
to the 6 detailed strategies with increasing number of input lattices (see Section 2.3). (b) Final performance, comparing the
testing errors with those from previous training and validation processes for the different trained and validated 3D CNNs.
Mean square errors (MSE) in % are presented.



Materials 2021, 14, 5278 13 of 21

The performance of the trained 3D CNNs in a real-life scenario, for predicting the
mechanical properties of new lattices added to the library, is discussed in the follow-
ing subsection.

3.2. Performance of the Structured and Trained 3D CNNs: Predictions vs. Real Performance

Once trained, the 3D CNNs are employed to predict the porosity and mechanical
performance of the new design lattices of Figure 5, whose characteristic properties are
shown in Table 3. The new lattices are sliced, following the same procedures applied
to the original library of 20 samples, and evaluated with the available 3D CNNs that
provide different porosities, compression and shear moduli as outputs. The predicted
outputs are compared with values from Table 3. This corresponds to a real-life scenario,
in which the trained networks face completely new geometries, never used previously
for training or validation, and process them to predict their properties for classification or
selection purposes.

Figure 6 schematically presents a comparative overview of the performance of the
different strategies. On the one hand, Figure 6a shows the results from 3D CNNs training
and validation according to the six detailed strategies with progressively increasing number
of input lattices (as already described in Section 2.3). On the other hand, Figure 6b shows
the final performance, comparing the testing errors with those from previous training and
validation processes for the different trained and validated 3D CNNs. In all cases, the
mean square errors (MSE, in %) are presented. Additional level of detail, for the different
structures and strategies, is in the Appendix A, which presents a complete report of the
characterized and predicted values for the different properties of the new lattice collection
used for the final testing of the global strategy, according to the explanation provided in
Section 2.4.

In agreement with the initial expectations, the training and validation errors rapidly
decay with the increase of input/output data. Besides, such decreasing trend is also seen
for the testing experiment, although the fifth strategy gives an unexpectedly high error
for the testing set, possibly due to over-fitting or over-learning during the training of such
specific 3D CNNs with the fifth strategy. In any case, although the first 3D CNN trained
and validated with a set of 20 samples leads to a high prediction error for the testing set of
20% (MSE), the 3D CNNs trained with increasing number of lattices lead to MSE values of
c.a. 9%, 6%, 4% and 1.5% for strategies 2, 3, 4 and 6 respectively. It is important to remark
that the MSEs values are calculated on scaled output.

These results are quite remarkable and are in the common range achievable by FEM
simulations upon CAD files or by mechanical testing upon manufactured samples. When
these results are compared with those from FEM simulations, it is important to note that
when geometries are too complex or involve multi-scale features, FEM simulations are
sometimes impractical or extremely demanding in terms of computational resources and
simulation time. However, for the described 3D CNNs, the computational times required
for training and validating are c.a. 0 s, 3 s, 6 s, 9 s, 13 s and 18 s for strategies 1 to 6. Once
implemented, the actual testing or prediction of porosity and mechanical properties of new
samples is almost immediate.

Regarding precision of slicing and number of images employed as input, for con-
verting the 3D geometries into a collection of sliced images, to have a sort of “digital
tomography”, we employ a 3D printing slicer for photopolymerization systems (Chitubox),
as has been explained. These types of slicers normally cut the CAD models according to
the z-axis resolution of printing machines, which typically print with vertical steps ranging
from 50 to 300 microns. We considered that a digital tomography, using a separation
between slices of 250 microns, which provides 20 images for each 5 × 5 × 5 mm3 scaffold,
would be adequate for illustrating the methodology. It is a common value, both in the 3D
printing field and in the materials science field when performing tomographies of porous
materials, as well as in medicine when exploring patients. A higher precision in the z-axis
would arguably lead to an increased precision, but it is also true that the geometric features



Materials 2021, 14, 5278 14 of 21

of the CAD models are in many cases periodic, and their details are normally larger than
500 microns, which even with 20 images per geometry leads to many repeated slices in each
sample. We consider that the selected resolution in the z axis is an adequate compromise
between precision and processing speed.

In terms of compromise between precision and speed, due to the fact that each
geometry was represented by 20 images of 1440 × 1440 pixels, which led to a large collection
of high-quality images, resizing of slices to 32 × 32 pixels is applied. We understood that
resolution would be lower, as previously mentioned, but for processing purposes this
resizing is interesting, as it reduces the number of pixels by a factor above 2000. We believe
that this is a common practice and we have followed examples from previous studies and
a library that provides this possibility. In the end, results show that the network can detect
the patterns, somehow understanding that a higher presence of white pixels is linked to
more dense and rigid structures, although precision could probably be improved by using
higher quality images for training and much larger processing times.

Furthermore, the results show an exciting point about the use of zoom for data
augmentation. Before evaluating the results, the authors assumed that the zoom could
probably adversely affect the performance of 3D CNN. Quite the opposite, the use of
zoom improves the performance of the AI demonstrating the neural network appreciate
the relation between empty and material space (black and white pixels) in each image,
and their connections with density and stiffness (whiter structures tend to be denser and
stiffer). The improvement using zoom is slight, but it can be appreciated when comparing
the errors between 2th and 3th strategies, where the unique difference is the use of data
augmentation by zoom-in. This technique allows the networks to learn from where an
image is taken (closer or further away) that is, the networks learn different features due to
the relationships between different pixels, their positioning, their colors and not by the fact
of moving away or approaching.

Interestingly, although physical properties like Young’s modulus are not scale inde-
pendent and although authors used the zoom as an option for data augmentation, but
without initial high expectations about its potential benefits, its employment has shown
some benefits. We explain this considering that the zoom may help the network to predict
some phenomena like stress concentration, in which the details of the connections between
trusses play a relevant role, even if further studies are still needed to analyze this possibility
and the potential generalization problems that using a zoom and other data augmentation
strategies might generate.

The metric mean absolute error (MAE) for the strategies is included in Table 4. MAE
would provide a fast and easy outlook about the performance in the different scenarios.
As it can be seen in Figure 6, the analysis of the MSE, MAE metrics revealed the increased
power for predicting the output when 3D CNN is trained with more varied data, thanks to
the use of data augmentation. The 6th strategy outperforms the others in all outputs with a
global MAE of 7.057. The strategy global MAE is calculated as the average of the MAE for
the three outputs and presented in more detail in the Appendix A.

Table 4. Report of mean absolute error. Characterized vs predicted values for the different properties
of the new lattices. Please see Appendix A for additional details, metrics and information about
different strategies and lattices.

Strategy Relative
Porosity MAE

Relative Elastic
Modulus MAE

Relative Shear
Modulus MAE

Strategy Global
MAE

1st strategy 39.073 26.814 13.193 26.360
2nd strategy 18.476 18.926 9.263 15.555
3rd strategy 17.646 20.207 5.634 14.496
4th strategy 14.577 12.108 6.823 11.169
5th strategy 15.496 18.713 9.289 14.500
6th strategy 7.665 10.264 3.242 7.057
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4. Challenges and Future Proposals
4.1. Potentials, Limitations, and Challenges of the Study

AI and ML techniques have intrinsic limits, including the need of large data for
achieving desired results, the “black box” problem, issues with over fitting, interpolative
nature, making them work adequately only for data with similar features to those used for
training, among others, which we have tried to avoid along our research. However, such
common AI and ML drawbacks may lead to the failure of similar learning strategies to
those applied here, once translated to other problems in the tissue engineering field or in
connection with the prediction of properties for mechanical metamaterials.

Although the data set used started with a library of just 20 geometries, the employment
of varied data augmentation processes proved useful for minimizing errors and leading
to acceptable results, despite the considerable overfitting to the validation sets perceived.
Considering the preliminary nature of the study, which aims at validating an innovative
strategy for the AI-aided design of tissue scaffolds, we believe that the study may be of
interest for researchers in the field and for progressing towards the AI-aided design of other
porous materials and metamaterials. In any case, for solving related problems by applying
similar methods, it would be important to count with larger data sets or to expand them
even more for enhancing results.

In spite of the intrinsic limitations of AI and ML techniques in general, and of the 3D
CNNs employed here in particular, for some applications they may outperform other well
established simulation methods. For example, FEM simulations may lead to unaffordable
computational costs when evaluating highly complex geometries, especially when aspect
ratios are high or when multi-scale “fractal-like” features are present, for which the use of
AI methods may prove competitive indeed, if they were adequately trained and validated.
Such multi-scale and fractal-like features are common in the tissue engineering field, as the
scaffolds are normally designed to mimic the intricate geometries of nature. Apart from
the applicability of these tools to biomechanical problems, other studies have also shown
the benefits of resorting to deep neural networks when dealing with extremely complex
simulations, as a way for achieving an attractive trade-off between cost and accuracy [39].

Ideally, the developed AI and ML tools will lead, not just to predicting porosity
and mechanical properties, but also to a better understanding of the behavior of tissue
engineering scaffolds and to more adequate AI-aided processes for the engineering of
biomaterials for regenerative medicine.

4.2. Future Research Proposals

Thinking of future research directions, in the authors’ opinion, it would be interesting
to augment the library of scaffolding materials to a larger extent, so as to obtain a truly
universal tool for supporting designers of tissue engineering scaffolds (and of mechanical
metamaterials in general). This augmentation can benefit from open-source approaches,
sharing CAD models, evaluated data and developed and trained networks among the
research community. In this way, the effort dedicated to collecting the data can be amortized
over many groups collaborating. To progress in such direction, we provide the whole
characterized and predicted data of the new lattices in the Appendix A, as a complement
to the data shown in Tables 1 and 3. The CAD models of our collection are also available
by email request, with the hope of initiating fruitful collaboration with colleagues.

In the tissue engineering field, many of the complex multi-scale geometries of porous
tissue scaffolds are a consequence of more traditional manufacturing processes that do
not follow an existing computer-aided design, as happens with 3D printing or additive
manufacturing technologies. Such traditional scaffold fabrication processes usually obtain
highly random porous structures, with biomimetic features, by phase-separation, solvent
casting, gas-assisted injection molding or foaming. In those cases, digital tomographs of
CAD files, like those used in this study, are not viable for obtaining the input images and
expanding the library. As an alternative, the use of micro-CT or micro-MRI is proposed,
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measuring upon real manufactured samples and using them as input for increasing the
versatility of the library and related 3D CNNs, constitutes another remarkable option.

Towards more holistic scaffold design strategies, apart from considering porosity
and compression and shear moduli, other properties of the designed scaffolds may prove
fundamental for a successful performance of the implantable construct. Characterizing the
geometries of the library considering properties like diffusion coefficient, pressure drop of
circulating fluid, natural frequencies of vibration, surface to volume ratio, to cite a few, and
verifying the possibility of training the 3D CNNs for predicting them, may lead to a more
complete and effective design tool. In addition, a higher degree of versatility is expectable
if grayscale images, instead of black and white slices, are employed.

Once improved, automated design procedures may be implemented and the 3D CNNs
may be used for selecting the best scaffolds according to a set of properties that should be
optimized. This may help, in the future, to reach a tool capable of autonomously designing
tissue engineering scaffolds and even mechanical metamaterials in their more general
conception, if the presented strategies are applied to other application fields.

5. Conclusions

This study has dealt with the application of 3D convolutional neural networks to the
prediction of different essential properties of tissue engineering scaffolds. The 3D CNNs
have been trained using digital tomographies obtained from the CAD models and results
from CAD measurements and FEM simulations. Their predictive performance has been
analyzed by using the trained 3D CNNs to forecast the properties of a new set of tissue
engineering scaffolds and the results using a collection of networks differently trained has
also been discussed. Although the performance is not ideal and additional research efforts
are needed, the results obtained validate an AI-based methodology for predicting the
properties of complex structures, which may be applicable when the computational cost of
other simulation methods results unaffordable. The study has dealt with the biomechanical
performance of tissue engineering scaffolds, but similar strategies may be applied to a
wide set of properties in the emergent area of metamaterials. Theoretically, these processes
can be applied to the automated design or discovery of microstructures with desired
mechanical properties, especially if the analyzed current limitations are answered and if
multidisciplinary research approaches are promoted.
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Appendix A

Table A1. Porosity, Elastic Modulus and Shear Modulus Mean Absolute Error (MAE) estimation for each training strategy.

Lattice nº

Simulated
Relative
Porosity

(%)

Predicted
Relative
Porosity

(%)

Relative
Porosity

AE

Relative
Porosity

MAE

Simulated
Rel. Elastic
Modulus

E_Relative
(%)

Predicted
Rel. Elastic
Modulus

E_Relative
(%)

Rel. Elastic
Modulus

E_Relative
AE

Rel. Elastic
Modulus

E_Relative
MAE

Simulated
Rel. Shear
Modulus

G_Relative
(%)

Predicted
Rel. Shear
Modulus

G_Relative
(%)

Rel. Shear
Modulus

G_Relative
AE

Rel. Shear
Modulus

G_Relative
MAE

1st strategy
Lattice 1 35.138 −0.569 35.706

39.073

42.645 63.123 20.478

26.814

13.755 27.629 13.874

13.193

Lattice 2 47.527 −0.750 48.277 21.503 29.878 8.374 8.988 12.163 3.175
Lattice 3 28.650 −0.559 29.209 52.309 82.533 30.224 18.775 25.614 6.839
Lattice 4 38.641 −0.780 39.421 35.758 56.540 20.782 14.793 30.589 15.796
Lattice 5 64.862 25.843 39.019 18.462 −0.074 18.536 3.126 1.489 1.637
Lattice 6 52.473 −0.764 53.237 25.252 77.633 52.381 4.658 33.474 28.816
Lattice 7 71.350 76.944 5.594 14.336 −0.072 14.408 2.118 0.077 2.041
Lattice 8 61.359 −0.763 62.123 17.785 67.116 49.331 1.143 34.510 33.367

2nd strategy
Lattice 1 35.138 12.707 22.431

18.476

42.645 62.542 19.897

18.926

13.755 24.392 10.638

9.263

Lattice 2 47.527 57.088 9.561 21.503 4.106 17.397 8.988 4.646 4.342
Lattice 3 28.650 29.877 1.226 52.309 77.738 25.429 18.775 29.877 11.102
Lattice 4 38.641 38.019 0.622 35.758 24.999 10.759 14.793 13.045 1.749
Lattice 5 64.862 49.150 15.713 18.462 19.016 0.554 3.126 7.370 4.243
Lattice 6 52.473 7.153 45.320 25.252 71.796 46.544 4.658 27.718 23.060
Lattice 7 71.350 53.194 18.155 14.336 17.750 3.414 2.118 6.110 3.992
Lattice 8 61.359 26.582 34.777 17.785 45.202 27.417 1.143 16.120 14.977
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Table A2. Porosity, Elastic Modulus and Shear Modulus Mean Absolute Error (MAE) estimation for each training strategy.

Lattice nº

Simulated
Relative
Porosity

(%)

Predicted
Relative
Porosity

(%)

Relative
Porosity

AE

Relative
Porosity

MAE

Simulated
Rel. Elastic
Modulus

E_Relative
(%)

Predicted
Rel. Elastic
Modulus

E_Relative
(%)

Rel. Elastic
Modulus

E_Relative
AE

Rel. Elastic
Modulus

E_Relative
MAE

Simulated
Rel. Shear
Modulus

G_Relative
(%)

Predicted
Rel. Shear
Modulus

G_Relative
(%)

Rel. Shear
Modulus

G_Relative
AE

Rel. Shear
Modulus

G_Relative
MAE

3rd strategy
Lattice 1 35.138 41.831 6.694

17.646

42.645 18.270 24.375

20.207

13.755 12.084 1.670

5.634

Lattice 2 47.527 91.267 43.740 21.503 −0.201 21.704 8.988 −0.187 9.175
Lattice 3 28.650 32.668 4.018 52.309 26.848 25.461 18.775 14.455 4.320
Lattice 4 38.641 89.796 51.155 35.758 −0.239 35.997 14.793 −0.160 14.954
Lattice 5 64.862 60.900 3.963 18.462 −0.137 18.599 3.126 −0.101 3.227
Lattice 6 52.473 32.554 19.919 25.252 22.132 3.120 4.658 12.956 8.298
Lattice 7 71.350 66.871 4.479 14.336 −0.185 14.521 2.118 −0.143 2.261
Lattice 8 61.359 68.560 7.201 17.785 −0.098 17.883 1.143 −0.025 1.167

4th strategy
Lattice 1 35.138 27.745 7.393

14.577

42.645 45.714 3.069

12.108

13.755 18.809 5.054

6.823

Lattice 2 47.527 86.467 38.940 21.503 0.292 21.211 8.988 −0.003 8.991
Lattice 3 28.650 17.930 10.720 52.309 60.546 8.237 18.775 24.280 5.505
Lattice 4 38.641 65.936 27.296 35.758 16.456 19.303 14.793 6.952 7.841
Lattice 5 64.862 61.508 3.354 18.462 22.591 4.130 3.126 7.012 3.886
Lattice 6 52.473 26.997 25.476 25.252 55.402 30.150 4.658 20.239 15.581
Lattice 7 71.350 68.602 2.748 14.336 21.723 7.387 2.118 4.622 2.503
Lattice 8 61.359 62.052 0.693 17.785 21.164 3.378 1.143 6.365 5.222
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Table A3. Porosity, Elastic Modulus and Shear Modulus Mean Absolute Error (MAE) estimation for each training strategy.

Lattice nº

Simulated
Relative
Porosity

(%)

Predicted
Relative
Porosity

(%)

Relative
Porosity

AE

Relative
Porosity

MAE

Simulated
Rel. Elastic
Modulus

E_Relative
(%)

Predicted
Rel. Elastic
Modulus

E_Relative
(%)

Rel. Elastic
Modulus

E_Relative
AE

Rel. Elastic
Modulus

E_Relative
MAE

Simulated
Rel. Shear
Modulus

G_Relative
(%)

Predicted
Rel. Shear
Modulus

G_Relative
(%)

Rel. Shear
Modulus

G_Relative
AE

Rel. Shear
Modulus

G_Relative
MAE

5th strategy
Lattice 1 35.138 35.598 0.460

15.496

42.645 42.575 0.070

18.713

13.755 13.167 0.588

9.289

Lattice 2 47.527 47.341 0.187 21.503 29.543 8.040 8.988 17.428 8.440
Lattice 3 28.650 33.927 5.276 52.309 43.521 8.789 18.775 14.347 4.428
Lattice 4 38.641 31.366 7.275 35.758 43.336 7.578 14.793 22.453 7.660
Lattice 5 64.862 44.621 20.242 18.462 35.414 16.952 3.126 7.862 4.736
Lattice 6 52.473 21.655 30.818 25.252 67.866 42.614 4.658 25.450 20.793
Lattice 7 71.350 47.203 24.147 14.336 36.286 21.950 2.118 7.237 5.118
Lattice 8 61.359 25.800 35.559 17.785 61.499 43.714 1.143 23.696 22.553

6th strategy
Lattice 1 35.138 24.881 10.257

7.665

42.645 33.416 9.229

10.264

13.755 18.620 4.865

3.242

Lattice 2 47.527 57.971 10.444 21.503 18.641 2.862 8.988 7.243 1.745
Lattice 3 28.650 24.990 3.660 52.309 33.358 18.951 18.775 18.512 0.263
Lattice 4 38.641 36.310 2.331 35.758 26.531 9.227 14.793 14.152 0.641
Lattice 5 64.862 62.012 2.850 18.462 5.179 13.283 3.126 3.943 0.817
Lattice 6 52.473 34.515 17.957 25.252 25.039 0.213 4.658 13.551 8.893
Lattice 7 71.350 79.106 7.756 14.336 3.789 10.547 2.118 0.402 1.717
Lattice 8 61.359 67.421 6.062 17.785 −0.013 17.799 1.143 8.139 6.997
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