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The respiratory chain in the inner mitochondrial mem-
brane contains three large multi-enzyme complexes that
together establish the proton gradient for ATP synthesis,
and assemble into a supercomplex. A 19-A 3D map of the
1.7-MDa amphipol-solubilized supercomplex IL,IILIV,
from bovine heart obtained by single-particle electron
cryo-microscopy reveals an amphipol belt replacing the
membrane lipid bilayer. A precise fit of the X-ray struc-
tures of complex I, the complex III dimer, and monomeric
complex IV indicates distances of 13nm between
the ubiquinol-binding sites of complexes I and III, and of
10-11 nm between the cytochrome c binding sites of com-
plexes III and IV. The arrangement of respiratory chain
complexes suggests two possible pathways for efficient
electron transfer through the supercomplex, of which
the shorter branch through the complex III monomer
proximal to complex I may be preferred.
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Introduction

Mitochondria are the sites of oxidative phosphorylation and
produce most of the ATP in animal cells. Their inner mem-
brane contains the five large enzyme complexes of the
respiratory chain, namely complex I (NADH dehydrogenase),
complex II (succinate dehydrogenase), complex III (cyto-
chrome ¢ reductase/cytochrome bc; complex), complex IV
(cytochrome c oxidase), and complex V (mitochondrial F;F,
ATP synthase). Complexes I, III, and IV use the energy
released in electron transfer reactions to pump protons out
of the matrix across the inner membrane. The resulting
proton gradient powers the synthesis of ATP by complex V
(ATP synthase). Electrons are shuttled between the large
electron transport complexes by the small, lipid-soluble
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electron carrier ubiquinol and by cytochrome ¢, a 12-kDa
soluble electron carrier protein.

The mechanisms of the electron and proton transfer reac-
tions in the individual complexes have been studied intensely
for decades, and X-ray structures of the three mitochondrial
proton pumps have been determined. The 2.8-A resolution
structure of dimeric complex IV from bovine heart mitochon-
dria (Tsukihara et al, 1996) and a 6-A map of complex I from
Yarrowia lipolytica (Hunte et al, 2010) have been reported.
Structures of the complex III dimer from chicken (Zhang et al,
1998), bovine heart (Iwata et al, 1998; Huang et al, 2005), and
yeast without (Lange et al, 2001) and with (Solmaz and Hunte,
2008) bound cytochrome c at resolutions between 2.0 and 3.7 A
are available. Yet, little is known about how these complexes
interact in the cristae membrane to perform their tasks in
electron transfer and proton translocation.

Two different models have been proposed. The random
collision model (Hackenbrock et al, 1986) states that each
complex exists as individual entities that diffuse freely in the
lipid bilayer. In this model, transfer of electrons occurs during
random and transient collision events. By contrast, the solid-
state model (Chance and Williams, 1955) assumes a higher
level of organization, such that the electron transport
complexes assemble into supercomplexes, where efficient
transfer of electrons occurs along predefined pathways. The
solid-state model gained support from the discovery of super-
complexes in bovine heart and yeast mitochondria by blue-
native polyacrylamide gel electrophoresis (BN-PAGE)
(Schdgger and Pfeiffer, 2000). A first 3D map of negatively
stained supercomplex B from bovine heart, composed of
complex I, dimeric complex III and complex IV, provided
initial insights into the arrangement of the three complexes in
the assembly (Schéfer et al, 2007), but at the limited map
resolution of 36 A they could not be positioned precisely.
Moreover, it was not certain to what extent the structure had
been distorted by dehydration and shrinkage due to
air-drying in negative stain.

Here, we report the 3D structure of mitochondrial super-
complex LILIV,, determined at 19 A resolution by electron
cryo-microscopy (cryo-EM). The 3D map of the amphipol-
solubilized supercomplex shows a well-defined, unique arrange-
ment of the three component complexes, and indicates the
pathways along which the small electron carriers ubiquinone
and cytochrome c travel to shuttle electrons between them.

Results

Isolation and purification of amphipol-solubilized
mitochondrial supercomplexes

Mitochondria were isolated from bovine heart tissue by
standard procedures (Krause et al, 2005) and supercomplexes
were solubilized with digitonin at a high detergent-to-protein
ratio of 28:1 (Schidfer et al, 2006). To increase the
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protein concentration for EM, the volume of the solubilized
fraction was reduced by a factor of ~3. This resulted in a
monodisperse solution without significant aggregation, but
the particles did not partition into the holes of holey carbon
films for cryo-EM. To overcome this problem, the detergent
was replaced by amphipol A8-35, a polyacrylate-based
carbohydrate polymer with carboxylate, octylamine, and
isopropylamine sidechains (Popot et al, 2011). The amphi-
pathic polymer interacts with the hydrophobic surface areas
of membrane proteins (Zoonens et al, 2005), keeping them
soluble in the absence of detergent.

Cryo-EM of respiratory chain supercomplex
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Amphipols have a stabilizing effect on membrane
proteins even in detergent solution, and this effect increases
significantly when the detergent is removed (Popot et al,
2011). Cyclodextrins can sequester certain detergents from
solution (de Grip et al, 1998), and we found that y-cyclodex-
trin removed digitonin from solubilized mitochondrial
membranes. Figure 1A shows that a 1:1molar ratio of
y-cyclodextrin to digitonin removed the detergent efficiently.
Without amphipols, the protein aggregated and was precipi-
tated by centrifugation. Addition of amphipol A8-35 to a final
concentration of 0.2% (w/v) together with y-cyclodextrin
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Figure 1 Purification of active mitochondrial supercomplexes in amphipol A8-35. (A) Digitonin-solubilized mitochondria were incubated with
amphipols (A) and y-cyclodextrin (y-CD) and the soluble fraction was analysed on 3-10% BN-PAGE. Proteins were stained with NBT for
complex I activity. Supercomplexes solubilized with digitonin (B, D) or amphipols (C, E) were separated in linear density gradients. Fractions
were collected from bottom to top and analysed by 3-10% BN-PAGE. NBT staining shows complex I activity (A, B); DAB staining shows
complex IV activity (D, E). The blue colour is due to Coomassie stain from BN-PAGE.
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prevented aggregation and the amphipol-solubilized super-
complex remained in solution.

Supercomplexes were separated by density gradient
centrifugation according to a published procedure (Dudkina
et al, 2005), with several modifications: digitonin was
omitted from the gradient, and the buffer was changed to
HEPES pH 7.7, to avoid aggregation of amphipols (Popot
et al, 2011). As the apparent mass of the amphipol-solubilized
supercomplexes on the gradient was lower than in digitonin,
the maximum sugar concentration was reduced to 1.3 M.
Protein complexes with molecular masses in the MDa range
migrated to positions near the lower end of the gradient, as
revealed by BN-PAGE (Figure 1). In-gel activity assays in-
dicated complex I activity in a prominent double band at high
molecular weight (Figure 1B and C). In addition, the upper
band gave complex IV activity (Figure 1D and E), indicating
that it contained supercomplex B (Schéfer et al, 2006). The
same enzymatic activities were observed in solution. Overall,
gradient purification in amphipols worked better than in
digitonin, due to larger differences in apparent molecular
mass, which resulted in improved separation in the density
gradient.

EM and image processing

Fractions containing amphipol-solubilized supercomplex B
were chosen for EM. Samples negatively stained with
uranyl acetate indicated a high density of homogenous,
well-preserved particles, of which ~5600 were selected for
initial single-particle processing. Class averages showed the
characteristic triangular and F-shaped views of supercomplex
B in negative stain (Schéfer et al, 2006) (Supplementary
Figure S1A). Other class averages were round or oval. As a
control, we analysed ~4700 digitonin-solubilized supercom-

plexes, which were less uniform but also revealed a number
of round or oval class averages (Supplementary Figure S1B).
This indicated that the rounded shapes were not primarily
due to the amphipols, but more likely to the gentler density
gradient purification protocol, whereas samples for the pre-
vious negative-stain EM study had been prepared by BN-
PAGE and electro elution (Schaéfer et al, 2006). As we did not
find significant differences between supercomplexes in am-
phipols and digitonin, we used amphipol-solubilized material
exclusively for the 3D reconstruction, considering the gen-
erally higher stability of membrane proteins in amphipols,
the better separation on density gradients, and the absence of
detergents, which facilitates cryo-EM grid preparation.

For cryo-EM, samples were vitrified in a thin layer of buffer
on continuous carbon support films. This resulted in pre-
ferred particle orientations, which facilitated sorting of sub-
populations, and enabled us to take advantage of random
conical tilt (Radermacher et al, 1987). Two images of each
area were recorded at tilt angles of 0° and —45° (Figure 2A
and B). Five characteristic views out of the final set of 150
class averages from untilted images are shown in Figure 2C.

A 3D map was generated and refined by projection match-
ing to a resolution of 19A as determined by Fourier shell
correlation at FSC=0.143 (Rosenthal and Henderson, 2003)
(Supplementary Figure S2A). Angular space is evenly
sampled, apart from preferred orientations of the supercom-
plexes on the carbon support film, which are more densely
populated (Supplementary Figure S2B). Dimensions of the
complex in the membrane plane were ~ 28 nm by 24 nm. Side
views of the volume were F-shaped, and top views were
roughly triangular, as in negative stain (Schéfer et al, 2007).
Reprojections of the final 3D map are compared with the
corresponding class averages in Figure 2D.

Figure 2 Cryo-EM and single-particle analysis. Amphipol-solubilized supercomplexes in vitrified buffer on continuous carbon support film
recorded at a tilt angle of —45° (A) or 0° (B). Scale bar, 100 nm. (C) 5 out of 150 selected class averages of untilted images filtered to 50 A after
the final round of multi-reference alignment and MSA classification (class number in upper left corner, number of particles in lower right
corner). (D) Reprojections of the final 19-A reconstruction corresponding to the class averages shown in (C).
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Docking of X-ray structures

In the 3D map of the supercomplex, the hydrophilic regions
of the three component complexes I, III, and IV were clearly
resolved at contour levels of 1.3 ¢ or above, as shown by the
map slices in Figure 3. Complex I was identified by the
characteristic shape of its matrix arm, which extends 15nm
out of the membrane (Efremov et al, 2010; Hunte et al, 2010)
(Figure 3A-G). Another broad 7-nm protrusion on this side of

Cryo-EM of respiratory chain supercomplex
T Althoff et al

the complex with a central gap and approximate twofold
symmetry had the shape and size of the matrix domains of
the cytochrome c reductase dimer (Figure 3E-G). A smaller
feature on the same side looked like the matrix domain of
cytochrome c oxidase (Figure 3G). On the opposite surface of
the complex, the volumes of the three complexes protruding
into the intermembrane space were also well resolved (Figure
3J and K). By contrast, the transmembrane regions of the

C

Figure 3 Slices through the X-ray structures fitted to the supercomplex map at two different contour levels. X-ray structures of complex I
(blue), complex IV (green), complex III (red, with Rieske proteins in orange and c; in purple), and cytochrome c (black) fitted to the cryo-EM
map, drawn at 1.3 o (light grey) and 4.3 o (dark grey). (A) Side view along the membrane, showing the position of consecutive 2.2-nm slices in
(B-L), starting from the matrix side. Shortest distances (in nm) between complexes are shown in red and distances <1.5nm are marked with

red circles. Scale bar, 10 nm.
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three complexes in the two slices between the two membrane
surfaces were less well resolved (Figure 3H and I). We
attribute this to the lower density of the membrane-em-
bedded parts of the component complexes, which at this
resolution would be at an intermediate value between that of
soluble protein (1.36 g/ml; Kiihlbrandt, 1982) and the hydro-
phobic membrane interior (estimated at ~0.9g/ml). The
membrane regions thus scatter electrons less strongly than
the extramembraneous regions, and therefore areas occupied
by protein or lipid are less distinct in this part of the map.
The X-ray structures of the three individual respiratory
chain complexes were docked manually into the 19-A map
(Figures 3 and 4B and C). As known structures can be fitted
to 3D maps to within ~10% of the map resolution
(Rossmann, 2000), we estimate the positional accuracy of
our fits to be about 2 A. Using the gap between the matrix
domains of the complex III dimer as a guide (Figure 4D),
bovine complex III (PDB 1PP9; Huang et al, 2005) was fitted
into the 7-nm protrusion. The twofold axis of the complex III
dimer was oriented perpendicular to the membrane plane,
and the fit was optimized by moving and rotating the
structure along and around this axis. The peripheral subunit
11, which is easily lost during purification, was supplemented

from the other structure of the bovine enzyme (PDB 1BGY;
Iwata et al, 1998) to obtain a complete set of complex III
subunits. This resulted in an excellent overall fit of the
complex III structure, with the exception of the flexible
Rieske-FeS protein domains (orange in Figures 3K and 7A).
The fitted complex III dimer served as a starting point for
positioning complexes I and IV in the map. The 6-A map of
complex I from Y. lipolytica (Hunte et al, 2010) (provided by
Carola Hunte, Universitdt Freiburg) was fitted to the clear
features of the matrix arm and on the intermembrane side in
the supercomplex map. This resulted in a very good overall fit
but left some peripheral map regions unoccupied (Figure 4B).
Presumably, these regions contain protein that is present in
the bovine complex, but not in Y. lipolytica. Indeed, the
matrix arm in the 3D map of bovine complex I in negative
stain (Clason et al, 2010) resembled our cryo-EM map closely
(Supplementary Figure S3). By contrast, the higher-resolution
X-ray structure of the matrix arm from Thermus thermophilus
(PDB 3IAM; Sazanov and Hinchliffe, 2006), which is ~50%
smaller, occupied only about half this volume. The regions
not occupied by bacterial complex I included the intermem-
brane protuberance 2 (IP2) on the intermembrane side of
the matrix arm and the distal membrane protuberance (DMP)

Figure 4 3D map and fitted X-ray structures. (A) Cryo-EM 3D map as seen from two opposite sides (left), from the matrix (top right), and the
intermembrane space (lower right). The amphipol belt is shown in red. The circle marks the gap between complex I and complex III. (B) X-ray
structures of component complexes (blue, complex I; red, complex III; green, complex IV) and cytochrome c (black) fitted to the 3D cryo-EM
map. (C) Docked X-ray structures without map. (D) Enlarged view with docked X-ray structures. Rieske domains are orange. The arrow points
to the gap between the matrix domains of complex III used for positioning the X-ray structure. MA, matrix; M, membrane; IM, intermembrane

space. Scale bars, 10 nm.
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on the distal end of the membrane arm on the matrix side
(Clason et al, 2010) (Figures 4B and 7B). Likewise, the bridge-
like structure formed by domains 5 and 6 of the matrix arm
and the proximal/central membrane protuberance (PMP/
CMP) on the membrane arm (Clason et al, 2010) was present
only in the eukaryotic enzyme.

To account for the different angle between matrix and
membrane arm in the supercomplex as compared with
T. thermophilus (PDB 3M9S; Efremov et al, 2010), the matrix
arm from T thermophilus (PDB 3IAM; Sazanov and
Hinchliffe, 2006) and the membrane arm from Escherichia
coli (PDB 3M9C; Efremov et al, 2010) were fitted separately.
The transmembrane arms of the T. thermophilus and
Y. lipolytica complex I were both similarly curved and fitted
the supercomplex map well. The membrane arm of E. coli
complex I left some of this map region unoccupied.

Complex IV (PDB 10CC; Tsukihara et al, 1996) was posi-
tioned in the supercomplex density adjacent to the complex
III dimer and the distal end of the membrane arm of complex
I. This space accommodated one complex IV monomer,
suggesting that the dimers seen in the X-ray structures
might not be required for function. Subunits IV and Va were
placed into a protruding density on the matrix side so that the
concave side of the protein, which forms the dimer interface
in 3D crystals, faced outwards (Figures 3 and 4B). The
complex IV monomer in the cryo-EM map is rotated by
~180° relative to its proposed orientation in the negative-
stain reconstruction (Schafer et al, 2007), where the concave
dimer interface faced complex III.

The amphipol belt

The fit of the three respiratory chain complexes left an
irregular, belt-shaped region of density around the perimeter
of the complex unoccupied. This belt (red in Figure 4A)
correlated closely with the hydrophobic membrane regions
of complexes I, III, and IV and accordingly was assigned to
the amphipols. The amphipol belt was on average ~2nm
thick, and ~4nm wide, similar to a lipid bilayer (le Maire
et al, 2000). It showed a number of ~3-nm protrusions,
spaced about 6-10 nm apart, mostly on the curved part of the
supercomplex perimeter, suggesting that the amphipathic
polymer was not distributed uniformly along the edge of
the membrane region. Small-angle neutron scattering has
indicated that amphipol A8-35 forms well-defined ~40kDa
nanoparticles in solution (Gohon et al, 2006). The size of the
protrusions suggests that the amphipol may locally form such
nanoparticles in the belt. Comparison of supercomplex vo-
lumes generated from two equal halves of the data set
(Supplementary Figure S4) indicates that the particles are a
distinct map feature, implying that they attach to, or form at,
the same positions in each supercomplex.

Protein-protein contacts

There were only a few sites where neighbouring complexes
came to within ~1nm between a-carbons, close enough for
ion bridges or hydrogen bonds. Three such sites of potentially
strong protein-protein interaction were found between com-
plexes III and IV, two of them on the matrix side, about 2 nm
above the membrane surface or at the level of the lipid head
groups (Figure 3G and H), and one in the lipid boundary
region on the intermembrane side (Figure 3J). The shortest
distances between complex I and complexes III and IV

©2011 European Molecular Biology Organization
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appeared longer (~2nm) due to the lack of atomic detail in
the complex I map but were found at roughly the same levels.
No protein-protein contacts were observed within the hydro-
phobic membrane core (Figure 3I). The hydrophilic protein-
protein contacts thus may act as spacers, keeping the com-
plexes in the membrane 2-5nm apart.

The supercomplex contains cytochrome c, ubiquinol,
and cardiolipin

After fitting the structures of the three major membrane
protein complexes, further inspection of the 3D map revealed
a density on the exterior surface of complex III, below one of
its two cytochrome c binding sites. The X-ray structure of the
yeast complex III dimer with one bound cytochrome c fitted
well to the map of the bovine supercomplex, such that
cytochrome ¢ occupied this density and only protruded
slightly beyond the map surface (Figures 3L and 4D). This
suggested an at least partial occupancy of one of the two
cytochrome c binding sites in the supercomplex. The other
cytochrome c binding site in the complex III dimer appeared
to be empty, as in the X-ray structure (Solmaz and Hunte,
2008). Indeed, analysis of the isolated supercomplex by SDS-
PAGE and western blot (Figure 5A) revealed cytochrome c in
fractions containing most of the supercomplex I;IILIV;,
indicating that it remained bound throughout the purification
procedure, and was consequently present in the supercom-
plex imaged by cryo-EM.

Thin-layer chromatography of an organic extract of gradi-
ent purified material revealed significant amounts of bound
phospholipids. Cardiolipin was enriched in the supercom-
plex, compared with bovine heart total lipid (Figure SB).
HPLC of this extract indicated that each supercomplex con-
tained at least one molecule of ubiquinol (Figure 5C).

Position and orientation of substrate binding sites
The ubiquinol-binding site of complex I is located in a pocket
formed by the PSST and 49-kDa subunits at the hinge
between the matrix and the membrane arms, close to the
first FeS-cluster ~20-25A above the membrane surface
(Efremov et al, 2010) (Figure 6). The complex III dimer has
two ubiquinol-binding sites per monomer in the transmem-
brane region of cytochrome b (Huang et al, 2005). The site
near the matrix side is thought to participate mainly in the Q
cycle, while the other is thought to bind reduced ubiquinol
(Trumpower, 1990). One of the complex III monomers faces
the lipid bilayer, while the other is surrounded by complex I.
The shortest distance between the site binding reduced
ubiquinol and the site of ubiquinol reduction on complex I
was 11.6 nm. Given that this shortest connection would run
partly through the aqueous medium, a ~13-nm trajectory
through the membrane as shown in Figure 6C is more likely.
The two cytochrome c binding sites on the complex III
dimer are located on the ¢; subunits in the intermembrane
space (Solmaz and Hunte, 2008) (Figure 6). In the super-
complex, one of these sites is occupied (Figures 3L and 6A
and I). The presumed cytochrome c binding site on complex
IV is on the exterior membrane surface near the two Cu
atoms coordinated by subunit II (Tsukihara et al, 1996). The
distances from this site to the two sites on complex III are
~10nm and ~ 11 nm, respectively. The cytochrome c binding
site on complex IV is a shallow cavity lined by negative
charges, facing the similarly shaped binding sites on complex
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Figure 5 The supercomplex contains cytochrome c, ubiquinol, and cardiolipin. (A) Western blot showing the presence of cytochrome c in
the supercomplex. Amphipol-solubilized supercomplex was purified by density gradient centrifugation and fractions were analysed by 15%
SDS-PAGE and western blot with an anti-cytochrome c¢ antibody. Cytochrome c¢ runs at ~15kDa. (B) Lipid extracts from two different
supercomplex preparations (lanes 1 and 2) and purified lipid standards (lanes 3-5). The supercomplex contains phosphatidyl choline (PC),
phosphatidyl ethanolamine (PE), and cardiolipin (CL), which is enriched compared with bovine heart polar lipid extract (BHPL, lane 6).
(C) Ubiquinol was quantified by HPLC and comparison to Q;o standards. Each supercomplex contains at least 1 molecule of ubiquinol.

III, which are also predominantly negatively charged
(Figure 6J). This arrangement would make it easy for the
small, globular, partly positively charged cytochrome c to
pass from one complex to the other like a ball between two
cupped hands.

Discussion

Structure determination of membrane protein supercom-
plexes is a major challenge. With the small quantities
that can typically be isolated, 2D or 3D crystallization is
not an option. We therefore determined the structure of
mitochondrial supercomplex I;II,IV; by single-particle
cryo-EM, using samples kept in solution by amphipols
instead of detergent.

Amphipol-solubilized supercomplexes
Amphipols offer a number of advantages for membrane
protein studies. As polymeric amphiphiles, their critical
micellar concentration is negligible, and their potential to
denature sensitive membrane proteins is minimal (Popot
et al, 2011). Amphipols bind tightly to membrane proteins,
covering hydrophobic surface areas in a 1.5-2.0nm layer
(Zoonens et al, 2005; Gohon et al, 2008), similar to detergents
(le Maire et al, 2000). They are able to replace detergents
completely, while stabilizing the membrane proteins and
keeping them active and in solution so that they behave
like soluble proteins (Popot et al, 2011). Amphipols may
restrict large-scale movements of transmembrane helices,
for example in the membrane arm of complex I, and lock
the assembly in a unique conformation, which would be an
advantage for single-particle cryo-EM studies. At the same
time, they replace the detergent, which often creates pro-
blems for specimen preparation, even at low concentration.
An earlier study of complex I (Flétenmeyer et al, 2007) had
shown that amphipols are suitable for cryo-EM work of
membrane protein complexes.

The density gradients indicate that the supercomplexes
bind less amphipols than digitonin, and indeed the structural
features of the amphipol-solubilized complexes were clear

4658 The EMBO Journal VOL 30 | NO 22| 2011

and uniform in negative stain (Supplementary Figure S1A).
We decided to prepare the supercomplexes on a thin contin-
uous carbon support film. This is not often done in single-
particle cryo-EM, because the ice thickness is more difficult to
control than on holey carbon film, and the support film adds
background noise. On the other hand, the preferential orien-
tations of the complexes on the support film help in particle
selection and classification, and it is then also easier to
use the random conical tilt method. This approach has the
additional advantage that angular relationships between the
particle images are known, providing important constraints
in the initial rounds of reconstruction.

Comparison to the 3D map in negative stain

The volume of our map at a contour level of 2.5 o, which just
covers the hydrophilic protein domains, is 3.4 x 10° A3. The
combined protein mass of the bovine heart respiratory chain
complexes in the supercomplex is almost exactly 1700kDa,
corresponding to a volume of ~2.1 x10°A3. Therefore, the
protein accounts for about 60% of the map volume at this
contour level, with lipids and amphipols taking up the rest. By
comparison, the volume of the supercomplex in negative stain
(Schéfer et al, 2007) was given as representing a mass of
1700 kDa. Accordingly, the volume of the negative-stain map is
about 2.1 x10° A3, or roughly 60% of the cryo-EM map. The
fact that the volume of the negative-stain map coincides with
that of the protein in the cryo-EM map must be an accidental
result of shrinkage and air-drying, which happened to cancel
out the volume contributions of the lipid and detergent.

Lipid content

With only a few points of direct contact and average distances
of >2nm between complexes I, IIl, and IV (Figure 3), it is
likely that the supercomplex is held together at least partly by
lipid-protein interactions. From 2D crystals of bacteriorho-
dopsin (Grigorieff et al, 1995) and aquaporin (Hite et al,
2010), it is known that lipids can mediate strong interactions
between membrane proteins. Likewise, at least some of the
subunit contacts in the photosystem I structure (Ben-Shem
et al, 2003), which are not crystal contacts, must be lipid
mediated. It is likely that structural lipid also plays a major

©2011 European Molecular Biology Organization
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Figure 6 Substrate binding sites. X-ray structures of complex I (blue ribbon model and electron density as in Figure 3 and 4), bovine complex
III (red), IV (green), and cytochrome c (black) docked into the supercomplex map. Ubiquinol-binding sites are located between the 49-kDa and
the PSST subunits near the first FeS-cluster above the membrane in complex I and the cytochrome b subunit in complex III (orange). Views
from the membrane (A, C) and from the matrix side (B, D) with and without map. Cytochrome c¢ binding sites are located on the
intermembrane side below the c; subunit of complex III (purple) and near two Cu atoms (circle) in subunit II of complex IV (light green). View
from the intermembrane space (E, G) and side views (F, H), with and without map. Cytochrome c binding sites are circled and the shortest
cytochrome c trajectories are marked with arrows. Dashed circles mark the unoccupied distal cytochrome ¢ binding site. Surface of the
supercomplex (I) and surface charge distribution (J) on the intermembrane side of complexes IIl and IV (red, negative; blue, positive; white,
neutral). For comparison, the positively charged surface of cytochrome c is shown above. The blue ribbon diagram shows part of the complex I
membrane arm for orientation. MA, matrix; M, membrane; IM, intermembrane space. Scale bar, 10 nm.
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role in the mitochondrial supercomplexes. This is consistent
with the observation that supercomplexes can be isolated in
amounts required for structural and functional studies only
after solubilization with the very mild detergent digitonin
(Schagger and Pfeiffer, 2000). Presumably, other, more ag-
gressive detergents would remove the structural lipid and
thus cause the supercomplexes to dissociate.

If we assume that the respiratory chain supercomplex
binds 0.11 g amphipol per gram protein, as observed with
complex III (Popot et al, 2011), the total amount of bound
amphipol would be 190kDa. With an amphipol density of
0.74 Da/A® (Gohon et al, 2004), this corresponds to almost
10% of the total volume a contour level of 2.5c. The
remaining 30% of the volume (about 10°A3) is most likely
occupied by lipids. Assuming a lipid density of ~0.66 Da/A3,
the complex would contain 660kDa of lipid. The average
mass of a membrane lipid is ~750Da, or 1500Da for
cardiolipin, so that the supercomplex could contain up to
880 lipid molecules with two fatty acid tails, or up to 440
molecules of cardiolipin. Obviously, this number is strongly
dependent on the o level chosen for calculating the map
volume. For example, at a contour level of 3.3 &, which still
encompasses most of the protein density, the map volume is
2.85 x 10° A3, The protein and amphipol contributions would
be unchanged, but the lipid volume would be less than half,
accommodating roughly 400 or 200 lipid or cardiolipin mo-
lecules, respectively. The total mass for the amphipol-solubi-
lized lipid-protein supercomplex would then be in the range
of 2200-2500 kDa.

Our biochemical analysis indicated that the supercomplex
is enriched in cardiolipin (Figure 5B). It is known that bovine
complexes III and IV depend on cardiolipin for catalytic
activity (Gomez Jr and Robinson, 1999; Sedlak and Robinson,
1999), and supercomplex IIIL,IV, of Saccharomyces cerevisiae
requires this lipid for stability (Pfeiffer et al, 2003). Patients
suffering from Barth syndrome, who are deficient in cardio-
lipin synthesis, have unstable respiratory chain supercom-
plexes (McKenzie et al, 2006). A gap filled with membrane
lipid, such as cardiolipin, would facilitate the diffusion of
ubiquinol between complex I and III. Assuming a surface area
per average lipid of ~70 A? (Demel and De Kruyff, 1976), we
estimate that roughly 300 lipid molecules would fit between
complexes I, III, and IV. Presumably, the remaining lipid is
trapped by the amphipol (Gohon et al, 2008) in an annulus
around the perimeter of the supercomplex.

An interesting consequence of the high lipid content of the
supercomplex is the lower map density in the membrane
region at 19 A resolution (Figure 3H and I). The same effect is
apparent in the cryo-EM maps of a V-type ATPase (Muench
et al, 2009), and of the photosystem II supercomplex (Nield
et al, 2000) at similar resolution.

Conformational changes
The fit of the X-ray structures to the supercomplex map
revealed several rearrangements of surface loops or short
helices in all three component complexes (Figure 7). Many of
these conformational changes are likely due to crystal con-
tacts, but some of them may be functionally relevant.

In complex III, the main differences between the X-ray
structure and the supercomplex were found on the intermem-
brane side at the two Rieske-FeS domains, which both appear
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to protrude from the cryo-EM map (Figure 7A). This is
consistent with the known flexibility of the Rieske proteins,
which have to change position and orientation in order to
transfer electrons from the ubiquinol at cytochrome b to the
heme in the c¢; subunit (Zhang et al, 1998). The fitted
structure is the stigmatellin-bound form, but the Rieske
domains also protruded from the map when the uninhibited
form was used instead (not shown). The cryo-EM map is thus
an average of several different conformations, in which the
density of the Rieske proteins is spread over a larger volume,
and therefore they appear to stick out of the map.

In the supercomplex, the PMP/CMP domain of the
Y. lipolytica map projects from the cryo-EM map, indicating
a different position compared with the X-ray structure
(Figure 7B). It will be interesting to see whether this con-
spicuous domain movement is functionally relevant. The
bridge-like connection formed by the complex I domains 5/
6 on the matrix arm and the PMP/CMP on the membrane arm
appears thicker in the supercomplex than in the isolated
complex I (Clason et al, 2010) (Figure 7B; Supplementary
Figure S3). It has been suggested that conformational
changes of a horizontal helix in the membrane arm of
complex I might, by a yet unknown mechanism, couple
electron transfer and proton translocation (Efremov et al,
2010). Clason et al (2010) had speculated that the connection
between domains 5/6 and PMP/CMP, even though not es-
sential for functional coupling, could explain kinetic differ-
ences between the enzymes from Bos taurus and Y. lipolytica.
The more robust connection between domains 5/6 and PMP/
CMP in the bovine supercomplex may indicate a particularly
tight coupling between matrix and membrane arm and thus
the two functions accomplished by them in the supercom-
plex. Likewise, the structure of the matrix arm appears to be
more rigid compared with complex I in isolation, because
extensive subclassification to account for different angular
orientations of the matrix arm, as in negatively stained
complex I (Radermacher et al, 2006), was not necessary.
This may be an effect of the amphipol locking the super-
complex in a unique conformation.

Another clear difference in conformation was found on the
outward-facing surface of complex IV, where a helix of subunit
VIb sticks out of the supercomplex density (Figure 7C) but is
readily accommodated in an adjacent unoccupied, roughly
equal map volume. This helix is involved in dimer contacts
in the crystal structures of cytochrome c oxidase (Tsukihara
et al, 1996) (Figure 7D), which all show a dimer, whereas in
the single-particle EM maps the oxidase is clearly monomeric.
The dimer interface is oriented towards the exterior and would
thus be available for interaction with other membrane pro-
teins, or with other copies of complex IV. Larger assemblies
with up to four copies of complex IV have been found by gel
electrophoresis (Schdgger and Pfeiffer, 2000).

Electron transfer pathway

The fit of the three component complexes I, III,, and IV allows
us to draw conclusions on their functional interaction in the
supercomplex. Biochemical analysis of supercomplexes from
mouse mitochondria has shown that they contain both
ubiquinol and cytochrome ¢ (Acin-Perez et al, 2008).
Indeed, both are present in our supercomplex (Figure SA
and C) and one cytochrome c is found attached to its binding
site on the complex III monomer next to complex I.
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Figure 7 Conformational changes. (A) Both Rieske domains (orange) of bovine complex III protrude from the cryo-EM map. (B) View with
fitted complex I (ribbon model of bacterial complexes and 6-A electron density of Y. lipolytica 6-complex I). Arrowheads point to the DMP and
IP2 domains, which are absent in the bacterial complex. The circle marks the PMP, which is also absent in the bacterial complex and appears to
have moved from its position in the X-ray structure (curved arrow). Fit of bovine complex IV monomer (C) and dimer (D). A helix of subunit
VIb, which forms part of the dimer interface in the crystal structure, protrudes from the cryo-EM map (red circle). Scale bars, 10 nm.

In the supercomplex, the binding sites for the mobile
electron carriers are in close proximity and face each other.
Of the two complex III monomers, only one is close to the
membrane arm of complex I (Figure 3H) and its ubiquinol-
binding sites are well placed for efficient electron transfer
over the short distance of ~13nm (Figure 6C and D).
Interestingly, the complex III monomer proximal to complex
I is the one that binds cytochrome c (Figures 3L and 6A). It
has been shown that in the complex III dimer only one of the
two sites is active at a given time (Castellani et al, 2010). The
supercomplex structure thus suggests that the proximal com-
plex IIl monomer may be more active in ubiquinol oxidation,
while the distal monomer may be needed to transfer the
electron to cytochrome c via its flexible Rieske domain.

Overall, the arrangement of the three component com-
plexes, the short distances between binding sites for the small
mobile electron carriers ubiquinol and cytochrome c and the
mutual orientation of these binding sites suggest that in the
supercomplex, electrons are channelled over short distances
along predefined pathways, as postulated by the solid-state
model for the mitochondrial electron transfer chain (Chance
and Williams, 1955). The binding sites for the soluble elec-
tron carrier, cytochrome ¢, on complexes III and IV are only
~10 or ~11nm apart. Cytochrome ¢ has a diameter of
3.4nm, which means that in passing from one complex to
the other in the supercomplex, it needs to cross a gap of only
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~3 times its size (Figure 6G and J). The protein domains
protruding into the intermembrane space might limit
the lateral diffusion of cytochrome c along the membrane
surface (Figure 6I). Additionally, negatively charged cardioli-
pin head groups might help to attract cytochrome c to the
supercomplex.

The 19-A 3D cryo-EM map shows how electrons may be
shuttled along these pathways over a distance of about 40 nm
from their entry site in the matrix arm of complex I to the site
where they are finally transferred to molecular oxygen in
complex IV (Figure 8). For about half of this distance,
the electrons travel through the respiratory chain complexes.
For the remaining distance, they are carried by ubiquinol in
the membrane or by cytochrome ¢ in the intermembrane
space. Although the distance over which the electron is
carried by cytochrome c from the proximal binding site to
complex IV is longer by ~1nm compared with the distal site
(dashed in Figure 8), the overall distance from NADH to O,
along this pathway is shorter and involves fewer electron-
transfer steps. Therefore the shorter, proximal branch of the
complex III dimer may be preferred for electron transport.
The supercomplex is stable in detergent and has a well-
defined structure, which is likely to be the same as in the
mitochondrial membrane. The cryo-EM map of mitochon-
drial supercomplex I;III,IV; thus indicates that the three
electron transport complexes of the mitochondrial respiratory
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Figure 8 Electron transfer pathways in the supercomplex. Outline of the supercomplex with cofactors active in electron transport marked in
blue (FMN), purple (iron-sulphur-clusters), green (quinols/stigmatellins), red (hemes), and orange (copper atoms), seen from the membrane
(A) and from the matrix (B). Electron trajectories are marked in black. The dashed circle marks the distal cytochrome c binding site, which is
unoccupied in the supercomplex. Straight arrows in A indicate the shortest distances from the cytochrome ¢ binding sites on complex III to the
site of cytochrome c oxidation in complex IV. The shorter, proximal branch may be preferred for electron transport. MA, matrix; M, membrane;
IM, intermembrane space; UQ, ubiquinol; Cyt ¢, cytochrome c. Scale bar, 10 nm.

chain, just like the mitochondrial ATP synthase (Strauss et al,
2008; Davies et al, 2011), are organized into macromolecular
assemblies in the mitochondrial inner membrane for efficient
energy conversion.

Materials and methods

Isolation and purification of supercomplexes from bovine
heart mitochondria

Bovine heart mitochondria were prepared by differential centrifuga-
tion as described (Krause et al, 2005). Mitochondria were
solubilized with 1% (w/v) digitonin (Calbiochem, high purity) at
a detergent-to-protein ratio of 28:1 (Schafer et al, 2006). The volume
of the solubilized fraction was reduced in concentration devices
with a 100-kDa cutoff (Millipore) by a factor of ~2.8 before
purification. For detergent exchange, amphipol A8-35 was added
together with y-cyclodextrin (Fluka) and incubated at 4°C for
30min. Precipitated material was removed by centrifugation at
21.500g for 10min at 4°C in a tabletop centrifuge. Linear sugar
gradients in 10 mM KCl, 15 mM HEPES, pH 7.7 were prepared on a
BioComp Gradient Master (Coombs and Watts, 1985). In all, 2 ml of
solubilized mitochondria (~2mg mitochondrial protein) was
separated by ultracentrifugation at 150000g for 21h at 4°C in a
SW40 rotor (Beckman) according to a protocol modified from
Dudkina et al (2005). Gradients were fractionated from bottom to
top and investigated for protein content by BN-PAGE in linear
gradient gels with 3-10% polyacrylamide (Wittig et al, 2006).

Enzymatic analysis

Functionally active supercomplexes were detected by in-gel assays
for activity of NADH dehydrogenase and cytochrome c oxidase
(Kuonen et al, 1986; Grandier-Vazeille and Guerin, 1996). Briefly,
for complex I, gels were incubated in buffer containing 100 mM Tris,
pH 7.4, 768 mM glycine, 0.4% (w/v) NBT (p-nitrotetraazolium
blue), and 100puM B-NADH for 10-15min. For complex III, gels
were incubated for 12h in 50mM NaH,PO,, pH 7.4, 219 mM
sucrose, 0.5mg/ml DAB (3,3'diaminobenzidine tetrahydrochlor-
ide), 0.5mg/ml equine heart cytochrome ¢, and 20U/ml bovine
liver catalase.

SDS-PAGE and western blot

Proteins were separated in 15% SDS-PAGE (Laemmli, 1970) and
proteins were transferred to PVDF membranes (Millipore) (Towbin
et al, 1979). After blocking the membranes with 5% non-fat dry
milk in Tris-buffered saline (10 mM Tris, 150 mM NaCl, 1 mM NaNg,
pH 7.5), proteins were probed with a primary antibody directed
against cytochrome c¢ (Invitrogen #456100) and a secondary
antibody coupled with horseradish peroxidase. After each antibody
the membrane was washed with TBS. The chemiluminescence

The EMBO Journal VOL 30 | NO 22 | 2011

reaction of the antibody-conjugated horseradish peroxidase to
detect cytochrome c was started by transferring the membrane into
SuperSignal West Pico 1:1 peroxide and luminal solution (Thermo
Scientific) and the signal was detected on Amersham Hyperfilm ECL
(GE Healthcare).

Thin-layer chromatography

Lipids were extracted from 100png of purified supercomplex
by adding 7.5 volumes of methanol-chloroform (2:1), followed by
vigorous shaking for 2min. After 10min incubation at room
temperature, another 2.5 volumes of chloroform were added and
shaken for 30s, followed by 2.5 volumes of H,O and shaking for
30s. After centrifugation at 20000g in a tabletop centrifuge, the
organic phase was recovered and dried under a stream of nitrogen.
The dried extract was dissolved in chloroform and applied to a silica
gel 60 F 254 precoated HPTLC plate (Merck). 20 pg of purified lipid
standards (Avanti Polar Lipids) was loaded for comparison. The
plates were developed in chloroform/methanol/water (65/25/4) in
a saturated atmosphere and lipids were stained with iodine vapour.

HPLC analysis

The dried organic extract was dissolved in 60 pl ethanol and 20 pl
were loaded on a C30 column (3 pm, 100 x 2.1 mm?, YMC). The
sample was eluted under isocratic conditions with diisopropyl
ether/methanol (1/4, v/v) at 0.5ml/min. Absorption was mon-
itored at 275nm and compared with Q,q standards.

Electron microscopy

For EM, samples were centrifuged through ZEBA desalt columns
(Thermo Scientific) to remove the sugar. For initial analysis,
samples were adsorbed for 30s onto glow-discharged 400 mesh
copper grids coated with Formvar and carbon and negatively
stained with 1% (w/v) uranyl acetate (pH ~4). Film images were
recorded in a FEI Tecnai G2 Spirit electron microscope at 120kV
under low-dose conditions at a calibrated magnification of
x 42 600. For cryo-EM, 3 ul samples of a 0.1-0.3 mg/ml solution
of amphipol-solubilized supercomplex were adsorbed for 30's onto
glow-discharged 400 mesh copper grids coated with a continuous
carbon film and plunge-frozen in liquid ethane after blotting excess
liquid. Electron micrographs were collected on a FEI F30 Polara at
200kV under low-dose conditions at a calibrated magnification of
x 58 800 on Kodak SO-163 electron image film. For random conical
tilt, two images of the same area were taken, first at —45° or —50°
and then at 0° tilt. The nominal defocus ranged from ~500 to
~3000nm on the tilt axis. Some images were recorded at
~6000nm defocus. Negatives were developed according to the
standard protocol and digitized on a SCAI PhotoScan scanner
(Z/1 Imaging, Aalen, Germany) on an 8-bit scale at a pixel size of
7pum, corresponding to 1.19 A on the specimen. Adjacent pixels
were subsequently averaged to 2.38 A/pixel in IMAGICS.
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Data processing

Particles from negatively stained samples were picked in 128 pixel
boxes with Boxer from the EMANI1 software package (Ludtke et al,
1999) and analysed with IMAGICS (van Heel et al, 1996) (Image
Science Software GmbH).

After binning, digitized cryo-EM images were converted from
RAW format, normalized, and inverted in SPIDER (version 18.03)
(Frank et al, 1996). CTF parameters were determined with CTFTILT
1.4 (Mindell and Grigorieff, 2003). Around 10700 tilt pairs were
picked in 320 pixel boxes in JWEB and imported into SPIDER.
Effects of the CTF were corrected on the individual particles by
inverting the phases (Penczek et al, 1997), taking tilt and
astigmatism into account. Images were Fermi filtered and binned
to 4.76 A/pixel and the box size reduced to 112 pixels in SPIDER.
The untilted images were subjected to single-particle analysis.
For an optimal result, reference-free alignment and MSA with
correspondence analysis and hierarchical ascendant classification
in the first round was followed by three rounds of multi-reference
alignment in IMAGIC. After this, 16 characteristic views were
selected as references for alignment and MSA classification of the
original particles in SPIDER. The particles were subjected to a final
round of alignment to eight references in SPIDER and MSA
with hierarchical ascendant classification into 150 classes in
IMAGIC. Further image processing was performed with scripts
from the SPIDER installation package and SPIDER website
(http://www.wadsworth.org/spider_doc/spider/docs/spider.html)
that were adapted and combined according to requirements. Class
volumes were reconstructed by random conical tilt (Radermacher
et al, 1987), applying the tilt parameters of each pair, but using both
tilted and untilted views to improve the quality of the volumes and
reduce the effect of the missing cone. Class volumes were refined by
projection matching and subsequently classes with similar class
volumes were merged. To avoid merging of wrong classes, mainly
similar classes differing only slightly in their orientations were
aligned to each other and merged into a new reconstruction.
Eventually, a volume with clear structural features for the matrix
arm of complex I with its subdomains, and the matrix domains of
complex III, was chosen as the initial model. This initial model was
refined by projection matching of the whole data set with ~21400
projections and the final reconstruction was calculated with SIRT
(Penczek et al, 1992) omitting 30% of the particles with the lowest
cross-correlation coefficient. The resolution of the final map was
determined by Fourier shell correlation as 19A at FSC=0.143
(Rosenthal and Henderson, 2003) (Supplementary Figure S1A). To
agree with the handedness of the negative-stain model (Schéfer et al,
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