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Accelerated Simulation of Multi-Electrode Arrays
Using Sparse and Low-Rank Matrix Techniques

Nathan Jensen†*, Zhijie Charles Chen†, Anna Kochnev Goldstein, and Daniel Palanker

Abstract— Modeling of Multi-Electrode Arrays used in
neural stimulation can be computationally challenging
since it may involve incredibly dense circuits with millions
of interconnected resistors, representing current pathways
in an electrolyte (resistance matrix), coupled to nonlinear
circuits of the stimulating pixels themselves. Here, we
present a method for accelerating the modeling of such
circuits while minimizing the error of a simplified simula-
tion by using a sparse plus low-rank approximation of the
resistance matrix. Specifically, we prove that thresholding
of the resistance matrix elements enables its sparsifica-
tion with minimized error. This is accomplished with a
sorting algorithm implying efficient O (N log (N)) complexity.
The eigenvalue-based low-rank compensation then helps
achieve greater accuracy without adding significantly to the
problem size. Utilizing these matrix techniques, we accel-
erated the simulation of multi-electrode arrays by an order
of magnitude, reducing the computation time by about 10-
fold, while maintaining an average error of less than 0.3%
in the current injected from each electrode. We also show
a case where acceleration reaches at least 133 times with
additional error in the range of 4%, demonstrating the
ability of this algorithm to perform under extreme condi-
tions. Although the techniques presented here are used
for simulations of photovoltaic retinal prostheses, they are
also immediately applicable to any circuit involving dense
connections between nodes, and, with modifications, more
generally to any systems involving non-sparse matrices.
This approach promises significant improvements in the
efficiency of modeling the next-generation retinal implants
having thousands of pixels, enabling iterative design with
broad applicability.

I. INTRODUCTION

Retinal prostheses show promise in restoring sight to pa-
tients impaired by retinal degeneration, such as age-related
macular degeneration and retinitis pigmentosa. One such de-
vice that has shown particular success in clinical trials is the
PRIMA photovoltaic subretinal system. The current PRIMA
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implant is 2 mm × 2 mm in size, corresponding to an approx-
imately 7° field of view [1], filled with a hexagonal array of
100 µm wide pixels. The 100 µm gap between lines of a letter,
such as a Tumbling E or Landolt C (LDC), corresponds to a
visual acuity of 20/420 [2].

It has been demonstrated that grating acuity in rodents
matches the pixel size of subretinal photovoltaic implants, up
to their natural resolution limit of 28 µm [3]–[5]. It would fol-
low that to increase the resolution in patients beyond 20/420,
the size of individual pixels should be decreased (ideally up
to 5 µm for 20/20 vision); and to widen the field of view,
the implant width should be increased up to some anatomical
constraints – such as a size of the geographic atrophy in AMD
patients, retinotomy length, etc. Predicting the electric field
in electrolyte generated by smaller pixels in a larger array
requires an accurate modeling framework for such an implant.
For this purpose, the Retinal Prosthesis Simulator (RPSim) has
been developed [6].

RPSim is a platform for calculating the electric field in
tissue (an electrolytic medium) generated by a multi-electrode
array, each pixel of which may include an electric circuit [6].
It does so by coupling the power of finite element method
(FEM) physics modelling with the efficiency of SPICE-based
circuit solvers. For these respective tasks, RPSim relies on
COMSOL Multiphysics® [7] and XYCE, a SPICE-like circuit
solver developed by Sandia National Laboratories [8]. First,
the elementary field of an electrode and resistance of the
medium between the electrodes are calculated with FEM, and
then the results are used to build an accurate circuit model,
which includes all pixels coupled to a common electrolyte
via their electrodes. The circuit model provides the dynamics
of an electric current in each pixel, which is then used to
calculate the resulting electric field in the medium as a sum
of the elementary fields from each electrode, weighted by its
respective current.

With the modeling performed in RPSim, the number of
computations increases quadratically with the number of pixels
on such a photovoltaic array due to a cross-coupling between
each electrode in the model. The number of electrodes depends
on both the pixel size and the implant dimensions. For
example, with 20 µm pixels on a 3 mm wide implant, the
number of pixels exceeds 20,000 and the number of resistors
in a mesh representing the electrolyte exceeds 4 × 108. As
pixels get smaller, and the implant – larger, computations
quickly become unattainably long, and require an incredibly
large operating memory, which prevents efficient modelling of
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the next-generation implants.
As mentioned, to solve the circuit dynamics involved in

a neurostimulating array, RPSim relies on the circuit solver
Xyce [6], [8]. One would be hard pressed to develop a tool
that can outperform such a mature and proven simulator,
capable of handling millions of circuit elements. However,
these solvers have been developed using a node-based ap-
proach and optimized under the assumption that the matrix
between adjacent nodes is sparse. This assumption breaks
down for mutually coupled multi-electrode arrays that suffer
from an extremely dense conductance matrix. To help, one can
find a sparse matrix approximation, but the error introduced
by such a technique can be very large. We can, however,
reduce this error by using low rank compensation matrices.
To the author’s knowledge, circuit solvers, such as Xyce,
have no such built-in methods to increase their computational
efficiency. Instead, for such large-scale problems they suggest
the user rely on parallel computing and iterative methods,
such as Krylov, which require a well-designed and problem-
specific preconditioner for good performance [9]–[11]. Here,
we present a much simpler and more astute alternative to
such complicated algorithms for reducing the computational
intensity of modeling a large mesh network of photovoltaic
pixels connected via a common electrolyte. This approach is
generalizable to other massive electronic circuits coupled to
an electrolyte or another conductive medium.

II. METHODS

A. Sparse Approximation
The photovoltaic multielectrode array used in a subretinal

implant, such as PRIMA, consists of tiled hexagonal pixels,
each of which has one or more photodiodes connected between
the active and return electrodes (Fig. 1). Active electrodes are
at the center of the pixels, while return electrodes cover the
edges of each pixel, connected together over the whole mesh
[6]. These photodiodes convert near-infrared light projected
from the augmented reality glasses into electric current, which
is injected into the retina to stimulate the nearby neurons
[1]. All pixels are coupled to each other via a conductive
(electrolytic) medium, as shown in Fig. 1, and thus each affects
the electrical dynamics of all others. Consider the effects of
the pixel 2 – which we will briefly assume has a hemispherical
electrode injecting a current I2 while all other pixels remain
idle. A hemispherical electric field will form in the medium,
resulting in an elevated electric potential: ∆V ≈ (I2 ·ρ)/(2πl),
where l is the distance from the center of that electrode and ρ is
resistivity of the medium. Using this, we can characterize the
conductive medium as an ohmic resistance between the active
pixel 2 and another pixel i, which is inversely proportional to
the distance between their centers li,2

Ri,2 :=
∆Vi,2

I2
=

ρ

2πli,2

Or more generally,

Ri,j :=
∆Vi,j

Ij
≈ ρ

2πli,j
(1)

Fig. 1: Illustration of the cross-pixel potential coupling of mul-
tiple electrodes in electrolyte. The center pixel is illuminated
and injects a current I2.

For an adjacent pixel 1, l1,2 would be on the order of the
pixel width W . Additionally, for the “self-resistance” of a pixel
Rj,j = ∆Vj,j/Ij ≈ ρ/(4r), where r is the electrode radius
– following the conventional definition for access resistance
of the disk electrode [12]. Furthermore, due to linearity of
the conductive medium, when multiple pixels inject current
simultaneously, the potential rise ∆V at pixel j is simply
the sum of all the potentials calculated individually, i.e.
superposition. This formulation allows modelling the cross-
coupling of all N electrodes as a mesh network of resistors
in matrix form [3], [6].

R :=


R1,1 R1,2 · · · R1,N

R2,1 R2,2

...
. . . RN−1,N

RN,1 RN,N−1 RN,N

 (2)

By reciprocity of electromagnetism, this matrix will be sym-
metric. The size of this resistor mesh scales quadratically with
the number of pixels, and hence it scales to the fourth power
with both the implant width as well as the inverse of the pixel
size. Consequently, the computational workload of simulating
such a mesh grows accordingly for both factors. This mesh is
the primary contributing factor to the polynomial relationship
between computational complexity and the number of pixels
on an implant.

The problem of reducing the computational complexity can
be framed as finding a matrix which approximates the conduc-
tance matrix G := R−1, but is in some way computationally
lighter. For example, one may find a sparse approximation,
denoted as S. Because of the spatial dependence of Ri,j –
being inversely proportional to li,j – one intuitive method of
sparsification would be to find some threshold value for the
distance between two electrodes, such that their coupling is
so small it can be neglected, i.e. set to 0 in the conductance
matrix. However, the total number of coupled electrodes, η,
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some distance li,j away from the center electrode is roughly
proportional to li,j

η ≈ 2π · li.j
W

(3)

The variable li,j in (2) and (3) cancels out, such that
the overall contribution to the effective access resistance of
one electrode from consecutive rings of neighboring elec-
trodes is largely constant with distance. Therefore, this naı̈ve
thresholding alone can result in a very large error, which
will be addressed later. Formally, one needs to find a sparse
approximation S for the network G with no more than k non-
zero entries, such that S is positive definite and the error

E := G− S (4)

is minimized, where k is a value dependent on the compu-
tational resources available. To minimize the error, which is
expressed in matrix form here, we will minimize the spectral
energy— defined as the sum of squares of all the eigenvalues
of E, which for a symmetric matrix is equivalent to the square
of the Frobenius norm of E.∑

λ2(E) = ∥E∥2fro :=
∑
m,n

E2
m,n, (5)

where ()m,n denotes the entry in the mth row and the nth
column of a matrix. Therefore, combining (4) and (5), this
can be written as the optimization problem:

min
S

∑
λ2(G− S)

s.t. ∥S∥0 ≤ k,

S ≻ 0.

(6)

This problem has a direct solution, which does not require
iteration to solve. Let I+ be a set comprising all indices (m,n)
such that Sm,n ̸= 0, and having complementary set I− :=
{(m,n)|Sm,n = 0}. Note that∑

m,n

E2
m,n =

∑
(m,n)∈I−

E2
m,n +

∑
(m,n)∈I+

E2
m,n, (7)

and for (m,n) ∈ I−,E(m,n) = G(m,n). From this One has:∑
m,n

E2
m,n ≥

∑
(m,n)∈I−

G2
m,n, (8)

where the equality is achieved if and only if Sm,n = Gm,n

for all (m,n) ∈ I+. In this case,∑
λ2(E) =

∑
m,n

E2
m,n =

∑
(m,n)∈I−

G2
m,n. (9)

The solution to this optimization is indeed found by thresh-
olding G by it’s kth largest entries, as postulated above, and
setting all other values in G to be 0. Therefore, the solution
can be found with a sorting algorithm in time O(N log (N)).

If we define a column vector of the potential at each pixel
as V , then from multidimensional Ohm’s Law, we can use
the error in the conductance matrix, E, to define the vector
containing the error in injected current for each pixel as Ierr :=
EV . This error is therefore bounded by:

∥Ierr∥
∥I∥

=
∥EV ∥
∥GV ∥

≤ max |λ(E)|
min |λ(G)|

. (10)

Fig. 2: (a) Map of the principal component of the error
matrix E resulting from thresholding out 90% of the smallest
magnitude entries of G, the corresponding conductance matrix
for a 40 µm monopolar implant. Values are normalized by
the largest entry. (b) A Landolt C pattern with a 90 µm wide
gap projected onto the array. The red asterisk labels the pixel
whose current is plotted in Fig. 5(a).

B. Low Rank Compensation

By this metric, the maximum eigenvalue in E contributes
the most to the current error, and because of this, error might
be decreased by compensating for the specific terms in E. The
largest eigenvalue of E represents the principal component
of the error – and represents a relatively uniform current
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Fig. 3: Circuit level implementation of a rank-1 compensation to a sparse conductance matrix. The red dash arrows indicate
where each voltage-controlled current source (diamond) takes the control signal from, and the rectangle labeled λ is a resistor.

profile caused by the error of neglecting small-magnitude
couplings between distant electrodes, as was discussed. This
error is approximately the same for each electrode in the
array, albeit slightly different for electrodes closer to the edge
of the implant that have fewer close neighbors. To correct
this, a simple error-reduction technique will be introduced
and deemed general compensation since the error from these
principal components does not involve any information about
which electrodes are injecting current. This compensation is
achieved through the addition of a low rank matrix to the
sparse matrix S and having error E1:

S1 = S+
M∑

m=1

umλmu⊺
m, (11)

E1 = G− S1 = E−
M∑

m=1

umλmu⊺
m. (12)

where S1 is the resulting compensated matrix, λm is the mth
largest eigenvalue of E, and um is the corresponding eigen-
vector. M is thus the total number of desired compensation
vectors, which can be as large as the number of eigenvalues
in the error matrix E. By definition, this will be at most the
number of electrodes N . As M increases, the total error will
decrease at the cost of a larger compensation matrix. The
resulting compensation mode from the principal component
is largely uniform as thresholding removes a similar number
of interconnects for each electrode, removal of which results
in the equivalent resistance of an electrode being too high.
To rectify that, the compensation must provide additional
conductivity to the electrode. On the edges of the array, less
interconnects are removed from the matrix and thus less added
conductivity is needed. This gives rise to the pattern shown in
Fig. 2(a).

Further specific compensation terms can be added with
knowledge of the illumination patterns of interest or the
operation mode of the implant, such as if there is no forward
conduction through the diodes, which is called a current
limited regime [14]. For example, if a known pattern is
projected, resulting in an expected photocurrent in each pixel

Ipho, then the expected voltage distribution can be calculated
as v = G−1Ipho, assuming that the device operates under
current limited conditions. The corresponding current error is
w = E1v. Since v constitutes the primary voltage mode from
the pattern, w will be the primary current error. Therefore, we
can add the following specific compensation:

S2 = S1 +
1

∥v∥
wv⊺. (13)

This image-specific compensation is generalizable such that
successive low-rank compensations can be added for a variety
of illumination patterns and implant operation conditions.

C. Circuit Implementation
In RPSim, the conductance matrix is implemented as a mesh

network of resistors. With a sparse matrix, we can eliminate
some resistors from the model, and as such, implementation
involves simply replacing G with S. However, it would
be counterproductive to replace G with S1 or S2 as the
compensation terms are not sparse. They are low rank, but
SPICE based circuit solvers do not have support for low-rank
representation of matrices. Thus, maintaining computational
efficiency while introducing compensation terms requires a
means of adding a low-rank matrix to a sparse one without
sacrificing the sparsity. This can be accomplished in Xyce
through the addition of several additional nodes.

Let the rank-1 compensation matrix be wλv⊺. The implant
has N electrodes, including the active electrodes and the return
units. w = [w1, w2, · · · , wN ]

⊺ and v = [v1, v2, · · · , vN ]
⊺ are

N -dimensional vectors. For the general compensation, w = v;
for the specific compensation, λ = 1/∥v∥. One may im-
plement the compensation wλv⊺ with 2N voltage-controlled
current sources (VCCSs) and a resistor, as illustrated in Fig.
3. Each VCCS in the left group takes voltage control from an
electrode, multiplies the voltage with the corresponding entry
in v, and adds the current to a resistor λ. The voltage at the top
node of the resistor is λv⊺V . The VCCSs in the right group
then take the voltage from the top node of λ, multiply it with
w, and pull the corresponding currents from the same set of
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Fig. 4: Eigenvalues of the conductance matrix G sorted by ascending magnitudes, and those of the error matrix E by descending
magnitudes, E = G − S. The relative error is bounded by the inverse of the gap between the two spectra. (a) S is a sparse
approximation of G with K = 0.1, the parameter used for simulations in this paper. (b) The error spectrum is shown for
several values of K.

Fig. 5: Currents on the implant across time for the stimulation shown in Fig. 2, the shaded portion indicates the times when
the stimulation pattern is turned on. (a) Baseline calculated with unmodified full matrix. Maximum current injected from the
pixel shown in Fig. 2(b) (max) and the 2-norm of the currents of all pixels. (b) Relative error of the pixel shown in Fig. 2(b)
(max) and the 2-norm of the error of the currents for all pixels: for the uncompensated matrix, with general compensation,
and with image-specific compensation.

electrodes 1 to N . The coupled i− v relationship between all
electrodes is given by

I = wλv⊺V . (14)

This approach can implement a rank-1 compensation matrix
wλv⊺ in Xyce, using only 2N + 1 elements and one addi-
tional node, instead of the (N(N − 1))/2 resistors otherwise
required by the full resistor mesh. For a more formal proof
of this concept, consider a N × N sparse matrix S and a
rank-L compensation term WΛV⊺, where W and V have
dimensions of N × L, Λ is a L × L diagonal matrix, and
L ≪ N . Rather than explicitly solving a linear system with

an unknown vector variable x and a known vector b:

(S+WΛV⊺)x = b, (15)

which enjoys neither sparsity nor low-rankness, one can in-
stead solve the following system with L additional dimensions:[

S W
V⊺ −Λ−1

] [
x
y

]
=

[
b
0

]
. (16)

The augmented equation above requires{
Sx+Wy = b,

V⊺x−Λ−1y = 0.

(17a)

(17b)
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Fig. 6: (a) Simulation time for the full conductance matrix and the simplified and compensated matrix. (b) ‘Tiled C’ pattern
used in (c) and (d), ‘Landolt C’ is shown in Fig. 2(b) and ‘Full Field’ means all pixels are uniformly illuminated. (c) Error
for various patterns as a function of a simplification ratio K. (d) Simulation time as a function of K for various patterns.

Equation (17b) gives:

y = ΛV⊺x. (18)

Substituting the above y into (17a) results in (15), while the
matrix in (16) maintains its sparsity, demonstrating the validity
of such an approach.

D. Additional Considerations

Further simplifications of the circuit can be made under
certain conditions. For example, under low irradiances when
the implant operates in the current limited regime, the voltage
across the parallel diode used in a conventional model of
a photodiode will be below the threshold of forward diode
conduction. In this case, the forward current through the diode
will be negligible and we can model the diode as an open
circuit without sacrificing accuracy. This is advantageous as
diodes are the only non-linear component in the circuit and re-
moving them can significantly increase the computation speed.
This technique can be especially useful for modelling larger
photovoltaic arrays with smaller pixels at low irradiances.

However, this assumption will quickly break down at high
irradiances when the diodes begin to conduct. In the context
of subretinal implants, the maximum irradiance level before
this occurs also depends on the number of diodes in series
within a pixel, typically ranging from 1 to 3 [13].

III. RESULTS AND DISCUSSION

For demonstration purposes, a 1.5 mm implant composed
of N = 821 hexagonal 40 µm wide monopolar pixels was
modelled. For sparsification, the thresholding value k was set
in a ratiometric manner with the ratio K, such that k = ∥G∥0 ·
K. Here, K was set to 0.1, which corresponds to keeping 10%
of the initial entries of G – or a 90% reduction in size of the
resistor mesh. Recall that error is bounded by the maximum
eigenvalue of E divided by the minimum eigenvalue of G
(10), plotted in Fig. 4(a). The initial bound on the error – (10)
evaluated at the first eigenvalue in Fig. 4(a) – is about 70%.
However, this error can be dramatically improved by compen-
sating for just the first principal component of the error. In this
case, after implementing the general compensation with the
eigenvector associated with the largest eigenvalue of E (M =
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1), the error will be bounded by the second largest eigenvalue
in E, with an error of less than 7%. This demonstrates that we
can improve the bounded error by an order of magnitude by
adding a rank one compensation matrix, which corresponds to
2N + 1 circuit elements. Doing so dramatically reduced the
super-linear scaling in computational time, such that one can
choose an acceptable error and runtime. With these parameters,
the original netlist size was 13 MB, while after simplification
and compensation it decreased to 1.7 MB. It is important to
note that the error spectrum in Fig. 4 depends on the implant
geometry as well as the value of K. In some cases, more
than the first principal component must be included to achieve
an acceptable error, at the cost of adding a corresponding
number of circuit elements to the simulation, as illustrated in
Fig. 4(b). Notably, for certain values of M , choosing a lower
value of K could simultaneously decrease both the error and
the simulation time. This shows the importance of monitoring
the spectrum of G and E when selecting these parameters,
as otherwise one could select a suboptimal combination. For

Fig. 7: Error introduced in the active and return electrodes by
removing diodes from the circuit model, as a function of the
illumination irradiance, with both full field and 1-pixel wide
rectangular gratings for devices with (a) 100 µm bipolar pixels
and (b) 40 µm monopolar pixels.

larger values of M , i.e. > 13 for the ratios plotted in Fig. 4(b),
this is no longer true and a smaller value of K will always
result in a larger error.

To calculate the actual error in electric current resulting
from the thresholding and compensation described above, a
Landolt C pattern with a 90 µm wide gap shown in Fig. 2(b)
was projected at an irradiance level of 3mW/mm2, with a
pulse width of 9.8 ms, repeated at 30 Hz. The simulation was
330 ms long, enough time to allow convergence to steady state.
The simulation was ran using the unmodified conductance
matrix G, an uncompensated sparse matrix S, the sparse
matrix with general compensation S1 and the sparse matrix
with both general and image-specific compensation terms S2.
For each case, the current injection from each pixel is found
using RPSim, and then, with the unmodified (full) matrix
serving as a benchmark, the relative error was calculated for
both the 2-norm of currents from all pixels and the maximum
current from all pixels. The results are shown in Fig. 5. Over
the plotted window of the simulation, the average of the 2-
norm of the relative error for the uncompensated sparse matrix
is about 4.6%, while with the general compensation term this
is reduced to 0.65%, and with the image-specific compensation
- to 0.036%.

Additionally, to confirm the tractability of this method, the
simulation was run with M = 1 and K = 0.1 for various
implant geometries – bipolar and monopolar devices including
100, 75, 40, and 20 µm pixel sizes. The number of pixels on
these devices ranges from 205 to 2806. Bipolar devices have
both an active and return electrode on every pixel, whereas
monopolar devices have one shared return electrode along the
edge of the device [6]. This means that bipolar devices have
nearly twice as many electrodes, and therefore a 4x larger
resistance mesh compared to a monopolar implant of the same
dimensions. We can see in Fig. 6(a) that in all cases the
computation time was reduced by the expected factor of 10,
corresponding to the thresholding ratio. To enable simulation
within a reasonable timeframe for larger implants with smaller
pixels, the thresholding value can be reduced even further.

To evaluate performance of the algorithm with respect to the
thresholding ratio, two additional patterns – first a full field
illumination and second several Landolt Cs tiled on the implant
(Fig. 6(b)) - were tested on a monopolar 40 µm array, at the
same irradiance, frequency, and pulse width as the original
pattern (Landolt C with a 90 µm gap size). The normalized
root mean square (NRMS) error of the average current during
an illumination pulse, as well as the simulation time are plotted
for each pattern in Fig. 6(c) and (d), respectively. For all
patterns tested, the error is less than 1% for all K > 0.05.
Additionally, for a simplification ratio of 0.1, the average error
for the three patterns is 0.28%, with a corresponding average
reduction of the simulation time of 89.5% (9.5x faster). If
a lower error or faster simulation is desired, additional low-
rank general compensation vectors of the error matrix should
be included. The error associated with a specific thresholding
ratio will vary with the number of compensation vectors M , as
illustrated by Fig. 4(b). Additionally, because each illuminated
pixel is a current source in the circuit simulation, larger
patterns take longer to simulate – explaining the difference
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in simulation time between patterns in Fig. 6(d). For all
simulations, there are elements of computation that do not
involve the resistance mesh. As such, there is a small offset
in simulation time such that a sparsification ratio of K = 0
will still have a nonzero simulation time. Nonetheless, it is
clear from Fig. 6(d) that the computation time for this implant
grows linearly with the simplification ratio K, which confirms
the postulate that simulation speed is limited primarily by the
size of the conductance matrix.

Furthermore, to illustrate the aforementioned ability of this
algorithm to handle more extreme conditions, a larger bipolar
implant with 20 µm pixels, having 7658 electrodes, was tested
with the LDC pattern described earlier. With a netlist that itself
is over 2GB involving nearly 59 million resistors, simulation of
such a device without the techniques presented here would be
impossible without access to extreme computational resources.
With a 10x simplification slightly modified from that described
above – K = 0.1 and M = 34 – the simulation was
completed in 28.41 hours. While this capability is encouraging,
for iterative optimization of the device design, this is still
prohibitively long. For further simplification a more optimal
set of hyperparameters was found to be K = 0.025 and
M = 200. The runtime decreased an additional 34.22 times –
down to 0.83 hours. The simulation with the full conductance
matrix was not completed, but extrapolating the runtime by the
number of electrodes would predict it to be around 111 hours.
It is important to note that such extrapolation is inherently
unreliable: for example, using the same extrapolation based
on the simulations with 10 times simplified matrices predicts
a runtime of 9.33 hours – a third of the observed 28.41 hours.
Therefore, this is likely an overly conservative estimate, and
even with that, this would imply a total speedup of 133 times.
Similarly, the error with respect to the unmodified simulation
is unknown; however, when compared to the simulation using
K = 0.1 and M = 34, the norm of the average deviation in
electrode current was 3.88%.

Finally, To quantify the irradiances at which the reverse
conduction through photodiodes can be neglected, a full field
and grating patterns with 1-pixel wide bars were tested at 30
Hz with a pulse width of 9.8 ms. The average error (NRMS)
in the calculated current, as previously defined, is shown for
both the active and return electrodes as a function of irradiance
in Fig. 7. The error is introduced once there is a significant
voltage across a diode, such that it begins to conduct current.
For PRIMA bipolar pixels, there are two photodiodes in series
requiring twice the voltage before forward conduction begins.
For this reason, the error at a given irradiance is lower for these
pixels than for their monopolar counterparts. Additionally, the
nominally small inter-pixel coupling for bipolar pixels results
in close matching between the error in an active electrode and
its local return electrode. This correlation becomes much more
complicated for a monopolar design with just one global return
electrode. Therefore, in monopolar devices, while the errors
for the active and return electrodes do follow similar trends,
they still differ significantly. For such reasons, the maximum
irradiance introducing less than 1% error is dependent on the
pattern and pixel design, but in the worst case for 100 µm
PRIMA bipolar pixels this is 2.5mW/mm2, while for a

monopolar 40 µm device – it is 1.0mW/mm2.

IV. CONCLUSIONS AND IMPACT

By using a sparse approximation to the original conductance
matrix along with a low rank compensation matrix that scales
linearly with the number of pixels, we unlock the full potential
of RPSim for modelling neurostimulating arrays, including the
next generation of subretinal implants. We see that in practice,
with realistic stimulation patterns and parameters mimicking
what is used in clinical settings (letters and sparse bars), the
error resulting from this simplification is negligible - well be-
low 1%, while reducing the netlist size and computation time
by nearly 10-fold. Further reductions in computational length
are also feasible for simulations involving larger implants.
Speeding up the computation so dramatically will enable the
use of iterative optimization techniques for the design of
multi-electrode arrays operating under various conditions. This
is important as electrode design plays a crucial role in the
selectivity and efficacy of neurostimulation implants. Improper
electrode design can result in poor stimulation of neurons, low
contrast of the patterns, or the undesired stimulation of non-
target cells. Designing electrodes for selective stimulation of
cells is the key to achieving high resolution prosthetic vision,
as well as other high-fidelity electro-neural interfaces.
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