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Abstract

The G-quadruplex (GQ) is a well-studied non-canonical DNA structure formed by G-rich

sequences found at telomeres and gene promoters. Biological studies suggest that GQs

may play roles in regulating gene expression, DNA replication, and DNA repair. Small mol-

ecule ligands were shown to alter GQ structure and stability and thereby serve as novel

therapies, particularly against cancer. In this work, we investigate the interaction of a G-

rich sequence, 5’-GGGTTGGGTTGGGTTGGG-3’ (T1), with a water-soluble porphyrin, N-

methyl mesoporphyrin IX (NMM) via biophysical and X-ray crystallographic studies. UV-

vis and fluorescence titrations, as well as a Job plot, revealed a 1:1 binding stoichiometry

with an impressively tight binding constant of 30–50 μM-1 and ΔG298 of -10.3 kcal/mol.

Eight extended variants of T1 (named T2 –T9) were fully characterized and T7 was identi-

fied as a suitable candidate for crystallographic studies. We solved the crystal structures

of the T1- and T7-NMM complexes at 2.39 and 2.34 Å resolution, respectively. Both com-

plexes form a 5’-5’ dimer of parallel GQs capped by NMM at the 3’ G-quartet, supporting

the 1:1 binding stoichiometry. Our work provides invaluable details about GQ-ligand bind-

ing interactions and informs the design of novel anticancer drugs that selectively recog-

nize specific GQs and modulate their stability for therapeutic purposes.

Introduction

DNA typically exists in vivo in a well-defined, right-handed double helix. However, it can also

adopt several other secondary structures, particularly when in its single-stranded form, such as

at the end of telomeres and during replication, transcription, and DNA repair [1]. G-quadru-

plex (GQ) DNA is a well-studied non-canonical DNA structure formed by the π-π stacking of

G-quartets. Each G-quartet is formed by a planar arrangement of four guanines connected by

cyclic Hoogsteen hydrogen bonding. GQs are further stabilized by cations, notably K+, that

bind in the center between each pair of G-quartets [2]. GQs readily form in vitro, with their

thermodynamic stability in physiological buffers often rivaling that of double-stranded DNA.
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The next-generation sequencing based G4-seq strategy was used to identify >700,000

sequences with quadruplex-forming potential (QFP) in the human genome [3], notably in

telomeres, oncogene promoters, and untranslated regions of mRNA. G4-seq was recently

extended to other organisms [4]. Certain sequences with high QFP are highly conserved

between species and localize to functional genomic regions [5], suggesting an evolutionary

pressure to conserve these structures. GQs may serve a variety of essential biological func-

tions. They are strongly associated with cancer due to their inhibitory roles during replica-

tion, transcription, and DNA repair, causing DNA damage and genomic instability [6].

Bioinformatics studies suggest that 37–94% of human genes contain sequences with high

QFP near their promoter regions [7], and that oncogenes and regulatory genes are more G-

rich than housekeeping genes. Any cellular process that involves G-rich DNA in a single-

stranded form could potentially be regulated by GQs. Transient formation of GQs was dem-

onstrated even when duplex DNA structure has not been disrupted [8]. Mounting experi-

mental evidence firmly establishes GQ DNA as a viable therapeutic target for cancer

andother human diseases [6].

The DNA sequence studied in this work, 5’-(GGGTT)3GGG-3’ (T1), folds into a stable par-

allel GQ structure. It has been previously studied by us (under the name THM) [9] and Largy

et al. (under the name 222) [10]. No structural information on T1 or T1 in complex with

small-molecule ligands is available, however. Here, we investigate the interaction of T1 with N-
methyl mesoporphyrin IX (NMM, Fig 1), a water-soluble porphyrin with a distinctive central

methyl group [11]. We have demonstrated previously that NMM is highly selective for parallel

GQ topology over other DNA structures and can serve as a fluorescent probe for GQ DNA [9,

12]. Our studies also revealed that NMM greatly stabilizes T1 by 23 ± 2 ˚C at 2 eq. [9]. How-

ever, the mode and strength of T1-NMM binding has not yet been characterized.

Here we set out to investigate T1 binding to NMM via biophysical methods and X-ray

structural studies. To increase our chances for successful crystallization, we designed a vari-

ety of constructs based on the genomic context of T1. We used BLAST [13] to align T1 with

a number of genomes. The T1 sequence occurs 11 times in the human genome in seven

distinct regions across six chromosomes including within the zinc finger protein 292 gene;

on the complementary strand of the plexin A4 gene; within C-type lectin domain family 2

member A gene; carboxypeptidase M gene, fas binding factor 1 gene; and LOC107984696

non-coding RNA (S1 Table). T1 may also be involved in regulating β-secretase 2 (BACE2),

a gene implicated in Alzheimer’s disease [14]. In addition, the T1 sequence is found at posi-

tion 168,273 in the Tetrahymena thermophila genome in the telomeric region. However, it

does not represent the common telomeric motif, (GGGGTT)n (crystallographic studies on

this consensus motif are underway in our laboratory). Recently, a protein that binds parallel

telomeric GQs with Kd of 11.5 μM was discovered in T. thermophila [15], thereby providing

compelling evidence for the biological relevance of such GQ structures. Finally, the T1

sequence is found in the bacteria Neisseria meningitidis, Neisseria gonorrhoeae, the bird

pathogen Escherichia coli strain APEC O78, and repetitively in Paenibacillus [16, 17].

For crystallization studies, we designed native constructs, T2 –T6, to contain the full T1

sequence expanded by 1–3 nt in the 5’, 3’, or both directions. We designed the T7 construct

to prevent the dimerization observed in T1 by adding 5’ and 3’ thymine overhangs. Finally, we

designed two constructs (T8 and T9) to promote efficient crystal packing via the formation of

intermolecular Watson-Crick base pairs by adding cytosine and guanine at the 5’ and 3’ ends.

We choose the C-G base pair for its strong hydrogen bonding. All construct sequences are

listed in Table 1.

The importance and urgency of our work is underlined by the relative scarcity of GQ-ligand

structures. The first crystal structure of a GQ-ligand complex was determined only in 2003 [18].
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Table 1. DNA sequences studied in this work and their thermodynamic parameters in 5K buffer.

Name Sequence 50 ! 30 ε, mM-1cm-1 Tm, ˚C ΔTm, ˚C� ΔH, kcal/mol Hysteresis, ˚C Oligomerization

T1 GGGTTGGGTTGGGTTGGG 173.0 57.7 ± 0.3 - 77 ± 2 3.3 D

T2 GGGTTGGGTTGGGTTGGGGT 191.6 61.3 ± 0.4 3.6 83 ± 3 3.2 D, smeary

T3 GGGGTTGGGTTGGGTTGGGGT 201.7 58.4 ± 0.3 0.7 51.9 ± 0.9 2.5 M+D

T4 GGGGGTTGGGTTGGGTTGGGGT 211.8 60.1 ± 0.3 2.3 50.6 ± 0.8 2.2 M+D

T5 TGGGGGTTGGGTTGGGTTGGGGT 219.3 58.8 ± 0.3 1.1 50.8 ± 0.8 2.8 M

T6 TGGGGGTTGGGTTGGGTTGGGGTT 227.4 57.9 ± 0.4 0.2 53.0 ± 0.4 2.9 M

T7 TGGGTTGGGTTGGGTTGGGT 189.0 52.0 ± 0.3 -5.8 48.6 ± 0.1 2.2 M

T8 CGGGTTGGGTTGGGTTGGGG 189.6 56.4 ± 0.3 -1.3 46 ± 3 2.9 M

T9 GGGGTTGGGTTGGGTTGGGC 189.2 52.9 ± 0.3 -5.0 38.1 ± 0.5 3.1 M+D

All sequences are based on T1, with additional nucleotides indicated in bold. Melting temperature, enthalpy of unfolding, and hysteresis were determined via CD

melting experiments, while oligomerization states were determined via PAGE and AUC (M–monomer, D–dimer).

�relative to T1

https://doi.org/10.1371/journal.pone.0241513.t001

Fig 1. Structure of N-methyl mesoporphyrin IX (NMM).

https://doi.org/10.1371/journal.pone.0241513.g001
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Since then, only 38 unique X-ray and 29 NMR GQ-ligand structures have been reported in the

Protein Data Bank (PDB). These numbers were obtained by searching PDB for "G-quadruplex

Ligand", refining the search parameters by "DNA" and either "X-ray Diffraction" or "Solution

NMR", and manually examining all entries keeping those that are unique. The limited number

of the reported structures hinders drug discovery [19], which requires detailed knowledge of

molecular architectures and drug binding sites. Driven by this gap in knowledge, we deter-

mined crystal structures of T1-NMM and T7-NMM to 2.39 and 2.34 Å, respectively, as well as

characterized stoichiometry, strength, and thermodynamic parameters of the T1-NMM inter-

action. This work furthers our understanding of ligand structural features that are essential for

selective GQ binding, providing both molecular-level insights and atomic coordinates to inform

the design of GQ-targeting anticancer drugs.

Materials and methods

DNA, ligand, and buffers

Lyophilized oligonucleotides were purchased from Integrated DNA Technologies (IDT; Coral-

ville, IA) with standard desalting purification. DNA was hydrated in doubly distilled water to

1–2 mM and stored at -80˚C. Extinction coefficients for all sequences were obtained using

IDT’s OligoAnalyzer 3.1 and DNA concentration was determined from UV-vis spectra col-

lected at 95 ˚C. The full list of DNA sequences used in this work, along with their extinction

coefficients and thermodynamic parameters, can be found in Table 1. To induce GQ forma-

tion, DNA was diluted into the desired buffer, heated at 90–95˚C for 5–10 minutes, cooled

slowly to room temperature over 4 hours, and equilibrated at 4˚C overnight. NMM stock was

prepared in doubly-distilled water and its concentration was determined using an extinction

coefficient of 1.45×105 M-1cm-1 at 379 nm [20]. All biophysical experiments were performed

in 5K buffer consisting of 10 mM lithium cacodylate pH 7.2, 5 mM KCl, and 95 mM LiCl.

Crystallization trials were performed in 20K buffer consisting of 10 mM lithium cacodylate

pH 7.2 and 20 mM KCl.

UV-vis spectroscopy

All UV-vis experiments were performed on a Varian Cary 300 UV-vis spectrophotometer

equipped with a Cary temperature controller (± 0.3 ˚C error). Spectra were collected from

220–349 nm for DNA and 352–480 nm for NMM at 0.5 nm intervals with a 0.1 s averaging

time, 300 nm/min scan rate, 2 nm spectral bandwidth, and automatic baseline correction.

UV-vis titration. NMM samples were prepared in 1 cm methyl methacrylate cuvettes to

target an absorbance of ~0.5 (1000 μL of 3–4 μM NMM). DNA stock solutions were prepared

at 90–170 μM to achieve a final [DNA]/[ligand] ratio of at least 1.5. To maintain constant

NMM concentration throughout the titration, stock DNA samples contained an equivalent

amount of NMM, which was added after annealing. During the experiment, DNA was titrated

into NMM in increasing increments. The resulting samples were equilibrated for 2 min before

UV-vis spectra were collected. The titration continued until no further changes were observed

in at least three consecutive UV-vis spectra. The volume of DNA added (30–100 μL total), λmax,

and absorbance at λmax was monitored throughout the titration. Data was processed using sin-

gular value decomposition followed by direct fit as described below. Reported Ka values repre-

sent the average of at least four consistent trials.

Singular Value Decomposition (SVD). The SVD method, described by Qu and Chaires

[21], is a matrix-based method that allows for global processing of titration data using all wave-

lengths, thereby providing a strong advantage when compared to traditional fitting of data

from only one (or several) wavelengths. First, we imported the data into MATLAB as a matrix
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M consisting of the signal at each wavelength (columns) for every addition (rows). We decom-

pose this matrix into three matrices U, S, and V such that M = USVT (where T stands for trans-

pose). Matrix U consists of columns which represent the signal from each individual

component; the diagonal matrix S contains singular values that serve as weighing factors; and

matrix VT contains amplitude column vectors that indicate how much of each component is

present at every addition of DNA. DNA concentration was plotted against a vector in V to gen-

erate a binding curve. While each column in V represents the same binding event, we used the

second column to fit UV-vis titration data and the first column to fit fluorescence titration

data because they generated curves that looked most representative of a binding event.

Analysis of binding isotherms. Binding isotherms were fit to a simple DNA + ligand!
DNA-ligand complex binding model with 1:1 binding stoichiometry (see eqs. 4 and 5 in refer-

ence [21]). This method can also be used for higher stoichiometries by assuming equivalent

and independent binding sites (although this treatment is likely an oversimplification). In

such cases, the concentration of DNA binding sites was set equal to the concentration of DNA

multiplied by the appropriate stoichiometric ratio. Binding models with stoichiometries of 1:1,

2:1, and 1:2 were tested in this work. The concentration of binding sites at each addition was

used as the independent variable and the appropriate column vector from matrix V was used

as the dependent variable. NMM concentration, as experimentally determined via UV-vis, was

either kept constant or allowed to float if it provided a higher quality fit. A refined NMM con-

centration was accepted only if it deviated less than 20% from the measured value. Fitting the

data yielded the most probable binding stoichiometry and the binding constant, Ka. The cho-

sen models had the lowest stoichiometry, low Ka error (less than 20%), random residuals, and

a fit curve closely matching the data upon visual inspection. All data fitting was performed in

GraphPad Prism 4.

Thermal Difference Spectra (TDS). TDS were obtained by subtracting UV-vis scans

taken at 4 ˚C after 5 minutes of equilibration from scans taken at 95 ˚C after 10 minutes of

equilibration. In principle, the low and high temperature limits are defined by the tempera-

tures at which the DNA is (mostly) folded and unfolded, respectively. GQs have a characteris-

tic trough in their TDS spectra around ~296 nm [22].

Job plot. A Job plot is a continuous variation analysis method that allows for model-inde-

pendent determination of binding stoichiometry [23]. The method requires two UV-vis titra-

tions involving equal concentrations of DNA and ligand (~2.50 μM). In the first titration,

cuvettes containing 1 mL of NMM were placed into the sample and reference cells. DNA was

titrated into the sample cell while an identical volume of buffer was titrated into the reference

cell in increasing increments from 20 to 200 μL. In the second titration, a cuvette containing 1

mL of DNA was placed in the sample cell while a cuvette containing 1 mL of buffer was placed

in the reference cell, and equivalent volumes of NMM were titrated into both cuvettes in increas-

ing increments from 50 to 200 μL. Absorbance difference measured at the wavelengths of mini-

mum and maximum absorbance were plotted against the mole fraction of NMM. The peak or

trough in the Job plot indicates the mole fraction of NMM bound to DNA and thereby reports

on the stoichiometry of the DNA-ligand complex. The presented data reflect results from three

consistent trials.

Fluorescence (FL) titration

Fluorescence experiments were conducted on a Photon Technology International QuantaMas-

ter 40 fluorometer at 20.0 ˚C. Data were collected in the emission range of 560–720 nm with 2

nm slit widths, 0.5 nm step size, and 0.5 s integration time. The isosbestic point determined

through UV-vis titrations (391 nm for the T1-NMM complex) was used as the excitation
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wavelength. NMM in a methyl methacrylate fluorescence cuvette (~1.0 μM, 1500 μL) was

titrated with small increments of 130–190 μM DNA to target a final [DNA]/[NMM] ratio of at

least 1.5. The total volume of DNA added (40–60 μL), λmax, and intensity at λmax was moni-

tored throughout the titration. Data were analyzed in the same way as UV-vis titration data

and reported Ka values represent the average of five trials.

Circular Dichroism (CD) scans and melts

All CD experiments were conducted on an Aviv 435 circular dichroism spectrophotometer

equipped with a Peltier thermal controller (± 0.3˚C error) in 1 cm quartz cuvettes. DNA sam-

ples were annealed at ~5 μM alone or with 2–3 eq. of NMM in 5K buffer. CD scans were taken

at 20 ˚C from 220–330 nm with a 1 s averaging time, 2 nm bandwidth, and 1 nm step. Three

scans were collected first for the buffer and then for each sample in the corresponding cuvettes.

CD data were processed as described in our earlier work [24].

CD melting experiments were conducted from 25–95 ˚C with a 1 ˚C step, 1 ˚C/min temper-

ature rate, 15 s averaging time, and 5 s equilibration time. CD signal at 262 nm, the wavelength

corresponding to maximum signal in CD scans, was monitored as a function of temperature.

Melting temperatures, Tm, were determined via two methods. The first method involves taking

the first derivative of the smoothed CD signal (using a 13-point Savitzky-Golay quadratic func-

tion) and finding the temperature at the peak or trough through visual inspection (associated

with ± 0.5˚C error). The second method assumes a two-state model for DNA unfolding with

constant ΔH and can be used for fully reversible melting transitions, i.e. when melting and

cooling curves are (nearly) superimposable [25]. Hysteresis was determined as the difference

between Tm from the melting and cooling curves. Since the hysteresis never exceeded 3.3 ˚C,

all systems were considered (nearly) reversible and the reported thermodynamic data were

obtained using the two-state model. The results represent the average of 2–3 trials. All data

manipulations were performed in Origin 2019b.

Native Polyacrylamide Gel Electrophoresis (PAGE)

PAGE samples contained 40–50 μM DNA in 5K buffer and were weighted down with 7% w/v

sucrose prior to loading. Twenty percent native polyacrylamide gels were made with 5 mM

KCl and 1×Tris-Borate-EDTA. Gels were pre-migrated at 150 V for 30 min, loaded with

6–10 μL sample, and run for 120–150 min at 150 V at room temperature. A tracking dye was

used to monitor gel progress and an oligothymidylate ladder consisting of dT15, dT24, dT30,

and dT57 was used as a length marker. DNA bands were visualized using Stains-All and the

resulting gel was captured with a conventional scanner.

Analytical Ultracentrifugation (AUC)

AUC was carried out to determine the molecularity and purity of samples, as well as NMM

binding stoichiometry. Samples of T1 and T7 were prepared at 1.3–5.0 μM either alone or with

1 or 5 eq. of NMM in 5K buffer. Samples of NMM alone at concentrations matching those in

the DNA samples were used as controls. Sedimentation velocity measurements were carried

out in a Beckman Coulter ProteomeLab XL-A analytical ultracentrifuge (Beckman Coulter

Inc., Brea, CA) at 20.0˚C and 40,000 rpm in standard 2 sector cells. Two hundred scans were

collected over a 10-hour centrifugation period at either 260 nm or 380 nm. Data were analyzed

using Sedfit (www.analyticalultracentrifugation.com) [26] in the continuous c(s) mode. The

sedimentation coefficient is denoted as s. Buffer density was determined on a Mettler/Paar Cal-

culating Density Meter DMA 55A at 20.0˚C and buffer viscosity was measured on an Anton

Paar Automated Microviscometer AMVn. For the calculation of molecular weight, 0.55 mL/g
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was used for the partial specific volume. Binding of NMM to T1 and T7 was assessed by moni-

toring the appearance of an absorbance peak at 380 nm during the sedimentation run. Stoichi-

ometry was determined as described earlier [27].

Crystallography

Crystallization was achieved at room temperature using the hanging-drop vapor diffusion

method. The T1-NMM sample was prepared by annealing HPLC-purified DNA with 1 eq. of

NMM at 0.65 mM in 20K buffer. Drops were set manually at 2 μL DNA sample and 1 μL crys-

tallization condition. The original crystals grew in condition 1–31 from the HELIX screen

(Molecular Dimensions): 1.0 M sodium formate, 20% PEG 20000, and 0.05 M Bis-Tris pH 7.0.

This condition was then optimized to 0.85 M sodium formate, 17.5% PEG 20000, and 0.05 M

Bis-Tris pH 7.0. Large hexagonal crystals grew within 3 weeks to 300 μm in the largest dimen-

sion. Crystals were harvested and flash frozen in liquid nitrogen without additional

cryoprotection.

The T7-NMM sample was prepared by annealing DNA with 1 eq. of NMM at 0.65 mM in

20K buffer. Drops were set by the TTP Labtech Mosquito Crystal liquid handler equipped with

a humidity chamber at 0.1 μL DNA sample and 0.1 μL of the crystallization condition. Small

hexagonal crystals grew within three weeks to 80 μm in the largest dimension from condition

C5 of the Natrix screen (Hampton Research): 4.0 M LiCl, 0.01 M MgCl2, and 0.05 M HEPES

sodium pH 7.0. Crystals were cryoprotected in the base condition supplemented with 15% eth-

ylene glycol before being flash frozen in liquid nitrogen.

Datasets were collected at the Advanced Photon Source 24 ID-E synchrotron facility to

a maximum resolution of 2.39 Å for T1-NMM and 2.34 Å for T7-NMM. Raw diffraction

data was processed using XDS [28]. The structures were solved by molecular replacement

(MR) using PHENIX [29]. Three types of 3-quartet parallel GQ models were tested in MR:

entire GQs; GQs with only thymine(s) in the loops (with other loop nucleotides removed);

and GQ cores consisting of only G-quartets, with loops and overhangs removed. All mod-

els contained three K+ ions. In addition, we also tried MR with a single G-quartet. The

T7-NMM structure was solved using the GQ core from the structure of human telomeric

DNA in complex with NMM (PDB ID: 4FXM) [30]. The initial MR solution was improved

using PHENIX AutoBuild, and NMM was placed into the structure with PHENIX Ligand-

Fit. Extensive manual model building cycles were performed in Coot [31] followed by

PHENIX Refine. The T1-NMM structure was solved using T7 as the MR model, followed

by AutoBuild, LigandFit, and manual model building, along with continuous refinement

cycles. Data collection and refinement statistics are presented in Table 2.

The asymmetric units of both the T1-NMM and T7-NMM crystals contain two DNA

chains (A and B), each of which is bound to one NMM molecule. The two DNA chains form

a dimer in the case of T7 (i.e. A-B dimers), whereas they form dimers with symmetry-related

molecules in the case of T1 (i.e. A-A’ and B-B’ dimers). Both structures include two K+ ions

within each GQ monomer, as well as a K+ ion at the dimer interface. In the T1-NMM struc-

ture, the latter K+ is at a special position, so it was modeled at 0.5 occupancy for each mono-

mer. Due to a lack of clear electron density, the propionate groups of NMM were not built.

In the T1-NMM structure, the base for T5 and T14 in both chains and for T4 and T15 in

chain B was not built due to loop disorder. Similarly, the sugar for T5 in chain B was not built.

NMM in chain B was modeled in two different orientations each at 0.5 occupancy with the N-

Me group residing on different pyrrole nitrogens. A sodium formate molecule, present in the

crystallization condition, was built near G18 of chain B.
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In the T7-NMM structure, the base for T15 in chain A and T16 in chain B was not built

due to loop disorder. In addition, disorder at the 5’ and 3’ overhangs of both chains resulted

in poor electron density for the phosphate and base for T1 and T20, which were not built.

Structure figures were prepared in PyMOL [32] and Coot. Atomic coordinates and struc-

ture factors have been deposited in the PDB under accession numbers 6PNK (T1-NMM)

and 6P45 (T7-NMM).

Analysis of crystallographic data: G-quartet planarity, helical twist, torsional angles,

RMSD, distances, groove widths, and B-factors. G-quartet planarity, helical twist, and

DNA backbone torsional angles were calculated following the methods described in our previ-

ous work [33]. Root mean square deviation (RMSD) was calculated by aligning all the atoms

in each pairing of DNA chains from the T1-NMM and T7-NMM structures in PyMOL (with

no outlier rejection). Distances between adjacent G-quartets and between the outermost G-

quartet and NMM were calculated using the centroid of each G-quartet and of NMM (using

the atomic coordinates of the 24 atoms comprising the porphyrin ring) with an in-house

MATLAB script. Groove widths were measured in PyMOL as P-P distances, while B-factors

were calculated using the Average_b PyMOL script (PyMOL Wiki, https://pymolwiki.org/

index.php/Average_b).

Table 2. Crystallographic statistics for the T1-NMM and T7-NMM complexes.

T1-NMM T7-NMM

Resolution range (Å) 64.78–2.388 51.34–2.339

(Highest resolution shell) (2.473–2.388) (2.423–2.339)

Space group R 3 2 P 63

Unit cell dimensions

a, b, c (Å) 60.93, 60.93, 194.342 59.28, 59.28, 63.33

α, β, γ (˚) 90, 90, 120 90, 90, 120

Unique reflections 5748 (492) 5377 (498)

Redundancy 19.0 (19.0) 9.5 (6.1)

Completeness (%) 97.48 (86.90) 98.84 (92.39)

I/σ 21.4 14.9

R-merge (%) 6.7 7.8

Rwork / Rfree (%) 23.52 / 24.91 20.01 / 22.43

Number of atoms 822� 862

DNA 707 783

NMM 70 70

Water 0 4

Potassium 5 5

Sodium formate 4 0

Copies in asymmetric unit 2 2

Overall B-factor (Å2) 115.44 97.15

RMS deviations

Bond lengths (Å) 0.008 0.01

Bond angles (˚) 0.83 1.2

PDB ID 6PNK 6P45

�NMM bound to chain B was modeled in two different orientations each at 0.5 occupancy. A potassium ion rests at a

special position at the dimer interface and was modeled at 0.5 occupancy in each monomer. The total number of

atoms, 822, in T1-NMM results from counting every atom of NMM in each of the two positions (105 atoms total), as

well as an additional potassium (six total due to split occupancy of one K+).

https://doi.org/10.1371/journal.pone.0241513.t002
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Results and discussion

Biophysical characterization of constructs

Prior to crystallization, we characterized T2-T9 via TDS and CD to assess their similarity to

T1. All constructs have TDS spectra with peaks at 240 and 275 nm and the characteristic

trough at 296 nm (Fig 2A), indicating that they all form GQ structures. The GQ topology (e.g.

parallel, mixed-hybrid, antiparallel [34]) was determined via CD scans (Fig 2B). A peak at 262

nm and trough at 241 nm is observed in all CD spectra, suggesting a parallel GQ topology. The

similarity of the observed TDS and CD signatures for T1-T9 indicates that all constructs fold

into similar secondary structures.

We then investigated the purity, homogeneity, and oligomerization state of all the constructs

via PAGE (Fig 2C), as well as via AUC for T1 and T7 (Fig 3). PAGE reveals that among all con-

structs, T1 and T2 predominantly form dimers, although the streakiness of their bands likely

suggests the presence of multiple species. AUC sedimentation velocity experiment on T1 con-

firms the presence of a dimer. Specifically, AUC shows two species, a monomer at 1.2 S20,w

(6,880 Da) and 76 ± 12% dimer at 2.5 S20,w, Fig 3A. Dimer formation by T1 was also detected

earlier via size-exclusion HPLC, albeit to a lesser extent (11%), and by ESI-MS [10]. The

observed discrepancy in the amount of dimer formed by T1 could be due to the difference in

experimental conditions: we used a lower concentration of K+ (5 vs. 100 mM) and DNA (2–5

vs. 250 μM) as well as different buffer (10 mM lithium cacodylate vs. 50 mM Tris-HCl). The

rest of the constructs form monomers, with T3, T4, and T9 also having some amount of dimer.

AUC of T7 (Fig 3A) supports the presence of at least 70% monomer (1.6 S20,w, 7,500 Da),

Fig 2. Biophysical characterization of the T1–T9 constructs. (A) TDS and (B) CD scans collected at 25 ˚C. (C)

Twenty percent native PAGE gels for DNA alone (left) and annealed with 2 eq. of NMM (right). (D) Tm for the

constructs. All DNA samples were prepared in 5K buffer at ~5 μM except for the gel samples, which were prepared at

40–50 μM.

https://doi.org/10.1371/journal.pone.0241513.g002
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although some dimer (2.6 S20,w) is evident. A previous ESI-MS study further confirms the

monomeric state of T7 [10]. Finally, T3 –T6 also contain a small amount of higher order oligo-

meric species (Fig 2C). Dimer formation in T1 –T4 and T9 can be explained by the presence of

a 5’ G, which often leads to dimerization [35–37].

Fig 3. AUC analysis of T1, T7, and their complexes with NMM. AUC sedimentation velocity experiment provides

estimates of the molecular weights of molecules along with their hydrodynamic shapes. (A) Representative results of

sedimentation velocity measurements at 260 nm (monitoring DNA absorbance) for T1 and T7. At ~2 μM, T1 is a

mixture of 27% monomer and 73% dimer, while T7 is 70% monomer and 30% dimer. (B) Representative results of

sedimentation velocity measurements at 380 nm (monitoring NMM absorbance) in the absence and presence of T1

and T7. NMM alone sediments mainly as a small monomeric species with no aggregates in the size class of T1 and T7.

In the presence of T1, NMM (5 eq.) sediments bound to monomeric (65%) and dimeric (35%) T1. In the presence of

T7, NMM (5 eq.) sediments bound to a monomer only. Thus, NMM converts dimers of T1 and T7 to a monomeric

state. Average stoichiometry was determined to be 1.0 ± 0.3 for T1-NMM (two trials) and 0.9 for T7-NMM (one trial).

All samples were prepared in 5K buffer and the experiments were performed at 20˚C.

https://doi.org/10.1371/journal.pone.0241513.g003
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It is curious that despite having a 5’ G, the amount of dimer formed by T3 and T4 is small

(Fig 2C). In these sequences, the 5’ G-tract contains four or five Gs, while the rest of the G-tracts

contain three Gs, thereby likely limiting the number of possible G-quartets to three. We hypoth-

esize that the 5’ Gs in excess of those required to form three G-quartets serve as flexible over-

hangs that break the dimer. However, dimer formation remains possible if one or two Gs from

the 5’ G-tract bulge out, engaging the 5’ G in a G-quartet. In contrast, when a nucleotide other

than guanine is found at the 5’ end, no dimer formation is observed, as is the case for T5 –T8.

Next, we assessed the stability of all the constructs via CD melting studies (Fig 2D, Table 1).

In all cases, the melting transitions were nearly reversible with low hysteresis (< 3.3 ˚C). T1

melts at 57.7 ± 0.3 ˚C in the presence of 5 mM K+. Extending the T1 sequence has a mild

effect on its stability, with the largest changes in Tm being +3.6 for T2 and -5.8 ˚C for T7. Nota-

bly, all native constructs, T2 –T6, are slightly more stable than T1, likely due to stabilizing but

non-essential capping interactions. Meanwhile, addition of non-native nucleotides in T7 –T9

destabilizes the structure, likely either due to increased flexibility (if the added nucleotides do

not participate in stabilizing interactions) or disruption of the dimer. The stability of T1 and T7

under similar conditions was investigated by Largy et al. and yielded similar Tm values [10].

It is interesting to compare T8 and T9, which have identical compositions but swapped C/G

overhangs. T8 (with a 5’ C) appears to be mostly monomeric with a Tm of 56.4 ± 0.3 ˚C, while

T9 (with a 5’ G) is a mixture of monomer and dimer and displays a lower Tm of 52.9 ± 0.3 ˚C.

Thus, even the addition of seemingly unimportant overhang nucleotides affects both the oligo-

merization state and the stability of the resulting GQ, indicating that every nucleotide warrants

consideration during construct design.

Apparent van’t Hoff enthalpy values were estimated from the melting curves assuming a

two-state equilibrium (Table 1). These values are at best estimates because only T7 and T8

form homogeneous monomolecular samples according to PAGE (Fig 2C). These enthalpy val-

ues dictate the slope of the melting curves near the Tm. Dimeric T1 and T2 display significantly

higher ΔH values (~80 kcal/mol) as compared to T3-T8 (ΔH of ~50 kcal/mol) and T9 (ΔH of

38 kJ/mol). The higher enthalpies for dimeric GQs indicate that the dimers are maintained by

a multitude of bonding interactions, which is consistent with our crystallographic results (pre-

sented below).

Effect of NMM on T1-T9

NMM is a highly selective GQ binder with a clear preference for parallel GQ structures over

other DNA folds [11]. Our laboratory demonstrated that NMM stabilizes T1 by an impressive

23 ± 2 ˚C at 2 eq. [9]. However, neither the binding strength nor the binding mode were previ-

ously established. To assess the effect of NMM on T1 –T9, we performed PAGE on DNA

annealed in the presence of 2 eq. of NMM (Fig 2C). NMM increases the amount of monomeric

GQ at the expense of dimers and higher order species. AUC data for T1 and T7 corroborate this

finding, indicating that in the presence of 5 eq. of NMM, more than 65% of T1 adopts a mono-

meric state, while T7 is fully monomeric (Fig 3B). The slight upward shift in S20,w from 1.6 for

T7 to 1.9 for T7-NMM indicates that NMM binding produces a hydrodynamically more com-

pact complex with a reduced frictional coefficient, since the measured molecular weights of free

and bound T7 are only slightly different.

According to PAGE, T7 and T8 form homogeneous complexes with NMM (Fig 2C) and

are thereby good candidates for crystallographic studies. Thus, we characterized the T1-NMM,

T7-NMM, and T8-NMM complexes via TDS, CD scans, and CD melting studies. The TDS sig-

nature of these complexes, while not similar to that of classical GQ DNA, still retains a small

trough at 293 nm–indicative of a GQ fold–and displays a strong trough at 263 nm (S1A Fig).
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This somewhat unusual TDS may result from interference due to NMM’s absorbance. CD

scans in the presence of NMM show that the signature of the parallel GQ is mostly unchanged.

There is a small increase in the CD signal intensity for T7 and decrease for T1 and T8, and a

small red shift of ~2 nm for all sequences (S1B–S1D Fig). Finally, CD melting studies demon-

strate that NMM greatly stabilizes T1 by 20. ± 1˚C (consistent with our earlier work [9]), T7

by 19.9 ± 0.4 ˚C, and T8 by 17.0 ± 0.5˚C at 2 eq. (S2 Table). This stabilization is the highest

reported in the literature for GQ-NMM complexes (see our recent review [11]). NMM had lit-

tle effect on the value of ΔH (~55 kcal/mol).

Spectroscopic characterization of NMM binding to T1 and T7

We used UV-vis and fluorescence spectroscopy to determine the binding constants and ther-

modynamic parameters for T1-NMM and T7-NMM. We performed Job plots and AUC to

confirm binding stoichiometries.

Binding studies via UV-vis and fluorescence titrations. The UV-vis spectrum of NMM

displays a 17.9 ± 0.4 nm red shift, low hypochromicity of 1 ± 4%, and an isosbestic point at 391

nm upon addition of T1 (Fig 4A). The values are nearly identical for T7-NMM with a red shift

of 18.1 ± 0.5 nm, hypochromicity of -5 ± 4%, and an isosbestic point of 391 nm (S2A Fig). This

data is consistent with values reported for UV-vis titrations of NMM with a variety of predom-

inantly parallel GQs [9]. Titration data are best fit to the 1:1 binding model and yield a Ka of

30 ± 20 μM-1 for T1 (Fig 4B), signifying an impressively tight binding interaction. Binding of

T7 to NMM is weaker, with a Ka of 18 ± 7 μM-1.

Fig 4. Determination of Ka for the T1-NMM complex via UV-vis and fluorescence titrations. (A) Representative

UV-vis titration of 3.4 μM NMM with 170 μM T1 to a final [T1]/[NMM] of 4.9 at 20 ˚C. (B and D) Fit of titration data

(solid squares) to the 1:1 binding model with floating [NMM]. The 95% confidence interval is shown as dashed lines.

(C) Representative FL titration of 1.0 μM NMM with 150 μM T1 to a final [T1]/[NMM] of 6.1 at 20 ˚C.

https://doi.org/10.1371/journal.pone.0241513.g004
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NMM displays a large increase in fluorescence, the so called ‘light-switch’ effect, in the pres-

ence of GQ DNA [12, 38]. We made use of this property to corroborate the Ka for T1-NMM

determined via UV-vis titrations. Fluorescence titration data yield a 1:1 binding stoichiometry

with a Ka of 50 ± 20 μM-1 (Fig 4C and 4D). Fluorescence enhancement was found to be 49 ± 2,

which is consistent with the fluorescence enhancement of 40–70 reported for a variety of paral-

lel GQs (S3 Fig) [12]. The binding constants result in estimates of the binding free energy (ΔG

= -RTlnKa) of -10.3 and -9.9 kcal/mol for NMM binding to T1 and T7, respectively.

T1 binds to NMM in a 1:1 stoichiometry determined via Job plot and AUC. To confirm

the T1-NMM binding stoichiometry, we used the model-independent Job plot method along

with AUC. 1:1 binding in Job plot is signified by the mole fraction values close to 0.5. Our Job

plot data shown in Fig 5 clearly and unambiguously suggest 1:1 binding, as does the result

from AUC (Fig 3B), consistent with UV-vis and FL titration data.

In summary, our extensive binding studies demonstrate that NMM binds T1 with 1:1 stoi-

chiometry and an extremely tight binding constant of 30–50 μM-1. T7, with two additional ter-

minal thymines, also binds NMM with 1:1 stoichiometry, but with a lower Ka of 18 μM-1.

Characterization of the T1-NMM and T7-NMM complexes via X-ray

crystallography

Biophysical characterization of T1 –T9 indicated that all the constructs form GQ structures

with similar fold and stability to T1. We succeeded in producing diffraction quality crystals of

Fig 5. Determination of stoichiometry for the T1-NMM complex via Job plot. T1 and NMM were both prepared at

4.0 μM in 5K buffer at 20 ˚C, and the Job plot was built by plotting absorbance difference at 376 nm. Data at other

wavelengths are consistent with the data presented here.

https://doi.org/10.1371/journal.pone.0241513.g005
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T1, T7, and T8 all with NMM, and solved the structure of the T1-NMM and T7-NMM

complexes.

Buffer selection for crystallization. Buffer choice is critical for crystallization. The buffer

should provide optimal stability for the biomolecule and should have simple composition with

low ionic strength to avoid interfering with the crystallization process and overshadowing the

components of the crystallization mixture. First, we investigated the effect of potassium on the

fold and stability of T1. We conducted a CD melting study in 10 mM lithium cacodylate buffer

pH 7.2 supplemented with 5–100 mM KCl. An increase in K+ concentration led to a minor

increase in CD signal intensity at 262 nm, higher thermal stability, and higher enthalpy of

unfolding (S4 Fig). Melting of T1 was accompanied by a small hysteresis, which decreased

from 3.3 ˚C at 5 mM KCl to 1.2 ˚C at 100 mM KCl. Next, we determined the effect of ionic

strength on T1 stability by conducting the melting study in 5 mM K+ buffer in the presence

of 0 and 95 mM LiCl. T1 stability was not affected by the presence of LiCl (Tm = 56.2 ± 0.4 and

57.7 ± 0.3 ˚C in 0 and 95 mM LiCl, respectively), but the enthalpy of T1 unfolding increased

significantly from 47 ± 1 to 77 ± 2 kcal/mol. The data suggest that increased ionic strength

facilitates stronger bonding within each monomer and between the monomers in the dimer,

which otherwise repel each other due to the negatively charged DNA backbone.

Guided by the data, we chose 10 mM lithium cacodylate pH 7.2 and 20 mM KCl (20K)

buffer for crystallographic studies. This buffer strikes the balance between assuring high ther-

mal stability for T1 (Tm of 65.5 ± 0.9 ˚C) and maintaining a low ionic strength of 30 mM.

Atomic details of the T1-NMM and T7-NMM crystal structures. Both T1-NMM and

T7-NMM produced large hexagonal crystals (Fig 6A). The T1-NMM crystal structure was

solved in the R 3 2 space group to 2.39 Å. The T7-NMM crystal structure was solved in the P

63 space group to 2.34 Å and is characterized by an overall higher quality, so the subsequent

discussion will be mainly focused on this structure. In both cases, the asymmetric unit con-

tains two DNA chains, each of which binds one NMM molecule. In agreement with our bio-

physical data in solution (Fig 2B), the DNA folds into a parallel GQ in the crystalline state

(Fig 6B) with all guanines adopting anti glycosidic bond conformations, as expected for a

parallel GQ [39]. According to the GQ folding formalism [40], T1 and T7 can be classified as

a type VIII GQs with four medium grooves. The average widths of the grooves are 16.1 ± 0.1

Å for T7 and 16.4 ± 0.2 Å for T1, S3 and S4 Tables. Interestingly, the 5’ G-quartet–located at

the dimer interface–has narrower grooves than the middle and 3’ G-quartets, 15.5 ± 0.2,

16.2 ± 0.2, and 16.6 ± 0.3 Å, respectively, in T7-NMM.

The RMSD between the two chains is low, 0.919 Å for T1-NMM and 1.212 Å for T7-NMM

(S5 Table), suggesting that the monomers within the asymmetric units are nearly identical.

Furthermore, the T1 and T7 GQs are nearly identical to each other, with an average RMSD

among each pairing of DNA chains of 1.3 ± 0.4 Å. Meanwhile, RMSD for the GQ core which

consists of 12 guanines is 0.64 ± 0.02 Å, suggesting that the TT loops (particularly loops 1 and

3) are the main source of differences between the two GQ structures due to their flexibility.

T1-NMM and T7-NMM have high overall B-factors of 115.44 and 97.15 Å2, respectively

(S6 Table). The main contributors are flexible disordered loops, whose B-factors are 148.13 Å2

for T1-NMM and 128.85 Å2 for T7-NMM. T7 also contains 5’ and 3’ thymine overhangs with

an average B-factor of 151.63 Å2. The flexibility of these terminal thymines may explain the

destabilization of T7 with respect to T1 by -5.8 ˚C (Table 1).

The G-quartets are spaced by 3.4 Å (S7 Table), leading to optimal π–π base stacking interac-

tions. The average intramolecular helical twist between G-quartets within each GQ monomer

is 29 ± 4˚ for T1 and 28 ± 1˚ for T7 (S8 Table), consistent with values reported for parallel GQs

[39, 41] and calculated for the parallel Tel22-NMM structure (29 ± 1˚) [30]. The two mono-

mers are twisted with respect to each other by 116 ± 1˚, 117 ± 2˚ (S9 Table), and 120 ± 3˚, for
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T1, T7 and Tel22, respectively. The DNA backbone torsional angles are plotted in S5 Fig and

are consistent with those reported for other parallel GQ structures [39].

Both T1 and T7 GQs dimerize via their 5’ G-quartets, and the dimers are capped on both 3’

ends by NMM (Fig 6C and 6D). This arrangement is consistent with the 1:1 stoichiometry

observed in UV-vis, FL, AUC, and Job plot experiments. A similar overall arrangement of

GQs and NMM is observed in the crystal structure of human telomeric DNA, Tel22, with

NMM (PDB ID: 4FXM) [30]. The GQ dimers are stabilized by five K+ ions, all in square anti-

prismatic coordination of the carbonyl oxygen from the eight guanines in the two adjacent G-

quartets. Four K+ ions are found between G-quartets within GQ monomers, while one K+ is

found at the dimer interface. The dimer in T7-NMM is further stabilized by base stacking

between T5 and T015 of chain B (where the prime (0) notation signifies a symmetry-related mol-

ecule). There may be additional interactions between T5 of chain A and either T20 of chain B

or T015 of chain A. However, the density for these two nucleotides is poor and neither nucleo-

tide was fully built. Meanwhile, for T1-NMM, there may be stacking between T4 in chain A

and T14 in chain B, but the electron density for T14 is poor and its base was not built.

Loop arrangement in the T1-NMM and T7-NMM structures. The T1 and T7 GQs have

three propeller TT loops. One thymine in each fully built loop is tucked into the groove, while

Fig 6. Crystal structure of the T7-NMM complex. (A) Representative crystal morphologies: half-hexagonal and

hexagonal. (B) Schematic representation of the folding topology with the numbering scheme for T1. (C) Electron

density at 1.0 I/σ surrounding the T7-NMM dimer. (D) The T7-NMM crystal structure reveals a 5’-5’ GQ dimer

capped at the 3’ ends by NMM. Chain A is colored in teal, chain B is blue, the sugar-phosphate backbone is yellow, and

NMM is pink. Potassium ions are depicted as spheres.

https://doi.org/10.1371/journal.pone.0241513.g006
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the other points out toward the solvent. A similar loop is seen in the NMR structure of d

(TTGGGG)4 in Na+, which forms a three-quartet hybrid GQ with a propeller TT loop and lat-

eral GTTG and TTG loops (PDB ID: 186D) [42]. As in our case, the propeller TT loop spans

the medium groove and has one thymine tucked into the groove and another oriented into the

solvent. The TT loop in the X-ray structure of a parallel GQ called TTLOOP

(dGGGTGGGTGGGTTGGGTTAGCGTTA, loops underlined; PDB ID: 5DWW) has both Ts

pointing into the solvent. One of those thymines forms intermolecular contacts with a single

nucleotide T loop [43].

Atomic details of the interaction between T1 or T7 GQ and NMM. The central N-Me

group of NMM in both T1- and T7-NMM is not well resolved, although there is some electron

density for it. The propionic acid side chains of NMM are not visible and were not modeled;

they were not visible in the Tel22-NMM structure (PDB ID: 4FXM), which was solved at a

much higher resolution of 1.65 Å [30]. The lack of electron density even in the high-quality

crystal structure signifies high flexibility of the propionic acid side chains and low likelihood of

their engagement in the hydrogen bonding or ionic interaction with the GQ. The macrocycle

of NMM is clearly defined.

NMM binds to the 3’ G-quartet at a distance of 3.6 Å in T1-NMM, T7-NMM (S7 Table),

and Tel22-NMM [30] structures. The distance was measured between the centroids of NMM

and the 3’ G-quartet. This distance is slightly longer than the optimal π-π stacking distance of

3.4 Å. The longer calculated distance may be partially due to the asymmetric distortion of

NMM (N-Me bearing pyrrole ring carries most of the distortion in this molecule), which may

skew the centroid used to calculate the distance. Nearly planar GQ ligands are typically located

3.2–3.6 Å from the terminal G-quartet. Examples include (PDB IDs in parentheses) berberine

(3R6R [44]), acridines (3NZ7 [45], 1L1H [46], and 3EM2 [47]), daunomycin (3TVB [48]), sal-

phen metal complexes (3QSC and 3QSF [49]), a ruthenium polypyridyl complex (5LS8 [50]),

a dicarbene gold complex (5CCW [51]), and naphthalene diimides (3SC8 and 3T5E [52]).

The G-quartets become increasingly non-planar when moving away from the 5’-5’ dimer

interface. In this order, the out-of-plane deviations for the G-quartets in T7 are 0.39 ± 0.06,

0.97 ± 0.02, and 2.06 ± 0.06 Å. These numbers are similar to those determined for the

Tel22-NMM structure (Table 3). Considering the significant non-planarity of the 3’ termi-

nal G-tetrad, we conclude that planar ligands may not be the best binding partners for paral-

lel GQs. Indeed, we showed that the planar analogue of NMM, mesoporphyrin IX, does not

bind Tel22 [9]. Instead, the non-planar terminal G-quartets in parallel GQs may bind opti-

mally to somewhat distorted ligands like NMM. While the electron density for NMM in the

T1-NMM and T7-NMM structures is not resolved enough to reliably calculate its overall

non-planar deformation, NMM is known to be non-planar in its structure with Tel22 [30]

and with the Bacillus subtilis wild type [53] and mutant [54] ferrochelatases.

In addition to stacking onto the 3’ G-quartet, NMM interacts with T10 from an adjacent

DNA chain (Fig 7A and 7B for T7-NMM and S6 Fig for T1-NMM). This interaction leads to

an interesting intermolecular assembly (Fig 7C and S6B Fig) that can explain the resulting

space group (P 63 for T7-NMM and R 3 2 for T1-NMM) and the hexagonal shape of crystals

(Fig 6A). For comparison, in the Tel22-NMM structure, NMM interacts with a 3’ G-quartet

on one face and an A’-T Watson-Crick base pair on the other face [30]. Thus, it is likely that

the NMM-T interaction observed in T1-NMM and T7-NMM structures is a result of crystal

packing forces.

Crystal structures are good representations of the GQ-NMM complexes in solution.

To verify that the GQ conformation observed in the crystal structures is not an artifact of the

crystallization process and that the high sample concentrations used did not affect GQ-NMM

interactions, we compared the CD signatures and PAGE behavior of samples prepared for
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crystallographic (~0.65 mM) and biophysical (~5 μM) studies. The similarity of the CD signa-

tures (S7A Fig) indicates that the crystal structures are good representations of the GQ-NMM

complexes found in solution. According to PAGE (S7B Fig), T1-NMM exists as a mixture of

monomer and dimer regardless of concentration. Meanwhile, T7 is a monomer alone as well

as in complex with NMM at both high and low concentrations. This data suggests that the T1

dimer observed in the crystal structure could exist under physiological conditions. However,

the T7 crystallographic dimer is likely an artifact of crystal packing, wherein the thymine over-

hangs–normally freely moving in solution and potentially inhibiting dimerization–are tucked

into the grooves, thereby allowing the 5’ G-quartet to dimerize.

Conclusion

We conducted detailed biophysical and crystallographic studies of the interaction between two

G-rich DNA sequences, (GGGTT)3GGG (T1) and (TGGGT)4 (T7), and a highly selective por-

phyrin ligand, NMM. The T1 and T7 sequences are found in the human genome (including a

gene implicated in Alzheimer’s disease [14]); in the T. thermophila telomere (but do not repre-

sent the telomeric repeat); and in the genomes of at least 34 bacteria (including pathogenic spe-

cies) [16, 17]. The DNA sequences fold into parallel GQs in solution both alone and in

complex with NMM, as well as when bound to NMM in the crystal structures. The observed

topology is consistent with a previous study that examined the fold of G-rich DNA with the

Table 3. Out-of-plane deviations (Å) for G-quartets in the T1-NMM, T7-NMM, and Tel22-NMM crystal structures.

T1-NMM T7-NMM Tel22-NMM [30]

G-Quartet Chain A Chain B Average Chain A Chain B Average Average

5’ 0.42 0.37 0.40 ± 0.04 0.43 0.35 0.39 ± 0.06 0.49

Middle 0.57 0.36 0.5 ± 0.2 0.96 0.98 0.97 ± 0.02 1.08

3’ 1.65 1.78 1.72 ± 0.09 2.01 2.10 2.06 ± 0.06 1.85

https://doi.org/10.1371/journal.pone.0241513.t003

Fig 7. Intermolecular interactions in T7-NMM. (A) NMM (magenta) binds a GQ monomer (blue) via π-π stacking.

NMM interacts with T10 from another GQ monomer (red) on the other side. (B) Same as in (A) but rotated by 90 ˚.

(C) Intermolecular interactions among T7 and NMM molecules. T7 monomers are depicted in teal and blue.

https://doi.org/10.1371/journal.pone.0241513.g007
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general sequence GGGTnGGGTnGGGTnGGG, where n = 1–5 [55]. Short loops with 1–2 Ts,

as is our case, lead to the parallel GQ conformation, whereas loops with 3 Ts lead to hybrid

GQs and loops with 4–5 Ts lead to antiparallel GQs.

In solution, T1 exists mostly as a dimer of parallel GQs. Addition of thymines at the 5’ and

3’ ends or addition of NMM breaks the dimer but maintains the parallel GQ fold. The native

extended constructs, T2 –T6, display similar stability and CD and TDS signatures to those

of T1, indicating that our findings for the T1-NMM complex are applicable to longer DNA

sequences with greater biological significance. Meanwhile, extending T1 with non-native

nucleotides, as in T7 –T9, leads to some decrease in stability but preserves the overall GQ fold.

Thus, using our DNA set as a representative example, we can conclude that GQ fold is deter-

mined by the number of nucleotides in G-tracts, as well as the number and nature of nucleo-

tides in the loops. Meanwhile, the nature and length of 5’ and 3’ overhangs do not significantly

affect GQ structures but can fine-tune their stability. Our earlier biophysical exploration of

loop mutants designed based on the crystal structure of the antiparallel 19wt GQ from Dictyos-
telium discoideum [33] led us to conclude that loop interactions do not define GQ fold but

rather fine-tune GQ stability, similarly to the effect of overhangs investigated here.

The binding of NMM to T1 is characterized by an unprecedentedly high binding affinity of

30–50 μM-1, the strongest reported for any GQ-NMM complex. All reported binding affinities

for GQ-NMM were discussed in our recent review [11]. We can explain the weaker binding of

NMM to T7 (Ka of 18 μM-1) by the presence of terminal thymines that obstruct the binding

surface at the 3’ G-quartet. The impressive binding of NMM to T1 is also accompanied by 20

˚C of stabilization at 2 eq. of NMM, the highest observed for any GQ [11]. NMM stabilizes T7

to the same extent. Thus, the binding affinity does not correlate with the stabilizing ability of a

ligand, despite contrary expectation [56].

The impressively strong interaction between NMM and T1 is especially intriguing given

that NMM does not display the characteristic features of a typical GQ ligand–planarity and a

cationic nature. Instead, NMM is non-planar, with an observed out-of-plane deviation of 1.07

Å when free in solution [30] and is likely negatively charged under physiological pH due to its

propionate groups. The non-planarity of NMM may be a key factor for its excellent binding

affinity and selectivity for parallel GQs [11]. Our laboratory previously reported that the degree

of NMM distortion varies based on its binding partner [30]. We also showed that the fully pla-

nar NMM derivative, mesoporphyrin IX, which lacks the central N-Me group, does not bind

the human telomeric DNA GQ [9]. However, this observation may alternatively be due to the

absence of the N-Me group rather than the planarity of mesoporphyrin IX.

In summary, our work identifies an unprecedentedly tight binding interaction between T1

and NMM, along with the highest reported stabilizing effect of NMM on a GQ. The crystal

structures of T1-NMM and T7-NMM complexes reveal the end-stacking binding mode of

the ligand. Our previous and current work demonstrates that the non-planar and negatively

charged NMM is an excellent GQ binder. Although the GQ field is in search of planar, cationic

GQ ligands, it is possible that ligands with some degree of non-planarity–or even better, the

ability to alter their shape for an induced fit to their GQ binding partner–may allow for both

tight binding to specific GQs and selectivity against dsDNA. Our work expands the small, but

growing library of GQ-ligand crystal structures and provides atomic level information about

GQ and ligand structural features that promote strong binding and stabilization. Our work

also demonstrates how such binding can be detected and characterized thoroughly via bio-

physical and structural methods. The atomic coordinates reported here can be used to compu-

tationally search for even better drug candidates using available ligand libraries, with the hope

that GQ binders may one day serve as anticancer therapeutics.
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