
Research Article
Utilization of the Discrete Differential Evolution for
Optimization in Multidimensional Point Clouds

Vojtjch Uher, Petr Gajdoš, Michal Radecký, and Václav Snášel

Department of Computer Science and National Supercomputing Center, VŠB-Technical University of Ostrava, Ostrava, Czech Republic

Correspondence should be addressed to Vojtěch Uher; vojtech.uher@vsb.cz

Received 26 May 2016; Revised 4 October 2016; Accepted 19 October 2016

Academic Editor: J. Alfredo Hernández-Pérez

Copyright © 2016 Vojtěch Uher et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular
for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but
several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has
been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial
data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which
meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE)
applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of
theMDDE and its convergence to the global optimum in the PCs.Themultidimensional discrete vertices cannot be simply ordered
to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator
utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial
datasets and optimization problems.The experiments show that theMDDE is an efficient and fastmethod for discrete optimizations
in the multidimensional point clouds.

1. Introduction

TheDifferential Evolution (DE) has been successfully applied
to many continuous, combinatorial, and design optimization
problems. The measuring devices, cameras, laser devices,
or sensors produce discrete multidimensional vertices [1–3].
The big spatial data is analyzed in research areas like robotics,
pattern recognition, and/or computer vision. Inmost of these
areas, good results have been achieved with the DE (see, e.g.,
[1, 4–7]). This paper proposes a novel DE based algorithm
solving the combinatorial tasks with discrete vertices. The
abilities of the discrete Differential Evolution to search the
optimal combinatorial solutions in themultidimensional dis-
crete point clouds (PCs) are discussed. Ourmodifiedmethod
called the Multidimensional Discrete Differential Evolution
(MDDE) uses a vertex hashing function to strengthen the
local properties of an n-dimensional discrete dataset.

The Differential Evolution has been introduced by Storn
and Price [8]. It is an evolutionarymethod, which has become
popular for its simplicity, robustness, and good convergence

properties [9]. It is based on the population of individuals
which represent the temporary solutions that are iteratively
refined during the generations. Each individual consists of
several variables. The quality of individuals is evaluated by
an objective function. After the successful DE application for
real-valued problems on a continuous space, some combina-
tional or design optimization applications on integer or dis-
crete-valued problems were presented, such as load dispatch
problem [10], unit commitment problem [11], 0-1 knapsack
problem [12], generalized traveling salesman problem [13],
different NP-hard scheduling problems [14–18], form-finding
of tensegrity structures [19], assembly line balancing problem
[20], or robots path planning problem [21, 22]. Survey of
discrete-valued problems and applications of evolutionary
algorithms was published in the papers [23–25].

There are several basic categories of variables according to
the paper [26].The discrete integer variables bounded within
a range are primarily discussed in this paper. We will call
this category the discrete-valued variables. The value of such
a variable is an integer pointer addressing an enumerative

Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2016, Article ID 6329530, 14 pages
http://dx.doi.org/10.1155/2016/6329530

http://dx.doi.org/10.1155/2016/6329530


2 Computational Intelligence and Neuroscience

sample from the set of discrete elements.The elements should
be arranged to get better convergence of population [9]; oth-
erwise the DE leads to the random search. The existing dis-
crete methods can be divided into (a) indirect and (b) direct
methods. The indirect methods operate with the standard
real-valued variables. The values are progressively recalcula-
ted to/from the integer ones by some transformation function
(see, e.g., [27–30]). The direct methods operate directly with
integer values without any transformation, which eliminates
the rounding error. The advantages of the indirect methods
are that they utilize the robustness of the real-coded DE and
require minimal intervention to the original DE. In the paper
by Lampinen and Zelinka [27], a simple truncation of the
real-valued parameters is proposed. But this simple approach
worsens the diversity of the population and the robustness of
the algorithm [31]. Other methods using improved rounding
techniques involving some additional conditions, constraints,
and thresholds were published by Angira and Babu [32],
Liao [26], or Schmidt and Thierauf [33]. Tasgetiren et al.
introduced several approaches using a discrete DE algorithm
for a flow shop scheduling problem [14, 34]. A novel indirect
method called the Discrete Differential Evolution (DDE) [29]
was proposed by Davendra and Onwubolu. In this case, the
whole evolution is managed with the integer values that are
transformed into the real ones only for the mutation phase of
the DE. This approach uses the Forward Backward Transfor-
mation and it has better convergence properties than the sim-
ple real/integer rounding techniques [29]. Datta and Figueira
described a new mutation operator for discrete-valued vari-
ables [35].Their approach called the ridDE is a direct method
based on a bit mutation of integer values to avoid the real/
integer transformation.

This paper primarily aims at the problems addressing the
optimizations in the sparse discrete data represented by dis-
tributed vertices in a vector space. The Differential Evolution
is often used for the pattern recognition [7, 36], cluster-
ing [37], classification, or feature extraction [38]. All these
disciplines find utilization in the bioinspired systems and
robot automation [4, 5, 22] or computer vision [36, 39]. The
article [38] summarizes different applications of evolutionary
algorithms in the pattern recognition and machine learning
including theDifferential Evolution.TheDEhas been utilized
for human body pose estimation from the point clouds [6, 36,
40], circles detection [7], ellipses detection [41], recognition
of leukocytes in images, or 3D face model reconstruction
utilizing multiview 2D images [42]. Most of the referenced
algorithms optimize analytically a temporary pattern shape,
deformable or active shape models. The intersection rate
between the proposedmodel and vertices represents the qual-
ity of a solution. However, this means complete passage of
whole dataset every time when a solution is evaluated by the
objective function. Our further vision is to apply our novel
approach to the direct pattern or feature recognition, where
an optimized set of discrete vertices represents the required
pattern or its estimate.

To do so, some modifications have to be done in the
discrete-coded DE. This paper conducts the basic model of
the MDDE. The multidimensional vertices are numbered by
their indices in the memory. The discrete-valued variables of

individuals store the integer indices addressing the vertices
in the memory. Thus, the stochastic optimization iteratively
refines the vertex indices to find the required combination
of vertices. The local searching abilities of the MDDE in the
static point clouds are examined. The DE can efficiently han-
dle a nonlinear and a nondifferentiable objective function.
Thus, it is expected that it should be applicable to the global
optimization problems in the sparse point clouds as well.
The main problem is that the discrete vertices are unordered
and the optimization is very slow and unstable [9]. The 1D
enumerative datasets can be ordered by their values. But in
the multidimensional space it is necessary to define some
hashing function for the n-dimensional vertices. The three
space filling curves (SFCs) are tested for the vertex hashing
to obtain partly sequenced spatial data (Section 2.2).

First, the used real-coded Differential Evolution and the
selected SFCs are introduced in Section 2. Section 3 describes
the whole method, its input parameters, and the utilization
of the SFCs. It also solves the problem of duplicate indices
generated during the evolution. Section 4 tests the proposed
method on several optimization problems and datasets. It
proves that our novel MDDE efficiently works in the spatial
discrete data and the more sophisticated SFCs considerably
improve the convergence of a population.

2. Related Work

First, the reference model of the Differential Evolution is
reminded (Section 2.1). Next, several types of the space filling
curves (SFCs) are mentioned in Section 2.2.

2.1. Real-Coded Differential Evolution. The first Differential
Evolution algorithmwas presented by Storn and Price in 1995
[43] and then improved in 1997 [8]. It is a simple evolution
strategy for a global optimization problem [8, 43]. The paper
[44] defines several variants of the DE, but the DE/best/l/bin
variant is explained here, because it provides better results
for most of the tested optimization problems. The basic
algorithm is briefly described as follows.

A population consists of 𝑃 individuals representing the
potential solutions of the selected optimization problem.The
objective function 𝑓(𝑋) evaluating the quality (objective
value) of an individual is defined as 𝑓(𝑋) : 𝑅𝑘 → 𝑅. An indi-
vidual consists of the 𝑘 real-valued variables that are repre-
sented by a vector 𝑋 = (𝑥1, . . . , 𝑥𝑘). The problem dependent
constraints defining the search-space limiting the values of
the variables can be established as well [26, 45, 46]. Mostly,
the minimal value min(𝑓(𝑋)) is searched. The process of the
evolution is done by generating a new population of individu-
als with improved objective values. The normalized objective
value is usually called the fitness value.Thenumber of genera-
tions is limited and labeled as 𝑔.The individual with themin-
imum objective value found during 𝑔 generations is returned
as the result of the optimization.The appropriate setup of the
DE input parameters is discussed in [8, 44]. The process of
the DE/best/l/bin algorithm can be described as follows:

(1) At the beginning of the DE, the random population
respecting defined constraints is generated.



Computational Intelligence and Neuroscience 3

(2) 𝑥𝐺𝑖,𝑗 is a variable value of an individual from an actual
population, where 𝑖 ∈ [1, 𝑃], 𝑗 ∈ [1, 𝑘], and 𝐺 is a
generation counter 𝐺 ∈ [1, 𝑔].

(3) For 𝑖 = 1, . . . , 𝑃 of generation 𝐺,

(a) different individuals 𝑋𝐺𝐴 and 𝑋𝐺𝐵 are selected in
the population randomly, where 𝑖 ̸= 𝐴 ̸= 𝐵, and
the third one is 𝑋𝐺best, which represents the best
known solution so far;

(b) a mutant vector is computed by the mutation
operator: V𝐺𝑖,𝑗 = 𝑥𝐺best,𝑗+𝐹⋅(𝑥𝐺𝐴,𝑗−𝑥𝐺𝐵,𝑗), where𝐹 ∈
[0, 2] is the mutational factor and 𝑗 = 1, . . . , 𝑘;

(c) a new individual is computed from the mutant
vector by the crossover operator: 𝑢𝐺𝑖,𝑗 = V𝐺𝑖,𝑗 if
𝑟𝐺𝑖,𝑗 ≤ 𝐶 or 𝑗 = 𝐷𝐺𝑖 ; otherwise, 𝑢𝐺𝑖,𝑗 = 𝑥𝐺𝑖,𝑗, where
𝑗 = 1, . . . , 𝑘, 𝐶 is the crossover constant (𝐶 ∈
[0, 1]), 𝑟𝐺𝑖,𝑗 is a random number (𝑟𝐺𝑖,𝑗 ∈ [0, 1]),
and𝐷𝐺𝑖 is a randomly chosen index of individual
variable;

(d) 𝑋(𝐺+1)𝑖 = 𝑈𝐺𝑖 if 𝑓(𝑈𝐺𝑖 ) ≤ 𝑓(𝑋𝐺𝑖 ); otherwise,
𝑋(𝐺+1)𝑖 = 𝑋𝐺𝑖 , where 𝑋(𝐺+1)𝑖 is an individual of
the next population, 𝑋𝐺𝑖 is an individual of the
actual population, and 𝑈𝐺𝑖 is a new proposed
individual.

(4) Step (3) is repeated 𝑔 times.

2.2. Space Filling Curves. The algorithm proposed in this
paper uses space filling curves (SFCs) to represent the multi-
dimensional discrete data. Three variants of the SFCs were
selected: linear indexing (C-curve), Z-order, and Hilbert
curve (see, e.g., [47, 48] and Figure 1). Generally, SFCs
connect the points that are close to each other in the space
and thus transforma generaln-dimensional problem into one
dimensional (1D). Any SFC is usually based on a bounded
space division.The bounding box of the dataset is computed.
For each vertex a code representing its location in the sub-
space hierarchy is computed, and the vertices are sorted
according to these codes. Thus, the ordered linear array
grouping the discrete vertices with a similar space character is
created. All the threementioned SFCs are based on theOctree
structure, so that they are universally applicable for the n-
dimensional space.The construction of the SFCs is described
in [49, 50]. The SFCs are very straightforward and efficient
methods for sparse space clustering [51]. The C-curve is the
basic approach for the linearization of the n-dimensional
data. It can be simply constructed, but the local properties
are very basic in comparison with the other two SFCs.The Z-
order curve is a very popular curve with good local properties
and fast construction times. The Hilbert curve fills the space
conveniently without any unnecessary crossings or space
leaps (see Figure 1), and thus it is considered to be one of the
best Octree based SFCs (see [49, 51]).

3. Discrete Differential Evolution in
𝑁-Dimensional Space

This section describes a novel approach based on the DE
for the discrete multidimensional data analysis. The method
is explained on the DE/best/l/bin variant (described in Sec-
tion 2.1), because it seems to be efficient for distance function
minimization, but any other variant can be used [44].The two
discrete-coded methods were tested with spatial data: DDE
by Davendra and Onwubolu [29] and ridDE by Datta and
Figueira [35]. However, the ridDE cannot be parametrized
conveniently; thus the DDE was selected as the reference
model, as it is introduced in Section 3.1. The problem of
discrete vertex optimization is described in Section 3.2. The
Multidimensional Discrete Differential Evolution (MDDE)
utilized for the 𝑘 distinct solutions search in spatial data is
explained in detail in Section 3.3.

3.1. Utilized Discrete Model of the DE. TheDDE by Davendra
and Onwubolu [29] was selected as the reference discrete
model, because it works with individuals that consist of the
discrete-valued variables. The internal crossover and muta-
tion operators invariably change any applied value to a real
number. This leads to infeasible solutions. Therefore, it is
necessary to progressively convert the values from integers
to real ones and then back to the integers. The DDE uses the
so-called Forward Backward Transformation of values. The
Forward (integer/real) Transformation is computed only for
the mutation and crossover phases of the DE, so that the
operators are applied to the real values. The variable values
of the new individual are then transformed back to the
integers by the Backward (real/integer) Transformation and
the evolution continues with the integer values.This model is
very convenient for combinatorial problems, where the real
values make no sense, and for the detection and elimination
of the found duplicate values of an individual. The individual
is represented by a vector 𝑋 = (𝑥1, . . . , 𝑥𝑘). The Forward
Transformation is defined as

(𝑥𝑗)
 = −1 +

𝑥𝑗 ⋅ 500
999 . (1)

The Backward Transformation is defined as

𝑥𝑗 = (INT)
((𝑥𝑗)

 + 1) ⋅ 999
500 , (2)

where 𝑥𝑗 is an integer value and (𝑥𝑗) is the corresponding
real value for 𝑗 = 1, . . . , 𝑘.The constantswere established after
extensive experimentation [29]. The transformations (1) and
(2) are mutually inverse.

3.2. Direct MDDE. Themodified Multidimensional Discrete
Differential Evolution (MDDE) is very similar to theDE from
Section 2.1. The most important differences are in the muta-
tion and the evaluation parts. The MDDE optimizes a set of
indices addressing the static vertices of the dataset.The verti-
ces are stored in a linear array in the memory. An individual
consists of 𝑘 discrete-valued variables. The final solution is



4 Computational Intelligence and Neuroscience

(a) (b) (c)

Figure 1: The basic types of the space filling curves ((a) C-curve, (b) Z-order, and (c) Hilbert).

defined as a combination of indices addressing the vertices
meeting the required conditions.The conditions depend on a
specific optimization problem.The objective function can be
formulated as a distance function defining some vertex dis-
tribution representing, for example, the outline of a required
shape.

The main problem is that the real discrete datasets are
nonuniformly distributed in the space. Thus, the indices
addressing the vertices in the array represent no information
about the spatial character of the vertices. Application of the
DDE model to the set of unordered vertices leads to the
random search. The dataset has to be ordered to get better
convergence of the population. However, this is not that
straightforward in then-dimensional space; thus smart vertex
hashing has to be applied. The three space filling curves are
tested in this paper (Section 2.2). SFC makes the n-dimen-
sional discrete data partly sequenced, so that the close indices
address the spatially close vertices. The specific vertex order
affects the diversity of the population and the robustness of
the algorithm (see Section 4).The order of vertices is primar-
ily important for the mutational phase of the evolution.

As the MDDE is a randomized algorithm, it is possible
that a new generated individual contains some duplicate
indices. Generally, a resulting solution consisting of distinct
vertex indices is expected to obtain the set of vertices
representing the searched pattern or feature. The duplicities
have to be eliminated to obtain the duplicity free individuals
at the end of every generation. The basic algorithm works as
follows:

(1) The input parameters and data are set.
(2) SFC representation of a point cloud is computed.
(3) The initial population of 𝑃 individuals is generated.

Each individual consists of 𝑘 discrete-valued vari-
ables, which are randomly initialized, so that there are
no duplicities.

(4) All individuals are evaluated by the objective func-
tion.

(5) For each individual of a population,

(a) three different individuals are randomly selec-
ted from the current population;

(b) the best known individual and the two of the
randomly selected individuals are combined:
(i) the Forward Transformation (1) of the vari-

able values is computed for all parent indi-
viduals;

(ii) the mutation operator and the crossover
operator are applied to the corresponding
variables;

(iii) the variable values of the new individual are
transformed to the integers by the Back-
ward Transformation (2) and validated
afterwards;

(c) the duplicate variable values of the new indi-
vidual have to be resolved; the duplicities are
replaced by distinct values from the third ran-
domly selected individual;

(d) an individual is evaluated by the objective func-
tion according to the total objective value (e.g.,
sum of separate distances); the new individual is
compared with the corresponding one from the
current population and the better one is selected
for the new population;

(e) the best known solution is compared with the
new individual and replaced eventually.

(6) Point (5) is repeated in each of 𝑔 generations.
(7) Finally, the resulting vertices are read according to

the found integer indices stored in the discrete-valued
variables of the best found individual.

3.3.The 𝑘Distinct Solutions Search. This section describes the
parts of the MDDE algorithm in more detail. The utilization
of the SFCs, the mutation, and the duplicity elimination are
explained here.

3.3.1. Initialization. The input parameters of the MDDE are
almost the same as those mentioned in Section 2.1:

𝑙: number of vertices in the dataset
𝑓(𝑋): total objective function, where𝑋 = (𝑥1, . . . , 𝑥𝑘)



Computational Intelligence and Neuroscience 5

𝑓𝑠(𝑥𝑖): separate objective function
𝑃: number of individuals of a population
𝑘: number of individual variables
𝑛: dimension of the discrete vertices and the separate
objective function
𝑔: maximum number of generations
𝐹: constant mutational factor, 𝐹 ∈ [0, 2]
𝐶: crossover constant, 𝐶 ∈ [0, 1]

3.3.2. Individual Representation. Each individual of the pop-
ulation consists of 𝑘 discrete-valued variables storing the
vertex indices. One array containing the 2𝑃 individuals is
allocated. The alternation of populations is done by the
double buffering of 𝑃 individuals and the populations are
switched simply by the exchange of pointers addressing the
0th and the 𝑃th individual. The individual variables are
aligned in the memory as well; thus 2 ⋅ 𝑃 ⋅ 𝑘 values (32-bit)
are stored in a row.

3.3.3. Initial Population. The first duplicity free population
has to be generated. The range of the vertex indices ⟨0, 𝑙) is
divided into 𝑘 ⋅ 𝑃 blocks. One random index is selected from
each block; thus the 𝑘 different initial values are generated
randomly for each of 𝑃 individuals. A random permutation
of the values is computed afterwards. Therefore, the variable
values of all individuals are completely distinguished.

3.3.4. Evaluation. The evaluation of the objective function
with an individual is done similarly as it is in the case of
casual 1D discrete data. The whole MDDE works with vertex
indices assigned by the SFC. The separate objective function
is called with a vertex addressed by the integer index. If
an individual consists of more variables, a multidimensional
objective function will be utilized. Generally, the variables
are evaluated by a separate objective function and the sum
of 𝑘 particular objective values is used to compute the total
objective value of an individual. However, this can be done
only if the particular objective value converges by itself (e.g.,
Euclidean distance). Otherwise, a sophisticated objective
function must be used.

3.3.5. Mutation Operator. The MDDE operates with vertex
indices addressing the ordered vertices on the SFC (Figure 2).
The mutation operator computes a mutant vector as a linear
combination of three different individuals (Section 2.1): two
from the current population and the best known one (see
Figure 2). According to the DDEmodel, the mutation opera-
tor already calculates with the transformed real values. The
computation of the mutant vector is done for each individual
variable:

V𝐺𝑖,𝑗 = 𝑥𝐺best,𝑗 + 𝐹 ⋅ (𝑥𝐺𝐴,𝑗 − 𝑥𝐺𝐵,𝑗) , (3)

where 𝑖 = 1, . . . , 𝑃, 𝑗 = 1, . . . , 𝑘, and𝐺 is a generation counter.
Obviously, themutation operator can be simply reformulated
to, for example, DE/rand/l/bin and other variants [44] if it is

needed. Figure 2 shows that the order of vertices is crucial for
the convergence of population. The SFC better secures that
the mutant index V𝐺𝑖,𝑗 computed from the parent indices (3)
addresses the vertex that is placed nearby the vertices addres-
sed by the parent indices 𝑥𝐺best,𝑗, 𝑥𝐺𝐴,𝑗, and 𝑥𝐺𝐵,𝑗. In the case of
unordered point clouds, the mutation would practically lead
to a random selection of a mutant vector without any spatial
logic (see Figure 2).

3.3.6. Crossover Operator. The traditional crossover operator
described in Section 2.1 is applied. A proposed (mutant) solu-
tion is accepted with the probability 𝐶. If 𝑘 > 1, the operator
will be applied separately for each variable. The variable val-
ues of the new individual are transformed to the integers by
(2). Additional constraints and the condition that the values
(indices) belong to ⟨0, 𝑙) have to be validated afterwards.
If a variable value is placed out of the interval, a random value
in the interval ⟨0, 𝑙) will be selected.

3.3.7. Separate Selection Operator. If 𝑘 > 1 and it is possible to
assess the quality of the variable values separately, the selec-
tion can be made on the level of separate variables. This pre-
tends the average results generated by the simple optimiza-
tion of the sum of values and improves the convergence of the
population. For example, the vertex distance from the pro-
posed pattern can be used as a separate metric.

3.3.8. Elimination of Duplicities. Thevarious combinations of
distinct variable values (vertex indices) may lead to the same
resulting value due to the convergence to the global optimum.
The duplicities have to be found and replaced to get better
diversity of a discrete solution. A point cloud is a finite set
of vertices; thus a subset of 𝑘 sufficient vertices can fulfil a
condition resulting in some pattern or feature recognition.
Therefore, the duplicity free solutions are required. All indi-
viduals are checked for duplicities before the final individual
selection to preserve this demand for the new population.

For each newly generated individual 𝑈𝐺𝑎 another one 𝑋𝐺𝑏
is randomly selected from the current population (the new
one is not finished yet), where 𝐺 is a generation number and
𝑎 ̸= 𝑏. A new individual 𝑈𝐺𝑎 is checked for duplicities at first
and the number of recurrences 𝑟 is obtained, where 𝑟 ∈ ⟨0, 𝑘).
The mentioned facts mean that 𝑈𝐺𝑎 and 𝑋𝐺𝑏 can have maxi-
mally 𝑘 − 𝑟 identical indices after the elimination of 𝑟 recur-
rences from 𝑈𝐺𝑎 . Thus, having the certainty of the duplicity
free 𝑋𝐺𝑏 , the remaining 𝑟 indices can replace the recurrences
of 𝑈𝐺𝑎 .

The implementation of this algorithm is based on con-
venient flagging of the indices followed by their sorting
(Figure 3). The index arrays of both individuals are copied to
the temporary array one by one.𝑈𝐺𝑎 is stored at first followed
by 𝑋𝐺𝑏 . Another array holds the corresponding flags of 2𝑘
indices. The flagging is done by the sequential comparison of
unmarked indices. The indices of 𝑈𝐺𝑎 are flagged at first and
the 𝑟 recurrences are found. The unique indices are flagged
with 1 and the duplicities with 3. Next, the 𝑟 distinct indices
have to be found in 𝑋𝐺𝑏 , so that the indices of 𝑋𝐺𝑏 are



6 Computational Intelligence and Neuroscience

A

BBest

V

(a)

A

B

V

Best

(b)

Figure 2: The random vertices (a) are ordered by the Hilbert curve (b). A mutant individual 𝑉 is computed by the mutation operator from
the three parent individuals (best, 𝐴, 𝐵). The mutation is computed on the level of vertex indices assigned by the corresponding SFC. The
vertex order defined by the SFC improves the spatial convergence of the evolution.

8
1

22 8 15 22 8 84 105 15 47
1 3 1 3 3 2 2 3 3

0 1 2 3 4 5 6 7 8 9

8 22 15 84 105 8 22 8 15 47
New individual Old individual

Vertex indices
Duplicity flags
Ordered array

Figure 3: The table shows the copies of two individuals with 𝑘 = 5. The new proposed individual contains two duplicities (indices 8 and
22). They will be replaced with the distinct indices of a selected individual from the old population.The unique indices of the new individual
are flagged by 1, by 2 in the case of the old individual. The duplicities and the excess indices are flagged by 3. The sorting of indices by flags
produces a new duplicity free individual.

compared with the preceding ones. The unique indices are
flagged with 2 and the search will be terminated when 𝑟
indices are found.The remaining indices are flagged by 3.The
2𝑘 indices are sorted byQuick sort algorithm according to the
flags; thus the first 𝑘 indices represent the new duplicity free
individual. The flagging can be also used for penalization of
undesired solutions so that the penalized indices are sorted
out.

3.3.9. Final Remark. The new proposed individual is com-
pared with the best known one. The total objective value
is used to assess the best ascertained individual. The whole
computation is terminated after 𝑔 generations, or when a
terminating condition ismet.The ascertained individual with
the best total objective value is returned.

4. Experiments and Discussion

In this section, the proposed MDDE method is tested. The
main aim of the experiments is to test the local behaviour
of the MDDE on the three space filling curves (SFCs) and
its convergence to the global optimum in the discrete point
clouds (PCs). The C-curve was selected as a naive vertex
hashing algorithm for comparison to show that the MDDE
running on more complex SFCs with better local properties
converges faster to the searched extreme. It seems there is no
comparable method addressing the combinational problems
on the level of discrete multidimensional vertices. The SFCs
are constructed by hierarchical vertex hashing followed by
sorting of the vertices according to the hashes/codes (see
Section 2.2). A code represents an octant that contains the

hashed vertex. The order of the octant written to the code
distinguishes the different variants of the SFCs.The codes are
usually represented by a bit sequence of octant coordinates.
The SFCs of all the tests and datasets were constructed for the
maximumhierarchical level allowed by the 64-bit integer.The
bit length of the hash is the main limitation of our method,
because the greater the dimension 𝑛 of the discrete vertices is
the lower the maximum level of clustering and the ability of
the SFCs to distinguish location of two close vertices are.That
is why the experiments are focused on 2D and 3D problems
and datasets. But the MDDE is generally applicable for n-
dimensional spaces if the longer hashes are used.

This paper primarily aims at the problems addressing
the optimizations in the sparse discrete data represented by
distributed vertices in a vector space. It is assumed that the
observed property or the pattern is locally bound to the
spatial data. Several discrete methods were tested, but the
DDE by Davendra and Onwubolu [29] has been chosen.
In comparison with the ridDE [35], the DDE provides the
option of the𝐹 parameter setting that allows one to define the
sampling step of the evolution. All the tests were performed
with the DE/best/l/bin variant, as this seems to be the best
one after extensive experimentation.

4.1. The Definition of the Tested Problems. The algorithm was
tested on several common optimization problems:

(1) point-to-point and point-to-line distance minimiza-
tion problem

(2) discrete optimization of Schwefel and Rastrigin func-
tions

(3) maximum distance search in 3D datasets



Computational Intelligence and Neuroscience 7

These problems have been selected, because they are
applicable for all kinds of point clouds and space dimensions
and they mostly represent the basic tasks in the area of the
spatial data analysis.They can be precisely solved analytically
by the brute force vertex comparison aswell; thus it is possible
to compare the results of the analytical and the evolutionary
approaches. The problems are described in the following
subsections.

4.1.1. Point-to-Point and Point-to-Line Distance Minimization.
The objective function of the point-to-point problem is
defined as the Euclidean distance between a randomly chosen
vertex �⃗� from the dataset and the vertices proposed by an evo-
lution. The objective function of the point-to-line problem
is defined as the Euclidean distance between the line con-
structed by two different vertices randomly chosen from the
dataset and the vertices proposed by an evolution [52]. The
distance is the basic metric that is generally minimized to
recognize some shape or pattern. The evolution converges
locally to the global extreme in this case; thus it is a good
example that can be tested with the MDDE. It is obvious that
the randomly selected vertices have to be consistent during
the whole evolution process.The distances of the 𝑘 vertices of
each individual are optimized separately and the total fitness
(objective) value of an individual is computed as a sum of
𝑘 distances. In both cases, the zero distance solutions are
heavily penalized in order to provide the comparison rating
between the analytical and the evolutionary approach.

4.1.2. DiscreteOptimizations of Test Functions. Theevolution-
ary algorithms are usually checked on several continuous test
functions [53]. The well-known Schwefel and Rastrigin func-
tions have been selected for the tests of the MDDE, because
they are both very complex functions with many local min-
ima and they are applicable for any dimensions (see [53]).
These continuous functions represent the corresponding
objective functions evaluating the quality of the ascertained
vertices. The discrete vertices of the dimension 𝑛 are ran-
domly generated in the typical input domains defined, for
example, in [53].Thus the optimization is based on the search
of the 𝑘 distinct vertices with the minimal objective value.

Two different distributions of random samples were
tested to better distinguish the properties of the space filling
curves (see Figure 4). The Gaussian distribution consists of
105 vertices sampled randomly according to the standard
normal distribution recalculated to the intervals of the input
domain. Similarly, the Gaussian islands are the ten randomly
chosen vertex groups distributed according to the standard
normal distribution (Figure 4(b)) containing together 104
vertices.The distributions are the same for all measurements.

4.1.3. Maximum Distance Search. The problem is defined as
a search of the two most distant vertices of the dataset. This
can be used, for example, as an approximative solution of the
minimum sphere problem, which is defined as a search of
the minimum sphere containing all the vertices of the dataset
[54].Theminimumsphere problem ismore complex, because
the maximum Euclidean distance used as a perimeter of the

(a) (b)

Figure 4: Vertex distributions: (a) Gaussian; (b) Gaussian islands.

sphere does not guarantee that all the vertices are contained
inside the sphere. However, in many cases the maximum dis-
tance can be used as a good estimate of the minimum sphere
problem solution, which can be further improved. We refor-
mulated it to a minimization problem, so that the difference

ΔDist = diagonal −maxDist (4)

is minimized, where diagonal is the diagonal length of
the bounding box and maxDist is the maximum distance
between two vertices found in the dataset. The bounding box
diagonal represents the possible maximum distance of two
vertices; thus ΔDist is always positive.

This problem is different from the others, which locally
converge to the extremes. But the maximum distance can be
found by the local search of two distant areas, which leads to
finding of greater distances. Therefore, the MDDE algorithm
converges to the global extreme as well.

4.2. Achieved Results. This section discusses the achieved
results of the MDDE tested on the defined problems. The
three artificial and the three real standard datasets were cho-
sen for the tests, as they arementioned in Table 1.The random
Gaussian datasets were generated according to standard nor-
mal distribution. The Gaussian islands were explained in
Section 4.1.2. For all optimization problems and datasets the
best solutions are computed analytically in advance.

4.2.1. Sufficient Solution Search. First, the point-to-point and
point-to-line problems were tested (see Section 4.1.1). The
corresponding DE parameters for both problems can be seen
in Table 1 and they were established after extensive experi-
mentation. Figure 5 shows the comparison of the SFCs on the
six different 3D datasets. These tests measure the number of
DE generations needed to obtain a sufficient result, so that
all 𝑘 vertices must have the sufficient distance. The sufficient
result𝑋𝐺best has to meet the condition

𝑓𝑠 (𝑥𝐺best,𝑗) < 𝑓best ⋅ fitnessRate (5)

for 𝑗 = 1, . . . , 𝑘, where 𝑘 is the number of individual indices,
𝐺 is a generation counter, 𝑓𝑠 is a separate objective function
that returns the distance of the 𝑗th individual vertex from
the reference point, 𝑓best is the best analytically computed
solution, and fitnessRate is the corresponding accuracy rate
according to Table 1. Each measurement was performed 50



8 Computational Intelligence and Neuroscience

Table 1: The DE parameters for point-to-point and point-to-line
minimization problems and different datasets.

Dataset Vertex num. (𝑙) Fitness rate
PP∗ PL∗

Uniform rand. 106 2.0 5.0
Gauss. rand. 106 2.0 5.0
Gauss. islands rand. 104 1.5 5.0
Stanford Bunny1 35947 1.8 5.0
Stanford Dragon1 437645 2.2 5.0
Stanford Budha1 543652 2.2 2.0

Common parameters

𝐶 = 0.95
𝑘 = 16 (PP∗) or 𝑘 = 50 (PL∗)

𝐹 = 0.01 (PP∗) or 𝐹 = 0.005 (PL∗)
𝑃 = 30 (PP∗) or 𝑃 = 80 (PL∗)

∗Point-to-point (PP); point-to-line (PL).
1Models fromThe Stanford 3D Scanning Repository [55].

times for different randomly selected vertices, which define
the reference vertex or line. Thus, the graphs represent the
convergence metrics examining various areas of the distri-
buted datasets. Figure 5 shows that the MDDE utilizing the
Z-order and the Hilbert curve converges faster to the global
optimum than in the case of the C-curve.The Z-order gener-
ally shows better results than the Hilbert curve especially in
sparse and nonuniformly distributed datasets.

4.2.2. Convergence Tests. Thenextmeasurements are focused
on the evolution convergence during the generations. Figures
6, 7, 8, and 9 show theMDDE progress measured on different
problems, datasets, and dimensions.Thesemeasurements are
visualized by the ribbon plots or curves of medians con-
structed from 20 preformed measurements. The vertical axis
represents the corresponding fitness value expressed by a
multiple of the best analytical solution.

Figure 6 shows the comparison of the ribbon plots
displaying the median, the first, and the third quartile of the
measured fitness for point-to-point and point-to-line prob-
lems. These tests were performed on the artificial datasets
with 106 vertices with the Gaussian distribution according to
the parameters in Table 1. The Z-order shows its supremacy
again; theC-curve has theworst convergence in thismeasure-
ment. The accuracy is much better in the case of the point-
to-point distance problem, because the line crosses the whole
point cloud; thus there are many very close vertices. The
vertices with the zero distance metric are eliminated in both
cases.

Figures 7 and 8 show similar convergence metrics for the
Rastrigin (Figure 7) and the Schwefel (Figure 8) test func-
tions. Only the medians are displayed to obtain better legi-
bility of the plots. Table 2 summarizes theMDDE parameters
for all tests. The tests on both functions were performed on
artificial datasetswith theGaussian distribution (105 vertices)
andGaussian islands (104 vertices), as it was explained in Sec-
tion 4.1.2. The results are more comparable in contrast with
the distance functions especially in the case of the Gaussian

Table 2: The DE parameters for Rastrigin and Schwefel function
minimization problem andmaximumdistance problem for different
vertex distributions.

Rastrigin function
Distribution 𝑘 𝑃 𝐹 𝐶
Gaussian 2D 10 30 0.1 0.5
Gaussian 3D 10 30 0.05 0.5
Gaussian islands 2-3D 10 20 0.3 0.5

Schwefel function
Distribution 𝑘 𝑃 𝐹 𝐶
Gaussian 2-3D 10 30 0.05 0.5
Gaussian islands 2-3D 10 20 0.3 0.5

Maximum distance
Distribution 𝑘 𝑃 𝐹 𝐶
Stanford datasets 2 30 0.3 0.8

islands. However, the Z-order mostly shows the fastest con-
vergence and the best accuracy in comparison with the other
SFCs.

Finally, Figure 9 represents the convergencemetrics of the
maximum distance problem reformulated to the minimiza-
tion problem (see Section 4.1.3). These tests were performed
on the three Stanford datasetsmentioned in Table 1 according
to the parameters in Table 2. The plots show the progress of
the fitness rate during the 100 generations. The results are
quite comparable again, but the Z-order converges faster than
the Hilbert curve and C-curve.

4.2.3. Completeness Tests. The MDDE returns a vector of
vertex indices as a result of the optimization. The discrete
optimal solutions can be found analytically in the datasets
with the finite number of vertices, so that the intersection of
the stochastically found solution and the best solution can be
computed. Thus, the completeness is defined by the rate

𝑐 = 𝑎
𝑘 , (6)

where 𝑎 is the number of correctly found vertex indices of an
individual and 𝑘 is the total number of individual indices.

The completeness was measured after 100 generations of
the evolution on the Rastrigin (Table 3) and the Schwefel
(Table 4) test functions, because they are very complex
functions with many local minima. The measurements were
performed with the DE parameters summarized in Table 2.
Tables 3 and 4 represent the completeness comparison for
the three SFCs and two vertex distributions. The tables show
that the completeness is better in the case of Gaussian islands
and 3D space. The same number of vertices distributed in
the 2D space leads to the greater density of sampling; thus
there aremore vertices with good fitness than in the 3D space,
where the distances between samples are greater. Therefore,
the distinction of two very close solutions is very complicated
for such a bioinspired method. However, the results are still
very good especially in the case of Z-order andHilbert curves.



Computational Intelligence and Neuroscience 9

Budha

Bunny

Dragon

Gauss

Islands

Uniform

C-curve

Hilbert

Z-order

C-curve

Hilbert

Z-order

C-curve

Hilbert

Z-order

C-curve

Hilbert

Z-order

C-curve

Hilbert

Z-order

C-curve

Hilbert

Z-order

3 88 17
3

25
7

34
2

42
7

51
2

59
6

68
1

76
6

Number of generations (log 10 scale)

(a)

C-curve

Hilbert

Z-order

C-curve

Hilbert

Z-order

C-curve

Hilbert

Z-order

C-curve

Hilbert

Z-order

C-curve

Hilbert

Z-order

C-curve

Hilbert

Z-order

Budha

Bunny

Dragon

Gauss

Islands

Uniform

3

11
4

22
4

33
5

44
5

55
6

66
6

77
7

88
7

99
8

Number of generations (log 10 scale)

(b)

Figure 5: The box plots comparing the SFCs on the point-to-point (a) and point-to-line (b) distance minimization problems in the 3D space.
The horizontal axis shows the number of generations needed to reach the sufficient fitness rate according to Table 1. Each measurement was
done 50 times for the same parameters and datasets (see Table 1).

Table 3: Rastrigin function: completeness of results after 100
generations.

Z-order 2D 3D
Distribution Avg. Stdev. Med. Avg. Stdev. Med.
Gaussian 0.61 0.25 0.5 0.54 0.23 0.6
Gauss. islands 0.94 0.09 1.0 0.90 0.09 0.9
Hilbert 2D 3D
Distribution Avg. Stdev. Med. Avg. Stdev. Med.
Gaussian 0.04 0.05 0.0 0.67 0.32 0.8
Gauss. islands 0.22 0.12 0.2 0.81 0.08 0.8
C-curve 2D 3D
Distribution Avg. Stdev. Med. Avg. Stdev. Med.
Gaussian 0.04 0.06 0.0 0.16 0.11 0.2
Gauss. islands 0.21 0.11 0.2 0.93 0.06 0.9

Table 4: Schwefel function: completeness of results after 100
generations.

Z-order 2D 3D
Distribution Avg. Stdev. Med. Avg. Stdev. Med.
Gaussian 0.8 0.24 0.9 0.93 0.13 1.0
Gauss. islands 0.89 0.08 0.9 0.83 0.1 0.8
Hilbert 2D 3D
Distribution Avg. Stdev. Med. Avg. Stdev. Med.
Gaussian 0.8 0.28 1.0 0.86 0.18 0.9
Gauss. islands 0.7 0.09 0.7 0.95 0.16 1.0
C-curve 2D 3D
Distribution Avg. Stdev. Med. Avg. Stdev. Med.
Gaussian 0.59 0.15 0.6 0.23 0.14 0.2
Gauss. islands 0.81 0.07 0.8 0.8 0.08 0.8



10 Computational Intelligence and Neuroscience

2D

1

189
378

0 10 20 30 40 49
Iteration

3D

1

30

58

0 10 20 30 40 49
Iteration

M
ed

ia
n,

 1
st,

 an
d 

3r
d 

qu
.

M
ed

ia
n,

 1
st,

 an
d 

3r
d 

qu
.

(a)

2D

1

15970
31940

0 10 20 30 40 49
Iteration

M
ed

ia
n,

 1
st,

 an
d 

3r
d 

qu
.

3D

1

110
219

0 10 20 30 40 49
Iteration

M
ed

ia
n,

 1
st,

 an
d 

3r
d 

qu
.

(b)

Figure 6:The ribbon plots comparing the evolutions on point-to-point (a) and point-to-line (b) distance minimization problems for different
SFCs (red: Z-order, yellow: Hilbert, and green: C-curve) and artificial datasets with the Gaussian distribution (2-3 dimensions). The vertical
axis (log 10 scale) shows the fitness value expressed by a multiple of the best solution precomputed analytically. Each measurement was
performed 20 times for the same parameters (see Table 1).

2D

1

568
1136

0 10 20 30 40 50 60 70 80 90 99
Number of generations

M
ed

ia
n

3D

1

33
65

0 10 20 30 40 50 60 70 80 90 99
Number of generations

M
ed

ia
n

(a)

2D

1

4

7

0 10 20 30 40 49
Number of generations

M
ed

ia
n

3D

1

4

7

0 10 20 30 40 49
Number of generations

M
ed

ia
n

(b)

Figure 7: The convergence of the discrete evolution on the Rastrigin function utilizing the different SFCs (red: Z-order, yellow: Hilbert, and
green: C-curve). The vertical axis (log 10 scale) shows the fitness value expressed by a multiple of the best solution precomputed analytically.
Themeasurementswere performed 20 times for twodifferent vertex distributions ((a)Gaussian; (b)Gaussian islands) and the sameparameters
(Table 2).



Computational Intelligence and Neuroscience 11

2D

1

2

3

0 10 20 30 40 50 60 70 80 90 99
Number of generations

M
ed

ia
n

3D

1

1.5

2.1

0 10 20 30 40 50 60 70 80 90 99
Number of generations

M
ed

ia
n

(a)

2D

1

1.4

0 10 20 30 40 49
Number of generations

M
ed

ia
n

3D

1

1.3

0 10 20 30 40 49
Number of generations

M
ed

ia
n

(b)

Figure 8: The convergence of the discrete evolution on the Schwefel function utilizing the different SFCs (red: Z-order, yellow: Hilbert, and
green: C-curve). The vertical axis (log 10 scale) shows the fitness value expressed by a multiple of the best solution precomputed analytically.
Themeasurementswere performed 20 times for twodifferent vertex distributions ((a)Gaussian; (b)Gaussian islands) and the sameparameters
(Table 2).

Budha

1

5

0 10 20 30 40 50 60 70 80 90 99
Number of generations

M
ed

ia
n

Dragon

1

3

0 10 20 30 40 50 60 70 80 90 99
Number of generations

M
ed

ia
n

Bunny

1

2

0 10 20 30 40 50 60 70 80 90 99
Number of generations

M
ed

ia
n

Figure 9:The convergence of the discrete evolution on themaximumdistance searchproblemutilizing the different SFCs (red: Z-order, yellow:
Hilbert, and green: C-curve). The vertical axis (log 10 scale) shows the fitness value expressed by a multiple of the best solution precomputed
analytically. The measurements were performed 20 times for 3 real 3D datasets and the same parameters (Table 2).



12 Computational Intelligence and Neuroscience

Table 5: Computation times (s) of 100 generations of the defined
problems.

Problem 2D 3D
Avg. Stdev. Med. Avg. Stdev. Med.

Point-to-
point 0.0075 0.0005 0.007 0.0077 0.0005 0.008

Point-to-
line 0.0653 0.0005 0.065 0.0694 0.0006 0.069

Rastrigin
(Gaussian) 0.0059 0.0005 0.006 0.0073 0.0004 0.007

Rastrigin
(Gauss.
islands)

0.004 0.0004 0.004 0.0044 0.0005 0.004

Schwefel
(Gaussian) 0.0067 0.0004 0.007 0.0083 0.0005 0.008

Schwefel
(Gauss.
islands)

0.0044 0.0005 0.004 0.0053 0.0005 0.005

Maximum
distance — — — 0.0019 0.0003 0.002

4.2.4. Performance Tests. This section briefly introduces the
performance of the proposed MDDE algorithm. The evo-
lutionary times of 100 generations including the duplicity
elimination are summarized in Table 5. Each measurement
was performed 50 times on all the mentioned optimization
problems according to the DE parameters in Tables 1 and 2.
The computation times basically rely on a population size 𝑃,
the number of individual variables 𝑘, the dimension 𝑛, and
the objective function. All experiments run on the following
hardware: Intel Core i5 760@2.8GHz, 16GBRAM,Windows
7 64-bit.

5. Conclusion

A novel modification of the DE called the Multidimen-
sional Discrete Differential Evolution (MDDE) addressing
the combinatorial problems in n-dimensional point clouds is
presented. Ourmethod aims at the discrete-valued problems,
where a combination of multidimensional vertices represents
the required solution. The convergence of the evolution is
improved by spatial data linearization by the space filling
curves (SFCs). The algorithm efficiently eliminates the prob-
lem of the duplicate values in an individual. The paper
examines the local searching abilities of the MDDE and
the convergence to the global extreme in the discrete point
clouds. The method is tested on several spatial optimization
problems and the three SFCs (Z-order, Hilbert, and C-curve).
The tests on the convergence and completeness of the discrete
solution show that the Z-order curve can be recommended as
the best variant from the tested SFCs.The completeness of the
best found solutions mostly balances between 60% and 100%
depending on the used SFC. The evolution converges fast
especially during the first 50 generations. The computation
times of 100 generations measured on the test problems are
maximally several milliseconds. Our MDDE is an efficient

and fast method for discrete optimizations in the multidi-
mensional point clouds.Themain disadvantage of theMDDE
is the limited precision of the SFCs, which are limited by the
bit length of the vertex hashes. This is considerable especially
in higher dimensions.

The MDDE represents a basic discrete model for pattern
recognition and feature extraction especially in the 2D and
3D discrete datasets. The difficult task is to formulate the
real problems for the MDDE; thus this will be the direction
of our future work. We have promising results in the area
of primitives detection, where the MDDE can accelerate the
convergence of evolution.

Competing Interests

The authors declare that the grant, scholarship, and/or fund-
ing do not lead to any conflict of interests. Additionally, the
authors declare that there is no conflict of interests regarding
the publication of this manuscript.

Acknowledgments

Thisworkwas supported by SGS project, VŠB-Technical Uni-
versity of Ostrava, under Grant no. SP2016/97. This work was
also supported byGrant Agency of theCzechRepublic, under
Grant no. GACR GA15-06700S: Unconventional Control of
Complex Systems.

References

[1] A. Harrison and P. Newman, “High quality 3D laser ranging
under general vehicle motion,” in Proceedings of the 2008 IEEE
International Conference on Robotics and Automation (ICRA
’08), pp. 7–12, Pasadena, Calif, USA, May 2008.

[2] V. Uher, P. Gajdoš, T. Ježowicz, and V. Snášel, “Application of
hexagonal coordinate systems for searching the K-NN in 2D
space,” in Innovations in Bio-Inspired Computing and Applica-
tions: Proceedings of the 6th International Conference on Innova-
tions in Bio-Inspired Computing and Applications (IBICA 2015)
held in Kochi, India during December 16–18, 2015, vol. 424 of
Advances in Intelligent Systems and Computing, pp. 209–220,
Springer, Berlin, Germany, 2016.

[3] P. Núñez, R. Vázquez-Mart́ın, J. C. del Toro, A. Bandera, and
F. Sandoval, “Feature extraction from laser scan data based
on curvature estimation for mobile robotics,” in Proceedings of
the IEEE International Conference on Robotics and Automation
(ICRA ’06), pp. 1167–1172, IEEE, Orlando, Fla, USA, May 2006.

[4] A. Qing, Differential Evolution: Fundamentals and Applications
in Electrical Engineering, John Wiley & Sons, New York, NY,
USA, 2009.

[5] H.Mo andZ. Li, “Bio-geography based differential evolution for
robot path planning,” in Proceedings of the IEEE International
Conference on Information and Automation (ICIA ’12), pp. 1–6,
IEEE, Shenyang, China, June 2012.

[6] R. Ugolotti and S. Cagnoni, “Differential evolution based
human body pose estimation from point clouds,” in Proceedings
of the 2013 15th Annual Conference Genetic and Evolutionary
Computation (GECCO ’13), pp. 1389–1396, ACM, Amsterdam,
The Netherlands, July 2013.



Computational Intelligence and Neuroscience 13

[7] E. Cuevas, D. Zaldivar, M. Pérez-Cisneros, and M. Ramı́rez-
Ortegón, “Circle detection using discrete differential evolution
optimization,” Pattern Analysis and Applications, vol. 14, no. 1,
pp. 93–107, 2011.

[8] R. Storn and K. Price, “Differential evolution—a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–
359, 1997.

[9] G. C. Onwubolu and D. Davendra, Differential Evolution: A
Handbook for Global Permutation-Based Combinatorial Opti-
mization, Springer Publishing Company, Incorporated, Berlin,
Germany, 1st edition, 2009.

[10] R. Balamurugan and S. Subramanian, “Hybrid integer coded
differential evolution—dynamic programming approach for
economic load dispatch with multiple fuel options,” Energy
Conversion and Management, vol. 49, no. 4, pp. 608–614, 2008.

[11] A. Ş. Uyar, B. Türkay, and A. Keleş, “A novel differential evolu-
tion application to short-term electrical power generation sche-
duling,” International Journal of Electrical Power and Energy
Systems, vol. 33, no. 6, pp. 1236–1242, 2011.

[12] C.-S. Deng, B.-Y. Zhao, A.-Y. Deng, and C.-Y. Liang, “Hybrid-
codingBinaryDifferential Evolution algorithmwith application
to 0-1 knapsack problems,” in Proceedings of the International
Conference on Computer Science and Software Engineering
(CSSE ’08), vol. 1, pp. 317–320, December 2008.

[13] M. FatihTasgetiren, P.N. Suganthan, andQ.-K. Pan, “An ensem-
ble of discrete differential evolution algorithms for solving the
generalized traveling salesman problem,” Applied Mathematics
and Computation, vol. 215, no. 9, pp. 3356–3368, 2010.

[14] M. F. Tasgetiren, Q.-K. Pan, and Y.-C. Liang, “A discrete differ-
ential evolution algorithm for the singlemachine total weighted
tardiness problemwith sequence dependent setup times,”Com-
puters and Operations Research, vol. 36, no. 6, pp. 1900–1915,
2009.

[15] J. Zhang, Y. Wu, Y. Guo, B. Wang, H. Wang, and H. Liu, “A
hybrid harmony search algorithmwith differential evolution for
day-ahead scheduling problem of a microgrid with considera-
tion of power flow constraints,”Applied Energy, vol. 183, pp. 791–
804, 2016.

[16] S. Sivasubramani and K. S. Swarup, “Multiagent based differ-
ential evolution approach to optimal power flow,” Applied Soft
Computing Journal, vol. 12, no. 2, pp. 735–740, 2012.

[17] P. Yan, G. Wang, A. Che, and Y. Li, “Hybrid discrete differential
evolution algorithm for biobjective cyclic hoist scheduling with
reentrance,” Computers & Operations Research, vol. 76, pp. 155–
166, 2016.

[18] K. Ma, P. Yan, andW. Dai, “A hybrid discrete differential evolu-
tion algorithm for dynamic scheduling in robotic cells,” in Pro-
ceedings of the 13th International Conference on Service Systems
and Service Management (ICSSSM ’16), Kunming, China, June
2016.

[19] D. T. Do, S. Lee, and J. Lee, “A modified differential evolution
algorithm for tensegrity structures,” Composite Structures, vol.
158, pp. 11–19, 2016.

[20] H. Zhang, Q. Yan, Y. Liu, and Z. Jiang, “An integer-coded dif-
ferential evolution algorithm for simple assembly line balancing
problemof type 2,”Assembly Automation, vol. 36, no. 3, pp. 246–
261, 2016.

[21] J. Chakraborty, A. Konar, U. K. Chakraborty, and L. C. Jain,
“Distributed cooperative multi-robot path planning using dif-
ferential evolution,” in Proceedings of the 2008 IEEE Congress on

Evolutionary Computation (CEC ’08), pp. 718–725, IEEE World
Congress on Computational Intelligence, Hong Kong, June
2008.

[22] L. D. S. Coelho, N. Nedjah, and L. D. M. Mourelle, “Mobile
robots: the evolutionary approach,” in Differential Evolution
Approach Using Chaotic Sequences Applied to Planning ofMobile
Robot in a Static Environment with Obstacles, pp. 3–22, Springer,
Berlin, Germany, 2007.

[23] D. Lichtblau, “Differential evolution in discrete optimization,”
International Journal of Swarm Intelligence and Evolutionary
Computation, vol. 1, 10 pages, 2012.

[24] S. Das and P. N. Suganthan, “Differential evolution: a survey
of the state-of-the-art,” IEEE Transactions on Evolutionary
Computation, vol. 15, no. 1, pp. 4–31, 2011.

[25] Y. Zhang, S. Wang, and G. Ji, “A comprehensive survey on
particle swarm optimization algorithm and its applications,”
Mathematical Problems in Engineering, vol. 2015, Article ID
931256, 38 pages, 2015.

[26] T. W. Liao, “Two hybrid differential evolution algorithms for
engineering design optimization,” Applied Soft Computing Jour-
nal, vol. 10, no. 4, pp. 1188–1199, 2010.

[27] J. Lampinen and I. Zelinka, “Mixed integer-discrete-continuous
optimization by differential evolution,” in Proceedings of the 5th
International Conference on Soft Computing, pp. 77–81, 1999.

[28] J. Lampinen and I. Zelinka, “Mixed integer-discrete-continuous
optimization by differential evolution—part 2: a practical exam-
ple,” in Proceedings of the 5th International Mendel Conference
on Soft Computing (MENDEL ’99), pp. 77–81, Brno University
of Technology, Brno, Czech Republic, June 1999.

[29] D. Davendra and G. Onwubolu, “Forward backward trans-
formation,” in Differential Evolution: A Handbook for Global
Permutation-Based Combinatorial Optimization, pp. 35–80,
Springer, Berlin, Germany, 2009.

[30] P. Gajdoš and I. Zelinka, “On the influence of different number
generators on results of the symbolic regression,” Soft Comput-
ing, vol. 18, no. 4, pp. 641–650, 2014.

[31] X. Yuan, A. Su, H. Nie, Y. Yuan, and L. Wang, “Application of
enhanced discrete differential evolution approach to unit com-
mitment problem,”EnergyConversion andManagement, vol. 50,
no. 9, pp. 2449–2456, 2009.

[32] R. Angira and B. V. Babu, “Optimization of process synthesis
and design problems: a modified differential evolution app-
roach,” Chemical Engineering Science, vol. 61, no. 14, pp. 4707–
4721, 2006.

[33] H. Schmidt and G. Thierauf, “A combined heuristic optimiza-
tion technique,”Advances in Engineering Software, vol. 36, no. 1,
pp. 11–19, 2005.

[34] M. FatihTasgetiren,Q.KePan, P. Suganthan, andY.-C. Liang, “A
discrete differential evolution algorithm for the no-wait flow-
shop scheduling problem with total flowtime criterion,” in Pro-
ceedings of the IEEE Symposium on Computational Intelligence
in Scheduling (SCIS ’07), pp. 251–258, April 2007.

[35] D.Datta and J. R. Figueira, “A real-integer-discrete-codeddiffer-
ential evolution,” Applied Soft Computing Journal, vol. 13, no. 9,
pp. 3884–3893, 2013.

[36] R. Ugolotti, G. Micconi, J. Aleotti, and S. Cagnoni, “GPU-based
point cloud recognition using evolutionary algorithms,” in
Applications of Evolutionary Computation: 17th European Con-
ference, EvoApplications 2014, Granada, Spain, April 23–25,
2014, Revised Selected Papers, pp. 489–500, Springer, Berlin,
Germany, 2014.



14 Computational Intelligence and Neuroscience

[37] S. Das, A. Abraham, and A. Konar, “Automatic clustering using
an improved differential evolution algorithm,” IEEE Transac-
tions on Systems, Man, and Cybernetics Part A: Systems and
Humans, vol. 38, no. 1, pp. 218–237, 2008.

[38] L. G. Fraga and C. A. Coello Coello, “A review of applications
of evolutionary algorithms in pattern recognition,” in Pattern
Recognition, Machine Intelligence and Biometrics, P. S. P. Wang,
Ed., pp. 3–28, Springer, Berlin, Germany, 2011.

[39] E. Corrochano and J. Eklundh, Progress in Pattern Recogni-
tion, Image Analysis, Computer Vision, and Applications: 14th
Iberoamerican Conference on Pattern Recognition, CIARP 2009,
Guadalajara, Jalisco, México, November 15–18, 2009. Proceed-
ings, vol. 5856 of Image Processing, Computer Vision, Pattern
Recognition, and Graphics, Springer, Berlin, Germany, 2009.

[40] R. Ugolotti, Y. S. G. Nashed, P. Mesejo, S. Ivekovič, L. Mussi,
and S. Cagnoni, “Particle swarm optimization and differential
evolution for model-based object detection,” Applied Soft Com-
puting, vol. 13, no. 6, pp. 3092–3150, 2013.

[41] E. Cuevas, M. González, D. Zaldı́var, and M. Pérez-Cisneros,
“Multi-ellipses detection on images inspired by collective ani-
mal behavior,” Neural Computing and Applications, vol. 24, no.
5, pp. 1019–1033, 2014.

[42] K. P. Chandar and T. S. Savithri, “3D face model estimation
based on similarity transform using differential evolution opti-
mization,”Procedia Computer Science, vol. 54, pp. 621–630, 2015.

[43] R. Storn andK. Price, “Differential evolution—a simple and effi-
cient adaptive scheme for global optimization over continuous
spaces,” Tech. Rep., 1995.

[44] E.Mezura-Montes, J. Velázquez-Reyes, andC. A. Coello Coello,
“A comparative study of differential evolution variants for global
optimization,” in Proceedings of the 8th Annual Genetic and
Evolutionary Computation Conference (GECCO ’06), pp. 485–
492, ACM, Seattle, Wash, USA, July 2006.

[45] S. Koziel and Z. Michalewicz, “Evolutionary algorithms, homo-
morphousmappings, and constrained parameter optimization,”
Evolutionary Computation, vol. 7, no. 1, pp. 19–44, 1999.

[46] Y. Gao, Y. Sun, and J. Wu, “Difference-genetic co-evolutionary
algorithm for nonlinearmixed integer programming problems,”
Journal of Nonlinear Science and Its Applications, vol. 9, no. 3, pp.
1261–1284, 2016.

[47] A. R. Butz, “Convergence with Hilbert’s space filling curve,”
Journal of Computer and System Sciences, vol. 3, no. 2, pp. 128–
146, 1969.

[48] G. Breinholt andC. Schierz, “Algorithm781: generatingHilbert’s
space-filling curve by recursion,” ACM Transactions on Mathe-
matical Software, vol. 24, no. 2, pp. 184–189, 1998.

[49] J. K. Lawder and P. J. H. King, Advances in Databases: 17th
British National Conference on Databases, BNCOD 17 Exeter,
UK, July 3–5, 2000 Proceedings, Lecture Notes in Computer
Science, Springer, Berlin, Germany, 2000.

[50] J. Skilling, “Programming the hilbert curve,” in Proceedings of
the Bayesian Inference andMaximum Entropy Methods, vol. 707
of AIP Conference Proceedings, pp. 381–387, Jackson Hole, Wyo,
USA, 2004.

[51] T. Skopal, M. Krátký, J. Pokorný, and V. Snášel, “A new range
query algorithm for universal B-trees,” Information Systems, vol.
31, no. 6, pp. 489–511, 2006.

[52] D. Eberly, “Distance between point and line, ray, or line seg-
ment,” April 2016, http://www.geometrictools.com/Source/Dis-
tance3D.html.

[53] “Appendix a—test function benchmarks for global optimiza-
tion,” in Nature-Inspired Optimization Algorithms, X.-S. Yang,
Ed., Elsevier, Oxford, UK, 2014.

[54] K. Fischer, B. Gärtner, and M. Kutz, “Fast smallest-enclosing-
ball computation in high dimensions,” in Algorithms—ESA
2003, G.Di Battista andU.Zwick, Eds., vol. 2832 ofLectureNotes
in Computer Science, pp. 630–641, Springer, Berlin, Germany,
2003.

[55] The stanford 3d scanning repository, 2016, http://graphics.stan-
ford.edu/data/3Dscanrep/.

http://www.geometrictools.com/Source/Distance3D.html
http://www.geometrictools.com/Source/Distance3D.html
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/

