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Abstract: Sepsis remains a leading cause of death in ICUs all over the world, with pediatric sepsis
accounting for a high percentage of mortality in pediatric ICUs. Its complexity makes it difficult
to establish a consensus on genetic biomarkers and therapeutic targets. A promising strategy is to
investigate the regulatory mechanisms involved in sepsis progression, but there are few studies
regarding gene regulation in sepsis. This work aimed to reconstruct the sepsis regulatory network
and identify transcription factors (TFs) driving transcriptional states, which we refer to here as master
regulators. We used public gene expression datasets to infer the co-expression network associated
with sepsis in a retrospective study. We identified a set of 15 TFs as potential master regulators of
pediatric sepsis, which were divided into two main clusters. The first cluster corresponded to TFs
with decreased activity in pediatric sepsis, and GATA3 and RORA, as well as other TFs previously
implicated in the context of inflammatory response. The second cluster corresponded to TFs with
increased activity in pediatric sepsis and was composed of TRIM25, RFX2, and MEF2A, genes not
previously described as acting in a coordinated way in pediatric sepsis. Altogether, these results show
how a subset of master regulators TF can drive pathological transcriptional states, with implications
for sepsis biology and treatment.

Keywords: master regulators; pediatric sepsis; regulatory networks; systems biology; septic shock

1. Introduction

Sepsis is a syndrome of physiologic and biochemical abnormalities in response to
an infection, which leads to systemic damage across organs and tissues [1]. Pediatric
sepsis has distinct clinical presentations compared to adult sepsis regarding the prevalence
of cardiovascular dysfunction, acute respiratory distress syndrome, and organ failure
which are more likely to happen in children compared to adults [2]. In children, infections
represent about 40% of hospitalizations, and almost five million children progress to severe
organ dysfunction worldwide related to sepsis [3]. Sepsis is the leading cause of death in
intensive care units (ICUs), affecting approximately 30% of all ICU patients worldwide [4].
There is broad variability in sepsis prevalence and outcomes in ICU patients [4,5], as
sepsis can manifest different clinical presentations, ranging from systemic inflammatory
response syndrome (SIRS), sepsis, septic shock, and severe sepsis [6,7]. Each of these clinical
presentations requires a different set of medical interventions. Therefore, understanding
the differences across sepsis subtypes is critical to patient outcomes.

Previous studies aimed to stratify septic patients based on clinical and molecular
aspects with mixed success [8–10], indicating that sepsis stratification could benefit from
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additional molecular biomarkers. However, there are only a few described molecular
approaches to discriminate across sepsis prognostics, and individual-level variations in the
immune system can act as confounders [11]. Several gene expression panels aim to identify
pediatric sepsis biomarkers, but there is still a lack of consensus about what constitutes
the pediatric sepsis gene signature [12]. Overcoming these challenges will lead to higher
success in patient stratification and improve treatment outcomes [13].

A promising approach to identify sepsis molecular biomarkers is to investigate tran-
scriptional regulatory mechanisms of sepsis. Currently, there are computational frame-
works designed to identify gene regulatory networks. Gene regulatory networks are
composed of transcription factors (TFs) and their target genes. Each TF and its target genes
are collectively called a regulon, and the subset of TFs statistically associated with the
genes perturbed in a given condition (i.e., its transcriptional signature) are called master
regulators (MRs). The MR framework is a powerful approach and has been previously
applied to cancer and other diseases [14–21]. Previous studies have analyzed gene expres-
sion profiles of sepsis and pediatric sepsis [22–26], but none of these have attempted to
directly identify the transcriptional MRs of sepsis and pediatric sepsis. Therefore, the MR
framework represents a strategy ripe with the potential to uncover novel biological and
clinical insights into sepsis.

Here, we reconstructed the pediatric sepsis regulatory network aiming to identify
sepsis-associated transcriptional regulators (sepsis MRs). To this end, we applied a previ-
ously described robust mutual information framework [27] to publicly available whole-
blood high-throughput gene expression molecular profiles from pediatric sepsis patients.
One novelty of our approach was to control for transcriptional signatures that are shared
across other unrelated inflammatory conditions. Therefore, the MRs identified by our
analyses are highly enriched to be specific to sepsis. We identified 15 sepsis transcriptional
MRs broadly divided into two non-overlapping regulatory networks that include both
known and novel TFs associations with sepsis. Altogether, these results will likely have
implications in understanding sepsis biology and treatment.

2. Materials and Methods
2.1. Pediatric Sepsis Regulatory Network Reconstruction

The complete pipeline for regulatory network reconstruction is depicted in Figure 1
and Supplementary Figure S1. Data used to reconstruct the pediatric sepsis regulatory
networks were retrieved from Gene Expression Omnibus (GEO) [28] (accession numbers
GSE13904 and GSE4607). The dataset GSE13904 includes expression data from whole blood
samples of children diagnosed with SIRS, sepsis, and septic shock [6]. The dataset GSE4607
includes expression data from whole blood samples of children diagnosed with SIRS, and
septic shock [23–25,29]. Considering the constant evolution of sepsis definitions, samples
collected in the 2000s may not necessarily be described in the same way in 2021. Therefore,
we collectively name the case samples as sepsis from now on. The list of 1388 human TFs
was obtained from Fletcher2013b R/Bioconductor package (R version 4.1.0) [15].

The sepsis regulatory network reconstruction was performed using RTN (Reconstruc-
tion of Transcriptional Networks) [15], an R/Bioconductor package (R version 4.1.0). This
tool was designed to assess gene regulatory networks by using mutual information of
gene expression data and a predefined set of transcription factors (TFs) to create a TF-
centered regulatory map. RTN uses the Algorithm for the Reconstruction of Accurate
Cellular Networks (ARACNe) [30] to infer the regulatory networks [15]. The methodology
aims to allow reliable reconstruction of genome-wide mammalian networks, overcoming
limitations such as temporal gene expression alterations between samples, cellular popula-
tions characteristics, and random alterations in expression states of different samples [30].
Briefly, the RTN algorithm identifies statistical dependence of expression data using mutual
information along with a set of transcription factors (TFs) to build a TF-centric regulatory
network. Each TF and its target genes are collectively called a regulon. The Transcrip-
tional Network Inference (TNI) algorithm calculates the association between a TF and
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the genes in its regulon (i.e., a potentially regulated gene), and removes spurious links
by performing random permutations (10,000 permutations, BH adjusted p-value < 0.05).
We reconstructed two independent regulatory networks, from now on named Pediatric
Sepsis 1 (using GSE13904, number of samples = 99) and Pediatric Sepsis 2 (using GSE4607,
number of samples = 108). Each network is depicted based on regulon overlap, and the
nodes represent the inferred regulons with at least 15 genes.
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Figure 1. Flowchart of the sepsis regulatory network inference and identification of master regulators. Two independent
cohorts were used to infer the networks (GSE13904 and GSE4607) and one cohort was used to build the pediatric sepsis
gene signature (GSE26378). The networks were further analyzed by two different gene signatures (GSE56649, rheumatoid
arthritis; GSE21942, multiple sclerosis). In the end, a set of 15 master regulators were found: ZNF529, GATA3, KLF12, RORA,
HOXB2, NR3C2, ZNF329, RFX2, ZKSCAN8, ZNF331, ZNF235, MEF2A, ZNF234, ZNF134, TRIM25.
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Both microarray datasets used for network inference were generated by the same
platform (Affymetrix Human Genome U133 Plus 2.0), preprocessed, and normalized using
the affy R package (R version 4.1.0) [31]. Annotation for this platform was obtained from
the platform annotation file provided in the GEO database.

2.2. Gene Signatures from Sepsis, Rheumatoid Arthritis, and Multiple Sclerosis

The goal of a gene signature is to identify genes that are altered in a specific biological
phenomenon. Here, the gene signatures consist of a list of differentially expressed genes in
a case-control expression experiment. The signature is employed to identify the putative
master regulators among the network regulons in the Master Regulator Analysis (MRA),
as described below (Section 2.3). The datasets to infer the gene signatures were obtained
from GEO. The dataset GSE26378, used to infer sepsis gene signature, contains expression
data from children diagnosed with septic shock (sepsis group, number of samples = 82),
and healthy children (control group, number of samples = 21) [32]. The dataset GSE56649,
used to infer rheumatoid arthritis (RA) gene signature, contains expression data from
22 CD4+ T-cell samples of RA patients (RA group, number of samples = 13), and healthy
donors (control group, number of samples = 9) [33]. The dataset GSE21942, used to
infer rheumatoid multiple sclerosis (MS) gene signature, contains expression data from
29 peripheral blood mononuclear cells (PBMC) samples of MS patients (MS group, number
of samples = 12), and healthy donors (control group, number of samples = 15) [34]. All
microarray datasets used to infer the gene signatures were generated by the same platform
(Affymetrix Human Genome U133 Plus 2.0), preprocessed, and normalized using the affy
R package [31]. Annotation for this platform was obtained from the platform annotation
file provided in the GEO database. Differentially expressed genes for each signature were
obtained using the limma R/Bioconductor package (R version 4.1.0) [35] in a case-control
design (BH adjusted p-value < 0.05).

2.3. Master Regulator Analysis

Master Regulator Analysis (MRA) uses hypergeometric testing to check whether a list
of genes corresponding to a transcriptional signature (e.g., differentially expressed genes in
disease vs. control) are significantly enriched in a given regulon. If this test has statistical
significance (BH adjusted p-value < 0.05), the TF controlling a given regulon is likely to be
considered a candidate MR. The MRA pipeline from the RTN R/Bioconductor package was
applied in Pediatric Sepsis 1 and 2 datasets. We also interrogated both Networks (Pediatric
Sepsis 1 and Pediatric Sepsis 2) with two different inflammatory disease gene signatures for
MS (GSE21942) and RA (GSE56649). The objective of this step was to identify among those
regulons assigned as MRs using sepsis gene signature, which ones can also be identified
as MRs using other inflammatory disease gene signatures. The GSE56649 (used for RA
gene signature) and GSE21942 (used for MS gene signature) are not age-matched with both
sepsis datasets. Additionally, the sepsis datasets were obtained from whole blood while
RA and MS datasets were obtained from PBMC. Therefore, we can use this information
to determine which regulons are regulated by sepsis-specific MRs, as TFs associated with
regulons detected in datasets from different inflammatory syndromes, patient ages, and
blood cell populations, likely represent non-specific associations. Supplementary Figure S1
details the filtering steps to narrow down the number of MR candidates.

2.4. Network Visualizations

The RedeR R/Bioconductor package (R version 4.1.0) was used to visualize the graphs
generated by the RTN R/Bioconductor package [36]. RedeR allows the visualization of
networks in several forms, but here we used association maps (amap) and tree-and-leaf
representations. In association maps, nodes represent a regulon, while edges depict mutual
regulation of genes by two TFs (i.e., regulatory overlap between regulons). Edge width
corresponds to the number of genes mutually regulated. The tree-and-leaf visualization
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lays the network as a dendrogram in which edges are distributed according to the clustering
of regulatory overlaps. By default, regulons with less than 15 genes are not represented.

2.5. Regulon Activity Analysis

Regulon activity was assessed using the RTN Bioconductor/R package. The RTN
package measures for every patient how the expression of each gene deviates towards the
average expression of that gene for all patients in the cohort and then applies the Two-Tailed
Gene Set Enrichment Score analysis (GSEA2). The TFs activity level was approximated by
the Normalized Enrichment Score (NES) computed for its regulon. This analysis measures
the enrichment score of the regulatory activity for each regulon, compared with each other,
for a set of patients in a cohort. This measure is basically the deviation of the average
expression of a given gene for all patients of the cohort. The results are depicted in a
heatmap format, along with dendrograms.

2.6. Gene Ontology Functional Enrichment

To investigate the function of regulons, we functionally enriched the regulated gene
sets of each MR. This analysis was carried out through the clusterProfiler R/Bioconductor
package (R version 4.1.0) [37]. Genes were enriched under the Biological Process category
from Gene Ontology (GO). Functional associations with adjusted p-values under 0.05
(Benjamini-Hochberg correction) were considered to be significant.

2.7. Master Regulator Expression

For MR expression, we used normalized expression of each one of the 15 MR-coding
genes. Since more than one probe represents the same gene, the first step was to build a
score to select the best probe. This score consists of:

geomSD(P)1/geoMean(P) (1)

where geomSD is the geometric standard deviation, geoMean is the geometric mean, and
p is the value for a given probe. For each gene, the function seeks all probes and gets the
one with the highest score, representing then the MR-coding gene for a given MR, ranked
by adjusted p-value of a pairwise Wilcoxon’s test (adjustment by Bonferroni p < 0.01).
Afterwards, gene expression on case (septic) and control samples was measured for both
Pediatric Sepsis 1 (GSE13904, case = 99; control = 18) and Pediatric Sepsis 2 (GSE4607, case
= 108; control = 15). Expression comparison between case and control of each network was
measured by adjusted p-value of pairwise Wilcoxon’s test, by Bonferroni.

3. Results
3.1. Sepsis Regulatory Networks and Master Regulator Analysis

The main objective of this study was to reconstruct the gene regulatory network of
sepsis. Regulatory networks are specific for a given biological condition and show the
interactions among regulatory units, also called regulons. A given regulon includes a
transcription factor (TF) and its regulated genes. Once the regulatory network is con-
structed, MRs can be defined by identifying which regulons are significantly enriched
with a given gene signature [14]. The networks from Pediatric Sepsis 1 and 2 datasets
are depicted in Figures 2 and 3, respectively. The networks are represented by a tree-
and-leaf graph in which nodes depict regulons, and edges depict the overlap between
regulons in a hierarchical fashion. In other words, the closer the regulons are in the
network, the greater their overlap regarding regulated genes. Node size corresponds
to the number of genes in the regulon while color indicates adjusted p-values enrich-
ment for sepsis gene signature, highlighting the MRs. MRA identified 233 MRs in the
Pediatric Sepsis 1 network (Supplementary Table S1), and 215 in the Pediatric Sepsis 2
network (Supplementary Table S2), of which 179 MRs were present in both networks
(Supplementary Figure S1, Supplementary Tables S3 and S4). Both networks showed two
MR clusters, which we named clusters A and B. In the Pediatric Sepsis 1 network, cluster
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A comprised 39 MRs, and cluster B comprised 34 MRs. In the Pediatric Sepsis 2 network,
cluster A comprised 68 MRs, and cluster B comprised 50 MRs. From all the 179 MRs
present in both networks, 50 were contained in these clusters (Supplementary Tables S5
and S6, Supplementary Figure S1). As expected from these early steps of the analyses, the
putative MRs included not only TFs known to be associated with the immune response
(e.g., IRF4 and GATA3), but also others that may represent lineage-specific regulons (e.g.,
KLF families of TF) or gene activators, such as TFs forming the AP-1 complex (FOS and
JUNB). This indicated that our MR analysis was also prioritizing TFs that were not specific
to sepsis. We reasoned that this lack of specificity was due to the septic shock transcrip-
tional signature including genes that were not directly linked to sepsis, but rather resulting
from downstream perturbations.
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As our previous results suggested that the candidate MR list included TFs not as-
sociated with sepsis, we next sought to identify and remove non-specific TFs from the
putative MR list. To this end, we then performed MRA in both networks (Pediatric Sepsis 1
and 2) using two unrelated inflammatory disease gene signatures (multiple sclerosis and
rheumatoid arthritis). Supplementary Figure S2 shows the intersection between all gene
signatures (sepsis, RA, and MS). Among the 50 MRs inside the clusters of both Pediatric
Sepsis Network 1 and 2, we observed a subset of 15 MRs that were specifically enriched
only in the sepsis signature, and therefore likely represent true MRs of the transcriptional
states associated with sepsis. The prioritized MRs were GATA3, HOXB2, KLF12, MEF2A,
NR3C2, RFX2, RORA, TRIM25, ZKSCAN8, ZNF134, ZNF234, ZNF235, ZNF329, ZNF331,
and ZNF529. Supplementary Tables S7 and S8 show the MRA of the 15 MRs in both
Pediatric Sepsis 1 and Sepsis 2 networks, respectively. From this point on, the analysis
focused on these 15 MRs (see Supplementary Table S9 to gene aliases and protein name of
the 15 MRs). In the Pediatric Sepsis 1 network, 11 out of 15 MRs (GATA3, HOXB3, KLF12,
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NR3C2, RORA, ZKSCAN8, ZNF234, ZNF235, ZNF329, ZNF331, and ZNF529) are located in
cluster A (Figure 2). In the Sepsis 2 network, 12 out of 15 MRs (GATA3, HOXB3, KLF12,
NR3C2, RORA, ZKSCAN8, ZNF134, ZNF234, ZNF235, ZNF329, ZNF331, and ZNF529) are
also located in cluster A (Figure 3). Notably, these MRs formed similar connectivity patterns
across these two independently generated networks, which highlights the robustness of
our computational approach and is consistent with these MRs performing similar and
complementary biological functions [14].
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3.2. Master Regulator Activity

Regulon activity was assessed based on the expression of genes in the regulon. Briefly,
gene expression was first converted into a z-score and, in each sample, all genes were sorted
by the z-score and then used as the reference list in GSEA2. A given regulon is considered
activated when its positively regulated genes were up-regulated in the GSEA, and its
negatively regulated genes were down-regulated in the GSEA. Conversely, the regulon
was considered inhibited when its negatively regulated genes were up-regulated in the
GSEA, and positively regulated genes were down-regulated in the GSEA [17]. Figure 4A
shows the heatmaps of the final set of 15 MRs, showing a cluster formed by RFX2, MEF2A,
and TRIM25 in both heatmaps. These three MRs show an inverse pattern of activity when
compared to the other 12 MRs. Figure 4B shows the functional overlap among the regulons,
based on the proportion of genes mutually regulated by each regulon pair. Similar to
what was observed in the heatmaps, RFX2, MEF2A, and TRIM25 regulons cluster together
(depicted as green nodes in the network).

3.3. Regulon Similarity

We assessed the similarity between regulons. Briefly, we calculated how many genes
are regulated in common between the two networks. Figure 4C shows the number of
shared genes among the regulons for both Pediatric Sepsis 1 network and Pediatric Sepsis
2. The most similar regulon comparing both networks is GATA3, and the least similar is
ZNF134. It is noteworthy that the top four MRs ranked the same way in both datasets
(Supplementary Tables S7 and S8), but only GATA3, KLF12, and ZNF529 also were the top
MRs in shared regulon size. Again, this highlights the robustness and reproducibility of
our approach and indicates that these top-scoring TFs are likely the true MRs driving the
pediatric sepsis transcriptional signature.
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3.4. Regulon Functional Enrichment

We next sought to determine what processes were associated with the prioritized
regulons. To this end, we performed the functional enrichment of regulons. As the regulons
were highly concordant across both networks, we merged regulons from both networks to
increase statistical power. Figure 5 shows enrichment results according to GO Biological
Process (BP) ontology. Only four regulons were not enriched due to the statistical cut-
off. GATA3 regulated genes are notably related to non-coding RNAs (such as tRNAs and
other non-coding RNAs, such as miRNAs and lcRNAs) and lymphocyte activation. The
latter result is consistent with GATA3, specifically driving the sepsis signature in T cells,
consistent with previous literature [38]. Some regulons also had a similar enrichment
pattern, such as KLF12, ZNF234, ZNF23, and ZNF529 (related to ncRNAs); RFX2 and
RORA showed overlap regarding lymphocyte-related activities. MEF2A was the only
regulon enriched for apoptosis-related BP terms. The other regulons did not notably
share biological processes. NR3C2 was enriched in cell cycle arrest, while TRIM25 was
enriched for neutrophil activation and erythrocyte maturation, and ZNF331 and ZNF529
was enriched for DNA replication processes. This suggests that these TFs regulate the
pediatric sepsis transcriptional signature acting through distinct pathways. When taken
together, these results highlight the complexity of the pediatric sepsis transcriptional
signature, which depends on the activation of TFs with distinct regulatory profiles and
propagates itself across multiple biological pathways and cell types.
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3.5. Master Regulators Expression in Sepsis Datasets

The expression of the 15 MRs was accessed in both Pediatric Sepsis 1 and 2 datasets
by comparing the septic samples and healthy controls. Figure 6 shows the gene expression
of each MR candidate in both datasets. The first row of boxplots shows that MEF2A,
RFX2, and TRIM25 were more expressed in sepsis samples in contrast to control ones.
Two of the remaining 12 MRs showed no significant difference in expression, ZNF235
and ZKSCAN8, with a false discovery rate (FDR) < 0.01, using a pairwise Wilcoxon’s test.



Biomedicines 2021, 9, 1297 9 of 16

The remaining 10 MRs showed an inverse expression pattern, being more expressed in
control samples when compared to septic ones. This result independently supports our
previous MR activity clustering. All downregulated MRs in pediatric sepsis belonged to
Cluster A, indicating that sepsis progression involves decreased activation of this subset of
TFs. On the other hand, all MRs belonging to Cluster B (MEF2A, RFX2, and TRIM25) had
increased activity. To our knowledge, this is the first time these TFs are directly implicated
in pediatric sepsis progression. Therefore, these candidate MRs may represent novel
insights in pediatric sepsis biology and are ripe targets for exploration in future clinical
studies. An important additional interpretation of these results is that the changes in gene
expression associated with the candidate MRs had small effect sizes, which would likely
be missed in differential gene expression analyses. This highlights the power of the MR
approach to detect key drivers of disease states.
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4. Discussion

Pediatric sepsis is a genuine Pandora’s box regarding its complexity. It is a challenging
acute syndrome that quickly evolves into life-threatening scenarios and the establishment
of new reliable prognostic and predictive biomarkers remains necessary [12]. Identifying
regulatory mechanisms of this clinical condition could help the search for specific traits
indicating disease status [39]. The natural variation within individuals may lead to different
outcomes despite identical protocols and treatments [40]. Symptoms of pediatric sepsis are
often dependent on subject age, sepsis type, sepsis duration, and etiological agent. Here,
we used expression data from two independent cohorts to reconstruct the pediatric sepsis
regulatory networks. We identified the same 15 MRs in both cohorts, the composition
of those MRs were similar in both cohorts, as well as the MRs activity, and the MRs
expression in pediatric septic patients. There are hundreds of biomarkers associated with
sepsis, but very few (e.g., C reactive protein and procalcitonin) are currently used as a
clinical routine, indicating that we might lack knowledge about how sepsis regulates gene
expression [41]. Previous studies using the same datasets used here identified alterations in
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zinc ion homeostasis and enhanced interleukin-8 and metallothioneins (MT) expression [6].
Authors also identified IL-27 as a diagnostic biomarker for bacterial infection in critically ill
children, which was further validated in independent datasets [23–25,29].

From the 15 pediatric sepsis MRs, 12 cluster together in the same regulatory network
branch. This proximity indicates that these 12 MRs acts coordinately and share the reg-
ulations of target genes. Downregulation of GATA3 in septic patients is related to Th1
cell differentiation, associated with immunosuppressed states [38]. The Th2/Th1 immune
response imbalance with Th2 dominance was associated with a bad prognosis [42]. RORA
regulates genes in the circadian cycle [43], and a healthy circadian cycle positively im-
pacts sepsis survival rate [44]. NR3C2 is down-regulated in septic patients compared to
healthy subjects. This gene encodes a receptor for mineralocorticoids and glucocorticoids,
such as aldosterone and cortisol, respectively [45,46]. Cortisol is known to be a potent
anti-inflammatory, and the NR3C2 downregulation might be a crucial step in disease
progression [47]. We identify steroid administration as a source of expression variability
in the dataset GSE4607, used to construct Sepsis network 2 (see Covariate selection in
supplementary material and Supplementary Figure S3). It would be naive to assume that
these 15 MRs are uniquely responsible for post-inflammatory events in sepsis. It is clear
that a plethora of other TFs, identified as MRs, are also responsible for the different septic
outcomes; however, the stringency of the analysis assures that these 15 MRs are likely to be
directly involved in sepsis transcriptional regulation.

We identified three MRs (MEF2A, TRIM25, and RFX2) with opposite behavior com-
pared to the other ten MRs. TRIM25 (Tripartite motif-containing 25) works as a modulator
of the innate immune response against viruses and limits the inflammatory response
by interacting with other genes in signaling cascades, protecting the host [48]. This TF
also ubiquitinates stratifin and the caspase-recruitment domain (CARD) of retinoic-acid-
inducible gene I (RIG-I). This process negatively regulates the cell-cycle progress and
induces type I interferon and NF-κB [49,50]. It was also shown that TRIM25 is upregulated
in organisms challenged with LPS [49], corroborating our results. Type I Interferon and NF-
κB increase the expression of pro-inflammatory mediators and extend neutrophil lifespan.
It leads to a positive feedback loop of pro-inflammatory molecules and to an exacerbated
inflammatory response [51].

MEF2A has recently been associated with sepsis progression. In a recent paper,
Zhang and collaborators identified MEF2A upregulated in whole blood of adult septic
patients. According to the authors, the long non-coding RNA MIR155HG facilitates sepsis
progression by upregulating MEF2A [52]. The authors also link the same mechanism
to apoptosis induction in RAW 264.7 and HL-1 cells treated with LPS [52]. MEF2A has
essential roles in myocyte development and has already been associated with apoptosis via
p38 MAPK signaling [7]. Pon and collaborators also found that MEF2A (along with other
MEF2 TFs) regulates apoptosis and cytoskeletal structures [53]. Clark and collaborators
found that Mef2 acts as a primary regulator of innate immunity in flies [54]. Additionally,
MEF2A also regulates the transcription of glucose receptor GLUT4 in both muscular
and adipose tissues, which is thought of as a homologous mechanism of adipose tissue
regulation in vertebrates [54]. The MEF2A-mediated GLUT4 regulation might involve
the Warburg Effect, which can be induced through LPS stimulation [55]. This effect leads
to a predominance of aerobic glycolysis over oxidative phosphorylation. However, it
is unclear if MEF2A expression observed here (in whole blood samples) would reflect
systemic physiological alterations. There are reports of ICU admitted septic patients who
develop a hypermetabolic stress state, leading to hyperglycemia [56], which might be a
compensatory mechanism. Van den Berghe and collaborators applied intensive insulin
therapy to maintain normoglycemia which led to less morbidity but no significant impact
on mortality [57].

RFX2 has no described role directly associated with sepsis. The RFX gene family members
associate with upstream TFs involved with immune cell proliferation, such as KLF5 [5]. KLF5
was identified as MR on Pediatric Sepsis 1 and 2 networks (Supplementary Tables S3 and S4).
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Siegler and collaborators described RFX family members as part of a chromatin remodel-
ing machinery. This association is related to the expression of Major Histocompatibility
Complex II (MHC-II), along with Class II Major Histocompatibility Complex Transactiva-
tor (CIITA) [38], also identified as a master regulator of Pediatric Sepsis 1 and 2 networks
(Supplementary Table S3 and S4). This MR is also related to interleukin 5 (IL-5) expression,
which is also regulated by GATA3 [58]. Recent studies by Linch and collaborators show that
IL-5 might have a protective effect on septic patients [59]. Wong and collaborators found that
CIITA is downregulated in septic patients in comparison to healthy subjects, corroborating our
results [6]. Although RFX2 promotes CIITA expression, the results show that other signaling
pathways might be regulating MHC-II genes. One explanation could be the interleukin 10
(IL-10) inhibitory pathway induced by the activator protein 1 (AP-1) dimer. AP-1 is formed by
a JUNB and FOSL2 heterodimer and is directly responsible for Th17 lymphocyte differentia-
tion [60], also promoting IL-10 expression. Both JUNB and FOSL2 were identified as sepsis MR
candidates common to RA and MS.

The GATA3 regulon was enriched by non-coding RNA (ncRNAs) activities. GATA3 is
one of the biggest regulons, and most of its genes on both pediatric sepsis networks seem
to be related to ncRNAs. Most works focusing on these ncRNAs are related to micro RNAs
(miRNAs) regulating pathways crucial in sepsis pathophysiology, such as NF-kB, and TNF-
α [61]. Several other ncRNAs might impact sepsis progression or outcome, such as long
non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), promising the development
of new drug targets and biomarkers [62].

Our results give direction on how sepsis master regulators work coordinately in
disease progression, especially MEF2A, TRIM25, and RFX2, with potential implications
in pediatric sepsis prognosis. Additionally, the presented results shed light on MRs that
are more specific to sepsis progression. This three-TF regulating axis might act in three
steps: exacerbated inflammation (TRIM25) associated with septic cachexia (MEF2A) and
“fine-tuning” of antigen presentation (RFX2) (Figure 7). This three-TF axis has not been
directly linked to sepsis in the literature, except by MEF2A [52]. Therefore, more studies
are needed to better understand how inflammatory response MRs and pediatric sepsis
MRs correlate. Further research evaluating the association between regulon activity or the
MRS expression and clinical aspects could help elucidate the role of such TFs in pediatric
sepsis progression. The lack of studies on sepsis treatments targeting these TFs and their
genes opens up new perspectives of investigation for this critical condition.Biomedicines 2021, 9, x FOR PEER REVIEW 13 of 16 
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Within this paper, the following abbreviations were used:

ICUs Intensive Care Units
MR Master Regulator
MRA Master Regulator Analysis
WBC White Blood-cell Count
SIRS Systemic Inflammatory Response Syndrome
CARS Compensatory Anti-inflammatory Response Syndrome
TF Transcription factor
GRN Gene Regulatory Network
GEO Gene Expression Omnibus
PBMC Peripheral blood mononuclear cells
RA Rheumatoid Arthritis
MS Multiple Sclerosis
GPL GEO Platform
RTN Reconstruction of Transcriptional Networks
GSE GEO Series
TNI Transcription Network Inference
BH Benjamini-Hochberg
GSEA2 Two-Tailed Gene Set Enrichment Analysis
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