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Most of the existing methods about the causal relationship based on functional magnetic resonance imaging (fMRI) data are either
the hypothesis-driven methods or based on a linear model, which can result in the deviation for detecting the original brain
activity. Therefore, it is necessary to develop a new method for detecting the effective connectivity (EC) of the brain activity by
the nonlinear calculation. In this study, we firstly proposed a new technology evaluating effective connectivity of the human
brain based on back-propagation neural network with nonlinear model, named EC-BP. Next, we simulated four time series for
assessing the feasibility and accuracy of EC-BP compared to Granger causality analysis (GCA). Finally, the proposed EC-BP
was applied to the brain fMRI from 60 healthy subjects. The results from the four simulated time series showed that the
proposed EC-BP can detect the originally causal relationship, consistent with the actual causality. However, the GCA can not
find nonlinear causality. Based on the analysis of the fMRI data from the healthy participants, EC-BP and GCA showed the
huge differences in the top 50 connections in descending order of EC. EC-BP showed all ECs related to hippocampus and
parahippocampus, whereas GCA showed most ECs related to the paracentral lobule, caudate, putamen, and pallidum, which
represents the brain regions with most frequent information passing measured by different methods. The proposed EC-BP
method can provide supplementary information to GCA, which will promote more comprehensive detection and evaluation of
brain EC.

1. Introduction

The human brain has been considered as a complex neural
network, performing multiple tasks and controlling human
behavior [1–3]. Each task or behavior usually involved more
than one region or even the whole brain [4]. Clarifying the
behavior mechanism cannot be done without the study on
functional segregation and integration of the brain. Func-
tional segregation and integration [5] can be described
through the brain connectivity, including functional connec-
tivity (FC) and effective connectivity (EC). FC, widely being
used to reveal the human brain function in health and
disease [6–8], describes the temporal correlation between
spatially remote brain areas [9]. However, although reflect-
ing the intensity of interaction between different brain
regions, FC could not exhibit the direction of information
communication between different regions. Different from

FC, EC described the causal influence that a brain site exerts
over one other [9]. Therefore, EC can provide supplemen-
tary information to FC for the interaction between brain
signals.

Several methods are commonly used to calculate EC
based on functional magnetic resonance imaging (fMRI)
data, including structural equation model (SEM) [10], mul-
tivariate autoregressive modeling (MAR) [11], and dynamic
causal modeling (DCM) [12] and Granger causality analysis
(GCA) [13]. However, SEM, MAR, and DCM belong to
hypothesis-driven methods. In this way, the disadvantage
of the model may lead to the wrong conclusions. Compared
with the above methods, the GCA method might evaluate
EC only by considering the time series of fMRI, which could
overcome the limitation about the prior knowledge. Cur-
rently, GCA has been used for the studies on mild cognitive
impairment [14], Alzheimer’s disease [15], depression [16],
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insomnia [17], schizophrenia [18], and so on. However,
GCA is based on a linear model and assume the fixed time
lags during the information transmission [19, 20], diverged
so greatly from the constant changes of propagation delay
between brain signals [21, 22]. Therefore, it is necessary to
develop a new method for detecting the EC of the nonlinear
variables for the brain activity.

Brain EC is simply the causality between different
regions of interest (ROIs) from the brain, representing the
ability of one ROI predicting the other one. With the devel-
opment of the neural network, deep learning, and machine
learning, it is possible to evaluate EC of the brain by some
nonlinear methods. Back-propagation neural network
(BPNN), as a widely used neural network model, has been
used for the prediction in many fields such as control science
and engineering [23], chemical [24], and biomedical
engineering [25], showing its good ability of prediction.
Moreover, BPNN not only is a powerful data-driven compu-
tational tool but also can use a series of nonlinear functions
to construct its model. Therefore, these aroused our specula-
tion that BPNN with nonlinear model may assess EC with
better performance.

In this study, we proposed a new technology evaluating
EC of the human brain based on fMRI, namely, EC analysis
based on BPNN with nonlinear model (EC-BP). First, the
steps about EC-BP were described in detail. Second, we
simulated the related data for assessing the feasibility and
accuracy of EC-BP compared to GCA. Finally, EC-BP was
applied to the brain EC analysis of the healthy human brain.

2. Material and Methods

2.1. Granger Causal Analysis. GCA, proposed by [26], is a
commonly used method to study the causal relationship in
complex systems. Generally, greater than 0.1 for GCA indi-
cates that there is causal relationship. Here, GCA based on
the DynamicBC toolbox [27] is used to evaluate the simu-
lated data and fMRI of the healthy subjects, which will be
compared with the proposed method.

2.2. Proposed EC-BP. Based on the preprocessed resting-state
fMRI data, the complete flow chart of the EC-BP method is
shown in Figure 1. The main steps include feature
extraction, construction on initial model of BPNN, BPNN
training, and EC calculation via BPNN prediction.

2.2.1. Feature Extraction. In order to predict the causal rela-
tionship between brain regions more accurately, we need to
select one or more features of each brain region. The
regional homogeneity (ReHo) proposed by Zang et al. in
[28], as a typical feature of brain functional activity, has been
widely used in fMRI, such as [29–31]. It is based on the
assumption that the time series of adjacent voxels is similar,
evaluating brain functional activity by calculating the Ken-
dall’s coefficient concordance (KCC) of voxels. Because of
no special demands regarding samples, ReHo was calculated
for our preliminary attempt, as follows.

The ReHo value can be calculated for each brain region,
as shown as follows:

Wb =
∑ Maskb ⋅MatrixWð Þ

V
, ð1Þ

where Wb is the ReHo value of the b-th brain region, Maskb
is the mask matrix of the b-th brain area (the element value
in the matrix is either 1 or 0, and 1 indicates that the corre-
sponding brain voxel belongs to the brain region), Σ is the
sum of all the elements from the matrix, and V is the num-
ber of voxels within the b-th brain region. Matrixw is the
ReHo matrix of all voxels in the whole brain, with each value
corresponding ReHo of a voxel, calculated as follows:

Re Hov =
12∑ ∑K

k=1Sτk
� �2

− n 1/Tð Þ∑T
τ=1∑

K
k=1Sτk

� �2

K2 T3 − T
� � , ð2Þ

where ReHov represents the ReHo value of thev‐thvoxel
(ranged from 0 to 1), K represents the number of neighbors
of the v‐thvoxel in the brain plus 1 (K generally takes 7, 9, or
27, here K = 27), Sτk (τ =1,2,…T , k = 1, 2,⋯K , and T is the
number of time points of fMRI data) represents the sorting
number of the τ‐th time point from k-th voxel, in ascending
order of all values based on all time points for each voxel.
The ReHo values were arranged in order of the number of
brain regions for all subjects, constructing a N ×M matrix,
where N is the number of brain regions and M is the num-
ber of subjects.

2.2.2. Constructing Initial Model of BPNN. The current study
sets the number of layers of the network to 3 layers, includ-
ing the input layer, the hidden layer, and the output layer.
The number of neurons in the input layer is determined by
the number of the selected features, while the number of
neurons in the output layer is determined by the number
of the predicting results. Therefore, the number of input
neurons and output neurons is here set to 1 (I = P = 1), rep-
resenting that the single feature (ReHo) is used and only one
value is obtained for an iteration. The number of hidden
layer unit depends as follows:

H =
ffiffiffiffiffiffiffiffiffiffi
I + P

p
+ α, ð3Þ

where α is a constant from 1 to 10. In this study, according
to the optimum results of the model iteration, H equals 4.

2.2.3. Determining Model Expressions through BPNN
Training. The BPNN algorithm need to repeat two stages:
forward propagation and reverse propagation.

Stage 1: forward propagation. During the forward propa-
gation, ReHo of region A is used to predict ReHo of region
B. The detailed process is as follows.

First is setting the training parameters (maximum of
training times ε=50000, minimum of target error γ = 10 − 3
, and the learning rate η=0.05) and the initial weight of each
layer, with wih and whp to a random value ranged from -1 to
1, which will be adjusted iteratively during training.
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Second is establishing the nonlinear mapping from the
input layer to the hide layer and the nonlinear mapping
from the hide layer to the output layer by formulas (4)–(8).

YA⟶B
h = 〠

I

i=1
wA⟶B

ih XA
i h = 1, 2,⋯,Hð Þ, ð4Þ

ZA⟶B
h = f YA⟶B

h

� �
= 1
1 + exp −YA⟶B

h

� �
= 1
1 + exp −∑I

i=1w
A⟶B
ih XA

i

� � h = 1, 2,⋯,Hð Þ,
ð5Þ

where I and H are the number of neurons in the input layer
and the hide layer, respectively; YA⟶B

h and ZA⟶B
h are the

input value and output value of the h-th neuron in the hide
layer, respectively; XA

i is the input value of the i-th neuron in

the input layer; and wA⟶B
ih is the weight value between the i

-th neuron of the input layer and the h-th neuron of the hide
layer. The excitation function f ðXÞ is a sigmoid function, as
follows:

f Xð Þ = 1
1 + e−X

, ð6Þ
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H
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hp ZA⟶B
h p = 1, 2,⋯, Pð Þ, ð7Þ
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p = f QA⟶B

p

� �
= 1
1 + exp −QA⟶B

p

� �

= 1
1 + exp −∑H

h=1w
A⟶B
hp QA⟶B

p

� � p = 1, 2,⋯, Pð Þ,

ð8Þ
where H and P are the number of neurons in the hide layer
and the output layer, respectively; QA⟶B

p and ψA⟶B
p are the
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Figure 1: Flow chart of the method evaluating brain effective connectivity based on back-propagation neural network.
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input value and output value of the p-th neuron in the out-
put layer, respectively; wA⟶B

hp is the weight value between the
h-th neuron of the hide layer and the p-th neuron of the out-
put layer; and f ðXÞis the same as above.

Note that the parameters of the above process are the
intermediate values during the training process of the brain
region A predicting the brain region B.

Stage 2: reverse propagation. During the reverse propaga-
tion, the weight values among the input layer, the hide layer,
and the output layer are updated continuously based on the
predictive values during stage1, as follows.

First is expressing the real results of the brain region B as
REAB = ðREAB

1 , REAB
2 ,⋯, REAB

pÞ, and then, the predictive
error function can be shown as follows:
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p
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@
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, ð9Þ

where ERRA⟶B is the error function of the brain region A
predicting the region B; H and P are the number of neurons
in the hide layer and the output layer, respectively; QA⟶B

p

and ψA⟶B
p are the input value and output value of the p

-th neuron in the output layer, respectively; and wA⟶B
hp is

the weight value between the h-th neuron of the hide layer
and the p-th neuron of the output layer.

Second is calculating the partial derivative of the error
function with respect to the weight between the hidden layer
and the output layer, as shown as follows:

where ERRA⟶B is error function; H and P are the number
of neurons in the hide layer and the output layer, respec-
tively; QA⟶B

p andψA⟶B
p are the input value and output

value of the p-th neuron in the output layer, respectively;
ZA⟶B
h is output value of the h-th neuron in the hide layer;

and wA⟶B
hp is the weight value between the h-th neuron of

the hide layer and the p-th neuron of the output layer.
Third is calculating the partial derivative of the error

function with respect to the weight between the input layer
and the hidden layer, as shown as follows:

where ERRA⟶B is error function; I,H, and P are the num-
ber of neurons in the input layer, hide layer, and the output
layer, respectively; QA⟶B

p and ψA⟶B
p are the input value

and output value of the p-th neuron in the output layer,

respectively; YA⟶B
h and ZA⟶B

h are the input value and output
value of the h-th neuron in the hide layer, respectively; XA
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and the p-th neuron of the output layer; and wA⟶B
ih is the

weight value between the i-th neuron of the input layer and
the h-th neuron of the hide layer.

Fourth is adjusting the weight during iteration according
to the error function as follows:

wA⟶B
hp θ + 1ð Þ =wA⟶B

hp θð Þ − η
∂ERRA⟶B

∂wA⟶B
hp

, ð12Þ

wA⟶B
ih θ + 1ð Þ =wA⟶B

ih θð Þ − η
∂ERRA⟶B

∂wA⟶B
ih

, ð13Þ

where θ represents the θ‐th iteration.
Note that similar to stage 1, the parameters of above pro-

cess are the intermediate values during the training process
from the brain region A predicting the brain region B.

Finally, computing the global error as formula (14) and
judging whether or not it meets the conditions of termina-
tion (global error ≤ γ or times of learning≥ ε). Once anyone
is met, the optimal model of the BPNN can be determined.

GE = 1
M

〠
M

m=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
P

p=1
ψm
p − REAm

p

� �2
vuut , ð14Þ

whereM is the number of sample, P is the number of output
neuron in the output layer, ψm

p is the output value of p-th
neuron in the output layer of the m-th sample, and REAm

p

is the real value of p-th neuron in the output layer of the
m-th sample.

Notably, the above process is carried out using the leave-
one-subject-out cross validation (LOOCV). In other words,
only one subject is left as the test sample for each iteration,
and the other M-1 samples form the training set. Therefore,
M iterations are performed in the current study.

2.2.4. EC Measurement. After determining the optimal
model of BPNN in the last section, the calculation of EC is
performed as the following steps.

First is predicting the results (ReHo) of all brain regions
by each another for test sample during each iteration accord-
ing to the final model as follows:

ψA⟶B = 1
1 + exp −ð ∑H

h=1w
A⟶B
h1 ∑H

h=1w
A⟶B
h1 1/ 1 + exp − wA⟶B

1h XA
1

� �� �� �� �� � ,

ð15Þ

where ψA⟶Brepresents the predicting result from the brain
region A to the brain region B, wA⟶B

1h represents the optimal
weight between the input value and the h-th hide neuron in
the hide layer during training from the brain region A to the
brain region B, wA⟶B

h1 represents the optimal weight between
the h-th hide neuron of the hide layer and the output neu-
ron, and XA

1 represents the ReHo value of brain region A.

Second is calculating the predicted error matrix between
any two brain regions, as shown as follows:

EA⟶B = ΨA⟶B − ReHoB
�� ��, ð16Þ

E =

E1⟶1 ⋯ E1⟶B ⋯ E1⟶N

⋮ ⋯ ⋯ ⋯ ⋮

EA⟶1 ⋯ EA⟶B ⋯ EA⟶N

⋮ ⋯ ⋯ ⋯ ⋮

EN⟶1 ⋯ EN⟶B ⋯ EN⟶N

2
666666664

3
777777775
, ð17Þ

where EA⟶Bindicates the error value of brain region A pre-
dicting brain region B, ψA⟶B indicates the finally predicting
result from the brain region A to the brain region B, ReHoB
indicates the real ReHo value of brain region B, and E indi-
cates the prediction error matrix.

Third is normalizing and converting the prediction error
matrix E into the prediction accuracy rate matrix ACC as
follows:

ACC = 1 − E −MIN Eð Þ
MAX Eð Þ −MIN Eð Þ ,

=

ACC1⟶ 1 ⋯ ACC1⟶ B ⋯ ACC1⟶N

⋮ ⋯ ⋮ ⋯ ⋮

ACCA⟶ 1 ⋯ ACCA⟶ B ⋯ ACCA⟶N

⋮ ⋯ ⋮ ⋯ ⋮

ACCN ⟶ 1 ⋯ ACCN ⟶ B ⋯ ACCN ⟶N

2
666666664

3
777777775
,

ð18Þ

where ACCA⟶B indicates the accuracy rate of the brain
region A predicting the ReHo of the brain region B, and it
ranges from 0 to 1; Eindicates the prediction error matrix;
MAX ðEÞ is the maximum value of the error matrix E; and
MINðEÞ is the minimum value of the error matrix E.

Finally, judging the causal relationship according to the
matrix with prediction accuracy rate. For the element of
the matrix with prediction accuracy rate, the larger the value,
the stronger the causal relationship. Therefore, we define
ACC matrix of ReHo as the EC matrix of BPNN, and then,
ACCA⟶B is the effective connectivity ECA⟶B, representing
the influence of the brain region A on the brain region B. In
the study, if ECA⟶B is greater than or equal to 0.6 and also
less than 0.7, there is a possible causal influence from A to B.
In the same way, the 0:7 ≤ result < 0:8, 0:8 ≤ result < 0:9, and
0:9 ≤ result ≤ 1 represent the moderate, good, and excellent
causal influence from A to B.

2.3. Data and Preprocessing. Simulation data and fMRI data
were used here for clarifying the ability of the proposed EC-
BP method to evaluate causal relationship.
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2.3.1. Simulation Data. Four time series with a length of 200
are simulated, as shown as follows:

X1 ið Þ = i ∗ 4 − 4 ∗ ið Þ,
X2 ið Þ = X2 ið Þ ∗ 0:5 − 0:5:∗X1 ið Þð Þ + X1 ið Þ,
X3 ið Þ = X3 ið Þ ∗ 2:1 + 0:4:∗X1 ið Þð Þ + X1 ið Þ,
X4 ið Þ = X4 ið Þ ∗ 0:8 − 0:35:∗X1 ið Þð Þ + X1 ið Þ,

8>>>>><
>>>>>:

ð19Þ

where i is from 1 to 200.
Formula (19) tells us that the actual causal relationship

of these time series isX1⟶ X2, X1⟶ X3, X1⟶ X4.
To evaluate the performance of the proposed EC-BP, the
mean value of the time points was used as the feature of each
time series.

2.3.2. fMRI Data. This study included 60 healthy subjects,
who all provided the written informed consent. All partici-
pants were interviewed and evaluated by a clinician accord-
ing to the clinical health standards. Their brain fMRI data
during resting state was collected based on 3T MRI scanner
(GE Healthcare, Milwaukee, WI, USA). The parameters of
the scanning using Echo Planar Imaging are as follows: layer
thickness = 5mm, matrix size = 64 × 64, echo time = 30ms,
repetition time = 2 s, flip angle = 90°, intralayer resolution =
3:75 × 3:75mm2, number of slices = 32, number of volumes
= 180, and scan time = 6 minutes. During the scan, the sub-
jects were asked to keep their eyes closed, awake, and
relaxed.

The processing of fMRI data before EC-BP are shown by
the following two steps: first is carrying out the preprocess-
ing using DPABI (http://rfmri.org/DPABI) [32] developed
by the Institute of Psychology of the Chinese Academy of
Sciences. The major steps include converting data format
from DICOM format to NIFTI format, removing the first
10 time points of every time series, taking slice timing, cor-
recting head motion, normalizing to standard space (MNI

space), eliminating linear drift, and performing band-pass
filtering (0.01-0.08Hz). Second is dividing the whole brain
into 90 brain regions based on the AAL template after
removing the cerebellar structures [33].

3. Results

3.1. Simulation Data. GCA and the proposed EC-BP were
used to evaluate EC of simulation data, and the results are
shown in Table 1.Table 1 shows that GCA approach found
small EC values for any pair from four time sequences,
and the biggest value was the causal value from X2 to X1
(0.0241). The result of GCA is deviated from that of the
actual data, being unsuitable for nonlinear causality. How-
ever, EC-BP showed more than 0.7 prediction accuracy from
X1 to X2 and X3 to X4, and the rest were less than 0.6.

3.2. Imaging Data. In this study, the demographic informa-
tion of all healthy subjects is shown in Table 2.

Table 3 shows the strongest 50 ECs using EC-BP and
GCA, which exhibited a clear difference between both
methods. The strong ECs found by EC-BP were directionally
from multiple regions to parahippocampal (PHG) and hip-
pocampus (HIP), whereas the strong EC found by GCA
was mainly connected to the paracentral lobule (PCL, 22/
50) and basal ganglia network (BG) (18/50) including cau-
date nucleus (CAU), pallidum (PAL), and putamen (PUT)
and partly connected to the middle temporal gyrus (MTG),
supplementary motor area (SMA), precentral gyrus
(preCG), precuneus (PCUN), and thalamus (THAL).

Figure 2 also shows the distribution of brain areas related
to the strongest 50 ECs found by both methods. EC-BP is
involved in broader regions (frontal and occipital cortices)
compared with GCA. Moreover, ECs detected by EC-BP
were all related to default mode network (DMN), sensori-
motor network (SMN), multifunctional network (MFN),
and other networks, whereas ECs detected by GCA were
mainly related to the basal ganglia (BG), SMN, MFN, and
other networks. The brain is divided into different networks
according to the reports by Shirer et al. [34].

4. Discussion

In this study, we proposed a new method for measuring
brain EC, named “EC-BP,” which is performed based on
BPNN prediction and LOOCV. It overcomes the disadvan-
tages of the existing methods measuring brain EC, which
do not require any prior knowledge. Moreover, simulation

Table 1: Values of effective connections (ECs) obtained by EC-BP and GCA.

Our method X1 X2 X3 X4 GCA X1 X2 X3 X4

X1 1 0.721 0.723 0.727 X1 NaN 0.016 0.012 0.012

X2 0.528 1 0.524 0.527 X2 0.0241 NaN 0.028 0.022

X3 0.332 0.327 1 0.332 X3 0.003 0.010 NaN 0.001

X4 0.136 0.129 0.130 1 X4 0.001 0.000 0.000 NaN

The EC value in this table represents the causal relationship from the corresponding row to the corresponding column. X1, X2, X3, and X4 are four time
sequences. EC-BP: effective connectivity based on back-propagation neural network method; GCA: Granger causality analysis.

Table 2: Demographic information of healthy participants.

Items Value

Age (years) 22:35 ± 1:0928
Gender (male/female) 23/37

Height (cm) 162:2833 ± 7:4254
Weight (kg) 52:4833 ± 7:4465
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Table 3: The top 50 effective connections in descending order for EC-BP and GCA.

EC-BP GCA
Effective connections ECA⟶B value

Effective connections ECA⟶B value
Region A Region B Region A Region B

MTG.L PHG.R 0.7642 CAU.R MTG.R 0.1479

ORBinf.L PHG.R 0.7575 PreCG.L PCL.L 0.1485

ACG.L PHG.R 0.7551 PreCG.R PCUN.L 0.1495

IPL.R PHG.R 0.7533 MTG.L PCL.R 0.1516

PreCG.R PHG.R 0.7512 PUT.R SMA.R 0.1516

SFGdor.L PHG.R 0.7437 HES.R PCL.R 0.1522

MFG.L PHG.R 0.7437 AMYG.R CAU.L 0.1535

ORBmid.L PHG.R 0.7421 STG.R PCUN.R 0.1545

SPG.R PHG.R 0.7417 MTG.R PCL.R 0.1569

ITG.R PHG.R 0.7408 HES.L PCL.R 0.1574

PCL.R PHG.R 0.7406 STG.R PCUN.L 0.1577

PCUN.R PHG.R 0.7392 PUT.R THA.R 0.1594

IFGtriang.R PHG.R 0.7386 PAL.R THA.R 0.1595

ORBinf.R PHG.R 0.7384 CAU.L PUT.R 0.1616

CAL.R PHG.R 0.7382 ROL.R PCL.R 0.163

ITG.L PHG.R 0.7381 PCL.R PreCG.R 0.1632

SFGmed.R PHG.R 0.7377 PAL.L THA.L 0.1647

CUN.R PHG.R 0.7369 PoCG.R PCL.R 0.1656

INS.R PHG.R 0.7364 CAU.L PAL.R 0.166

CAU.L PHG.R 0.7362 PAL.L THA.R 0.1666

MTG.L PHG.L 0.7356 DCG.R PCL.R 0.168

SPG.L PHG.R 0.7348 AMYG.R CAU.R 0.1691

SMA.L PHG.R 0.7313 STG.L PCL.R 0.1704

IFGoperc.L PHG.R 0.7312 PAL.L PCL.L 0.1785

ACG.R PHG.R 0.73 PUT.R PCL.L 0.1795

TPOmid.L PHG.R 0.73 PoCG.L PCL.R 0.1796

ORBinf.L PHG.L 0.729 PAL.R PCL.L 0.1797

SMG.L PHG.R 0.728 CAU.L PUT.L 0.1846

ANG.R PHG.R 0.7273 ROL.L PCL.R 0.187

ACG.L PHG.L 0.7265 CAU.R PUT.R 0.187

MTG.R PHG.R 0.7254 PUT.L PCL.R 0.1871

SOG.L PHG.R 0.725 PAL.L PCL.R 0.1901

PoCG.L PHG.R 0.7249 PUT.R PCL.R 0.1901

IPL.R PHG.L 0.7248 PreCG.L PCL.R 0.1903

PAL.R PHG.R 0.7241 CAU.R PUT.L 0.1905

PreCG.R PHG.L 0.7226 CAU.R PAL.R 0.1949

PCG.L PHG.R 0.7224 STG.R PCL.R 0.1954

MTG.L HIP.R 0.7222 PUT.L PCL.L 0.1958

MOG.L PHG.R 0.7219 PUT.R CAU.L 0.1967

CUN.L PHG.R 0.7215 CAU.L PAL.L 0.1972

IPL.L PHG.R 0.7211 PAL.R PCL.R 0.2006

THA.R PHG.R 0.7208 CAU.R PAL.L 0.2065

PCG.R PHG.R 0.7188 PAL.R CAU.L 0.2075

ORBsup.L PHG.R 0.7172 PUT.L CAU.R 0.217

PUT.L PHG.R 0.717 PUT.L CAU.L 0.2203

ORBinf.L HIP.R 0.7156 PUT.R CAU.R 0.2217

IOG.L PHG.R 0.7154 PreCG.R PCL.R 0.2306
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data confirms that it is better than the current common
method (GCA) to detect the nonlinear causal relationship.
Furthermore, our investigations about brain fMRI of healthy
subjects show that the proposed method is a “good” addition
to the existing method on evaluating the brain EC.

The traditional methods measuring brain EC (SEM,
MAR, DCM, and GCA) mainly use the initial time series,
which are relatively intuitive but sensitive to the fluctuation
of each time point. Therefore, they are affected easily by
noise. Relative to them, the proposed EC-BP is carried out
based on the higher-level features, which is more robust to
noise.

The results from the four simulated time series showed
that the proposed EC-BP can detect the nonlinear causal
relationship, consistent with the actual causality. However,
the GCA can not do that. This is mainly due to the proce-
dure of the GCA method, which assumed that the detected
signals had linear characteristics. As we all known, the brain
functional signal is nonlinear, and the correlation between
different brain regions is not limited to linear relationship,
which may be affected by third-party region. In contrast,
the EC-BP method is based on a neural network prediction
model and detects the effective connectivity through a
nonlinear mapping relationship, which will provide more

advantages for detecting the functionally nonlinear relation-
ship between the brain region activities. Therefore, the
proposed method may avoid the omissive causality caused
by the GCA, which has great value for the analysis of fMRI
data.

Based on the analysis of the fMRI data from the healthy
participants, EC-BP and GCA showed the huge differences
in the top 50 connections in descending order of EC. EC-
BP showed the directed connections linked to HIP/PHG
where hemodynamic activity varies nonlinearly with multi-
ple regions, whereas GCA showed many connections related
to the PCL, CAU, PUT, and PAL where hemodynamic activ-
ity varies linearly with multiple regions. The above brain
regions exhibit most frequent information transfer measured
by different methods. As we know, the HIP and PHG have
the important contribution of human memory. As Opitz
summarized [35], the HIP plays a vital role in the memory
associated with the recollection-based cognition, retrieval
of contextual information, and unique conjunction of face-
voice and object-location associations. Moreover, the
hippocampus can also promote the combination of different
cortical representations. That is to say, two inputs, coming
from disparate neurons but being composed into a bound
representation, activate the same neurons within the HIP,

Table 3: Continued.

EC-BP GCA
Effective connections ECA⟶B value

Effective connections ECA⟶B value
Region A Region B Region A Region B

SFGdor.L PHG.L 0.7152 PAL.R CAU.R 0.2377

MFG.L PHG.L 0.7152 PAL.L CAU.R 0.2378

MFG.R PHG.R 0.7143 PAL.L CAU.L 0.246

All regional abbreviations are from AAL template. EC: effective connectivity; EC-BP: effective connectivity based on back-propagation neural network
method; GCA: Granger causality analysis.

CAU. L

CAU. L CAU. R
PCL. L

PAL. L

PHG. L

PHG. L PHG. R

PHG. R
HIP. R

PUT. L

PUT. RPUT. L

PUT. RPAL. R
CAU. R

Others

MFN

BG

SMN

SN

DMN

Causality from A to B
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(b) EC–BP

A B

Figure 2: Strongest 50 effective connections (ECs) obtained by different methods.
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thereby resulting in distinct representations. The PHG,
located inferior to the HIP, was interacted with the HIP,
enhancing memory performance. Therefore, higher EC of
the HIP/PHP in our results may be suggestive of their flexi-
bility that they can be capable to rearrange any arbitrary
relation, bind the separated cortices, and reconstruct single
input from multiple neurons. The PCL straddles at the
boundary between the frontal lobe and parietal lobe, refer-
ring to the primary motor and sensory areas relevant to
the parts of limbs. Our findings about the higher EC of the
PCL may be concerned with the scanning process and envi-
ronment. The PAL, CAU, and PUT are the important parts
of the BG in higher vertebrates [36]. As Simonyan summa-
rized [37], the intrinsic connectivity of the BG can include
both direct and indirect pathways, involved in cortico-BG-
thalamo-cortical loop, while the extrinsic connectivity of
the BG can refer to three functional loops including the
motor loop via motor/premotor cortices, the associative loop
via the dorsolateral part of the prefrontal cortex and parietal
cortex, and the limbic loop via the orbital and medial parts
of the prefrontal cortex. The interaction and integration of
the above three loops may contribute to the complex func-
tions of the BG, including working memory, emotions,
decision-making, language, and procedural learning. There-
fore, the higher EC found by GCA may suggest the
functional importance of the BG within the brain functional
network during resting state. Above all, a lot of communica-
tion within the healthy brain may be directly linked to the
BG, whereas the activities of many brain regions may need
to nonlinearly depend on the memory from HIP/PHG for
healthy people during the resting state.

Given the results of Figure 2, EC-BP found lots of areas
linked to DMN for the strongest 50 ECs. DMN was discov-
ered by Shulman et al. in 1997 [38] and was first proposed by
Raichle et al. in 2001 with PET technology [39]. It refers to
the areas with significant higher spontaneous activity during
resting state. The current results obtained by EC-BP found
that a large number of brain regions have certain effects on
DMN, which may be the reason why those regions within
DMN are higher active than other brain regions during the
resting state. However, BG, as the important parts of the
strongest 50 ECs found by GCA, was not in the top 50 for
EC-BP. This indicated that the nonlinear causality related
to DMN may be stronger than the linear causality relevant
to BG for the healthy subjects during the resting state. Given
the above analysis, the proposed EC-BP method can provide
supplementary information to GCA, which will promote
more comprehensive detection and evaluation of brain EC.

However, there are some limitations in our study. (i) In
the study, single feature (ReHo was selected for our prelim-
inary attempt) was extracted for performing EC-BP.
Actually, the more features, the more accurate the results
are likely to be achieved. Therefore, in the future study, more
features or indicators should be included. (ii) The proposed
method needs to be validated in a variety of brain-related
clinical disease. The disease should be associated with aber-
rations of the EC, and the results of the classification
between the patients and controls can be compared to fur-
ther prove the effectiveness of the method.

5. Conclusions

The proposed EC-BP method can provide supplementary
information to GCA, which will promote more comprehen-
sive detection and evaluation of brain EC.

Data Availability

The datasets used and analyzed during the current study are
available from the corresponding author on reasonable
request.
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