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Abstract

The world is not on track to achieve the goals for immunization coverage and equity described by

the World Health Organization’s Global Vaccine Action Plan. Many countries struggle to increase

coverage of routine vaccination, and there is little evidence about how to do so effectively. In India

in 2016, only 62% of children had received a full course of basic vaccines. In response, in 2017–18

the government implemented Intensified Mission Indradhanush (IMI), a nationwide effort to

improve coverage and equity using a campaign-style strategy. Campaign-style approaches to rou-

tine vaccine delivery like IMI, sometimes called ‘periodic intensification of routine immunization’

(PIRI), are widely used, but there is little robust evidence on their effectiveness. We conducted a

quasi-experimental evaluation of IMI using routine data on vaccine doses delivered, comparing

districts participating and not participating in IMI. Our sample included all districts that could be

merged with India’s 2016 Demographic and Health Surveys data and had available data for the full

study period. We used controlled interrupted time-series analysis to estimate the impact of IMI

during the 4-month implementation period and in subsequent months. This method assumes that,

if IMI had not occurred, vaccination trends would have changed in the same way in the participat-

ing and not participating districts. We found that, during implementation, IMI increased delivery of

13 infant vaccines, with a median effect of 10.6% (95% confidence interval 5.1% to 16.5%). We did

not find evidence of a sustained effect during the 8 months after implementation ended. Over the

12 months from the beginning of implementation, we estimated reductions in the number of

under-immunized children that were large but not statistically significant, ranging from 3.9%

(�6.9% to 13.7%) to 35.7% (�7.5% to 77.4%) for different vaccines. The largest effects were for the

first doses of vaccines against diphtheria-tetanus-pertussis and polio: IMI reached approximately

one-third of children who would otherwise not have received these vaccines. This suggests that
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PIRI can be successful in increasing routine immunization coverage, particularly for early infant

vaccines, but other approaches may be needed for sustained coverage improvements.

Keywords: Vaccination, quasi-experimental design, health services research

Introduction

Despite significant investments in improving immunization coverage,

the world is not on track to achieve the goals set by the World Health

Organization (WHO)’s Global Vaccine Action Plan for 2011–20

(WHO, 2013). Global coverage of the third dose of diphtheria-

tetanus-pertussis (DTP) vaccine, a measure of routine immunization

system performance, stagnated between 2011 and 2018 (World

Health Organization, 2018). In India in 2016, only 62% of children

received a full course of basic vaccines, and state-level coverage ranged

from 35% to 91% (National Family Health Survey (HFHS-4), 2015).

There is little rigorous evidence about how to effectively improve

routine immunization coverage (Oyo-Ita et al., 2016; Munk et al.,

2019). One widely applied strategy—‘periodic intensification of rou-

tine immunization’ (PIRI)—adapts techniques from mass immuniza-

tion campaigns and applies them to the delivery of routine vaccines

(John Snow International, 2009; World Health Organization,

2016). Mass immunization campaigns have been reported to achieve

high vaccine coverage (Shearer et al., 2017) of a single or small num-

ber of vaccines, but there is little robust evidence on the effectiveness

of campaign-like approaches for delivering the full schedule of

routine vaccines. While campaign-like approaches can reach many

people, some fraction of these individuals may have been reached by

routine services anyway. Delivery volumes reported by campaigns

may therefore overestimate the net change in coverage.

In 2017–18, the Government of India implemented a nationwide

effort to improve routine immunization coverage and equity, via a

campaign-like initiative called Intensified Mission Indradhanush (IMI).

IMI was designed to (1) increase coverage of routine vaccines for

infants under two and pregnant women in selected low-performing

districts and (2) sustain these gains by raising public awareness of rou-

tine immunization and strengthening routine planning (Ministry of

Health & Family Welfare, Government of India, 2017). IMI was one

of the largest ever applications of the PIRI strategy.

In this study, we conducted a quasi-experimental evaluation of IMI.

Using a controlled interrupted time-series approach, we estimated the

impact of IMI on vaccine delivery, coverage and the number of unvac-

cinated children for 15 vaccines in the routine immunization schedule.

Materials and methods

Study setting
India’s immunization program serves a target population of �27

million newborns and 30 million pregnant women annually

(Gurnani et al., 2018). Vaccinations are provided through public

health facilities and community-based outreach sessions, with an

estimated 9 million immunization sessions held annually (Chatterjee

et al., 2016). The routine schedule includes 25 childhood vaccines

and two vaccines for pregnant women (Table 1). Vaccines are admin-

istered according to a schedule by age, but some vaccines can be

administered after the first recommended age under catch-up vaccin-

ation policies (Frequently Asked Questions on Immunization \(For

Health Workers & Other Front-line Functionaries\) [Internet], 2017).

Many children and pregnant women do not receive the full

schedule of vaccines: in 2016, 78% of children aged 12–23 months

had received three doses of the diphtheria-tetanus-pertussis (DTP)

vaccine, 73% had received three doses of the polio vaccine, and

62% had received a full course of basic vaccines (National Family

Health Survey HFHS-4, 2015). Among women who had given birth

in the previous 5 years, 89% had been protected against neonatal

tetanus for their most recent birth (National Family Health Survey

HFHS-4, 2015). Immunization coverage is lower among children in

lower-income households, in households with lower rates of paren-

tal education, and in households where the mother did not receive

the recommended number of antenatal or postnatal care visits

(Sissoko et al., 2014). Reasons for under-immunization include

supply-side issues such as inaccessibility of vaccination services

(Francis et al., 2018) and under-staffing of health facilities

(Vashishtha, 2012) and demand-side issues such as low awareness

(Francis et al., 2018) and anti-vaccine sentiment (Laxminarayan and

Ganguly, 2011). In a 2008 household survey, the most common rea-

son for under-vaccination (reported by caregivers) was unawareness

of the need for vaccination (45%) (Francis et al., 2018). Religious

beliefs may also play an important role: a 2016 multi-country survey

of vaccine confidence found that, in India, 4.9% of respondents

disagreed with the statement that ‘vaccines are important for

children to have’, but 20.8% of respondents disagreed with the

statement that ‘vaccines are compatible with my religious beliefs’

(Larson et al., 2016).

In recent years, in an effort to increase coverage, the

Government of India implemented a series of campaign-like inter-

ventions called Mission Indradhanush (MI). These interventions fell

short of their objectives, leading to the design and implementation

of IMI (Gurnani et al., 2018).

Intervention
The Government of India implemented IMI from October 2017

through January 2018 as part of the Pro-Active Governance and

KEY MESSAGES

• Intensified Mission Indradhanush, a campaign-style effort to increase routine immunization coverage in India,

significantly increased delivery of infant vaccines during the implementation period.
• The effect was largest for the first doses of polio and diptheria-tetanus-pertussis vaccines, suggesting that this strategy

was successful in reaching ‘zero dose children’.
• We did not find evidence of a sustained effect after program implementation ended.
• ‘Periodic intensification of routine immunization’ may be an effective strategy for reaching zero dose children, increasing

immunization coverage and improving equity in the short-term.
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Timely Implementation (PRAGATI) initiative, a set of programs

prioritized by the office of the Prime Minister. Districts with weak im-

munization performance (<70% estimated DTP3 coverage, or

>13 000 children missing DTP3 in the previous year) were included,

and additional districts added based on requests from states (Gurnani

et al., 2018). In total, 187 districts and urban areas were included.

IMI implementation began with door-to-door surveys to identify

under-immunized children. District-level micro-plans were then

developed to determine the location of IMI vaccination sites and

ensure supply availability. Site selection focused on areas with low

coverage, with particular emphasis on urban slums and nomadic

populations. Social mobilization campaigns, led primarily by com-

munity health workers, were conducted to raise awareness. Finally,

immunization sessions were conducted for seven consecutive days

per month during implementation. Sessions were conducted by aux-

iliary nurse-midwives (ANMs), who left their postings in periphery

health facilities to deliver vaccines and other health services at the

selected locations.

Data sources
Outcome data at the district-month level were extracted from

India’s Health Management Information System (HMIS), which

compiles service delivery data reported by health facilities. We used

data on vaccine doses delivered from October 2015 through

September 2018, encompassing 2 years before the start of IMI and 1

year after. We used data on 13 vaccines for children and 2 for preg-

nant women: Hepatitis B birth dose (HepB0), Bacillus-Calmette-

Guérin (BCG), 4 doses of diphtheria, tetanus, and pertussis-

containing vaccines [DTP1, DTP2, DTP3 and DTP booster (DTPb)],

5 doses of oral polio vaccine [OPV0, OPV1, OPV2, OPV3 and OPV

booster (OPVb)], 2 doses of measles-containing vaccines (M1 and

M2); and the first and second dose (or booster) of tetanus toxoid

vaccine (TT1 and TT2) for pregnant women. We also used HMIS

data on the number of immunization sessions held per district-

month. We excluded the Japanese encephalitis vaccine because it is

only delivered in endemic areas. We excluded rotavirus, pneumococ-

cal and inactivated polio vaccines because they were recently intro-

duced and not available for the full study period. We excluded

vaccines for children over age two (a second DTP booster and tet-

anus toxoid) because IMI primarily targeted children under two and

pregnant women. While we included HepB0 and OPV0, we did not

expect large effects for these vaccines because the catch-up period is

limited to 24 h and 15 days post-birth, respectively.

To identify districts included in IMI, we used publicly available

documents from the Indian Universal Immunization Program

(Intensified Mission Indradhanush: Operational Guidelines

Table 1 National immunization schedule for children and pregnant women in India

Time point in schedule Vaccine Upper age limit

Birth BCG Up to 1 year

Birth OPV0 Up to 15 days after birth

Birth HepB0 Up to 24 h after birth

6 weeks Penta 1 (containing DTP1) Up to 1 year

6 weeks OPV1 Up to 5 years

6 weeks IPV1 Up to 1 year

6 weeks Rota1 Up to 1 year

6 weeks PCV1 Up to 1 year

10 weeks Penta 2 (containing DTP2) Any age (as long as first dose is given by 1 year)

10 weeks OPV2 Up to 5 years

10 weeks Rota2 Any age (as long as first dose is given by 1 year)

10 weeks PCV2 Any age (as long as first dose is given by 1 year)

14 weeks Penta 3 (containing DTP3) Any age (as long as first dose is given by 1 year)

14 weeks OPV3 Up to 5 years

14 weeks IPV2 Any age (as long as first dose is given by 1 year)

14 weeks Rota3 Any age (as long as first dose is given by 1 year)

14 weeks PCV3 Any age (as long as first dose is given by 1 year)

9 months JE1 Up to 15 years

9 months M1 Up to 5 years

16 months DTP-b Up to 7 years

16 months M2 Up to 5 years

16 months OPV-b Up to 5 years

16 months JE2 Up to 15 years

5–6 years DTP-b2 Up to 7 years

10 years TT Any age

As soon as pregnancy is confirmed TT1 During labour

During pregnancy, 4 weeks after TT1 TT2 During labour

During pregnancy, if received 2 TT doses in a

pregnancy within the past 3 years

TTb During labour

Notes: Table shows the schedule of vaccines provided for free by India’s national immunization program to infants (16 months and under) and pregnant

women. The vaccines provided include: Bacillus Calmette-Guérin vaccine (BCG), oral polio vaccine (OPV), Hepatitis B vaccine (HepB), pentavalent vaccine

(Penta), oral polio vaccine (OPV), rotavirus vaccine (Rota), pneumococcal conjugate vaccine (PCV), Japanese Encephalitis vaccine (JE), measles vaccine (M) and

tetanus toxoid vaccine (TT). The number next to the vaccine indicates the dose number in the vaccination schedule. The letter ‘b’ indicates a booster shot. The

pentavalent vaccine contains protection against diphtheria, tetanus, pertussis, Haemophilus Influenzae B and Hepatitis B. It replaced three doses of the diph-

theria-tetanus-pertussis (DTP1, DTP2 and DTP3) vaccine in India’s immunization schedule in 2011, though DTP was still used in some areas at the beginning of

the study period.
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[Internet]., 2017). We also extracted covariate data from India’s

2015–16 Demographic and Health Surveys (DHS), summarized at

the district level (National Family Health Survey HFHS-4, 2015).

This included vaccine coverage and urbanization (percent of chil-

dren under five living in an urban area). Finally, we used World

Bank estimates of India’s 2017 population size, fertility rate and

neonatal mortality rate to generate estimates of the target popula-

tion size for different vaccines (World Bank, 2017).

Sample
The study sample included all districts in India meeting two criteria:

(1) they had available HMIS data for the full study period and (2)

these data could be merged with DHS data. Out of 187 treated dis-

tricts, there were 4 districts missing from the HMIS dataset, and we

omitted an additional 4 districts because they experienced complex

administrative changes during the study period and therefore could

not be merged with the DHS data. Out of 549 control districts, there

were 21 districts missing from the HMIS dataset, we omitted an

additional 87 districts (all in three states: West Bengal, Telangana

and Chattisgarh) because they experienced complex administrative

changes during the study period and could not be merged with the

DHS data, and we omitted two districts because they had incom-

plete time-series data for the study period. Overall, the omissions

represented 2% of live births in the HMIS system in 2017 in treated

districts, and 17% in control districts. The omission of 87 control

districts from three states is unlikely to affect our findings, as two of

these states had no treated districts (Telangana and Chattisgarh) and

one had only one treated district (West Bengal). Further details of

the sampling procedure are included in Supplementary Table S1.

Statistical analysis
We conducted a comparative interrupted time-series (CITS) analysis.

This quasi-experimental method accounts for baseline differences

between treated and control groups, for time trends that would have

occurred in the absence of the intervention and for exogenous

shocks that could have affected the outcome trend in both the treat-

ment and control group (Jandoc et al., 2015; Bernal et al., 2018).

CITS differs from single interrupted time-series in that the outcome

trend is modelled in a control group as well as a treatment group in

order to account for any factors, apart from the treatment, that

might have changed the outcome trend in both groups (Bernal et al.,

2019). CITS differs from difference-in-differences analysis in that it

does not require an assumption of parallel trends in the absence of

the intervention. Our analysis assumed that, in the absence of IMI,

deviations from past trends in vaccine delivery would have been the

same for treated and control districts. This approach accounts for

the possibility that IMI could displace vaccine delivery that would

have occurred even in the absence of the program. If not accounted

for in the analysis, this displacement could produce overestimates of

the impact of IMI on vaccine delivery.

We modelled time trends in district-level vaccination volume

(doses delivered) using generalized linear models with quasi-Poisson

distributed outcomes and a log link, in order to appropriately model

count data with over-dispersion (Novoa et al., 2011; Lopez Bernal

et al., 2013). We defined the ‘pre-intervention’ period as October

2015 through September 2017, the ‘implementation’ period as

October 2017 through January 2018 and the ‘post-implementation’

period as February 2018 through September 2018. Our models

included dummy variables to model intercept changes on 1 October

2017 (the start of IMI), 1 February 2018 and 1 June 2018. We

therefore measured the impact of IMI on vaccine delivery during

the 4-month implementation period and two 4-month post-

implementation periods. By including two post-implementation

periods, we assessed whether immunization delivery volumes

returned to or dipped below their pre-intervention levels after IMI

implementation ended. From this analysis, we estimated the impact

of IMI during the implementation period, as well as the net impact

over the full year following the beginning of implementation.

We assessed whether IMI was more effective in districts with lower

coverage or higher levels of urbanization (because these were focus

areas of the program) by including interaction terms in our regression

models. We also included calendar month fixed effects to adjust for

seasonality and district fixed effects to absorb variation in the initial

level of vaccination volume. We used Newey–West standard errors to

adjust for potential serial autocorrelation (Newey and West, 1987).

Because the treatment effect in CITS is captured by multiple coeffi-

cients, it is common practice to generate interpretable results by mak-

ing predictions from fitted models (Wagner et al., 2002). Following

this practice, we estimated vaccination volume in the treated districts

if IMI had not occurred and compared this to the observed vaccination

volume under IMI. We estimated the incremental vaccination volume

attributable to IMI by projecting model results to the full set of treated

districts with covariates fixed to their true values. To describe how the

estimated treatment effect varied by district characteristics, we gener-

ated treated effect estimates from models fixing the values of covari-

ates to their 25th and 75th percentiles in the treated districts. We

estimated equal-tailed 95% confidence intervals (95% CIs) for all

effects by estimating the treatment effects over 1000 simulations from

the fitted models and calculating the 2.5th and 97.5th quantiles of the

effect distributions (Zhang et al., 2009).

To estimate the impact of IMI on coverage in the treated dis-

tricts, we divided our estimates of incremental doses delivered by

estimates of the target population size. Since data on the target

population size were not available for 2017, we estimated the target

population size for HepB, OPV0, BCG, TT1 and TT2 as the number

of live births in 2017, calculated as fertility rate multiplied by popu-

lation size. We estimated the target population size for DTP1–3,

OPV1–3 and M1–2 as the number of surviving infants in 2017, cal-

culated by multiplying live births by one minus the neonatal mortal-

ity rate. To estimate the percent reduction in unvaccinated children,

we divided our estimates of incremental doses delivered by estimates

of the number of children who would not have been reached if IMI

had not occurred, if the assumptions of our CITS were met and

coverage in the treated districts had remained the same as in 2016 in

the counterfactual in which IMI was not implemented. We esti-

mated the number of unvaccinated children by multiplying the

target population size by one minus coverage in 2016. We calculated

95% CIs for this analysis using the same approach as above.

To examine mechanisms for the treatment effect, we measured

the impact of IMI on the number of immunization sessions held

(including both routine and IMI sessions), and the ratio of incremen-

tal doses delivered to incremental immunization sessions held.

All statistical analyses were conducted in R.

Sensitivity analysis
We examined the robustness of our results to different model specifi-

cations. First, we conducted a single interrupted time-series analysis.

This method uses data only from the treated districts and relies on

the assumption that the trend in vaccination volume in the treated

districts would have been maintained during the treatment period if

the intervention had not occurred. Second, we conducted matched

analyses using a subset of the study sample. We used coarsened
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exact matching (Iacus et al., 2012) to match treatment and control

districts on geographic location, baseline coverage, urbanization

level and participation in the earlier MI program. This method con-

trols for potential confounding by the matching variables. In the

case of CITS, confounding could occur if some underlying differen-

ces between the treatment and control districts were associated with

the change in the outcome trend during the study period. Finally, we

examined the possibility of spill over effects by conducting an ana-

lysis in which the control group was restricted to untreated districts

that do not share borders with treated districts.

Supplementary Appendix SA provides detailed analytic methods.

Role of the funding source
Employees of the funder (L.B. and A.R.) participated as scientific

collaborators. The corresponding author made the final decision to

submit the paper for publication.

Results

Impact of IMI on vaccination volume
During the 4-month implementation period, IMI had a positive esti-

mated impact on delivery volume for all infant vaccines in the study

(Figures 1 and 2). Figure 1 shows the trends over time in vaccination

volume in the treated and untreated districts. Vaccination volumes

increased visibly during the implementation period in the treated

districts but not in the control districts. Using CITS, we estimate

that IMI increased infant vaccination volume in the treated districts

by between 1.6% (HepB0; 95% CI �6.4 to 10.2) and 13.8 (DTPb;

3.0 to 25.7), with a median of 10.6% across the different vaccines in

the study. The point estimates for DTP1 and DTP3 were 12.8%

(95% CI 5.3 to 21.0) and 10.0% (95% CI 4.4 to 15.8), respectively.

For HepB0 and OPV0, while the point estimate for the treatment ef-

fect was positive, the estimate was not statistically significant. In

Figure 1 Time trends in vaccination volume in treated and untreated districts, 2 years before and 1 year after the start of IMI implementation. Notes: This figure

shows time trends in total vaccine doses delivered in treated (red) and untreated (blue) districts in the sample. Trends are shown for the Bacillus Calmette-Guérin

(BCG) vaccine, the birth dose of the Hepatitis B vaccine (HepB0), four doses of DTP-containing vaccine (delivered as part of the pentavalent vaccine in recent

years), five doses of the oral polio vaccine (OPV) and two doses of tetanus toxoid vaccine (TT). All vaccines shown are given to infants, apart from the tetanus tox-

oid vaccine, which is given to pregnant women. The dark grey bar indicates the 4-month period of IMI implementation, from October 2017 through January 2018.

The 8-month period to the right of the dark grey bar is the ‘post-implementation’ period, which is included in our analyses of the impact of IMI over a 1-year

period. Raw counts of doses delivered were adjusted for seasonality by subtracting calendar month fixed effects estimated using linear regression models.
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addition, there was no statistically discernable impact of IMI on the

delivery of vaccines for pregnant women (median �0.9% change in

vaccination volume).

The estimated effect of IMI waned after implementation ended.

With the exception of TT2, there was no statistically discernable im-

pact of IMI on delivery of any antigen during the period from

February to May 2018 or the period from June to September 2018.

Point estimates for all estimated effects were modestly negative from

February to May 2018 (median value �1.8%), with the exception

of OPV0, DTP1 and OPV1, for which the point estimates were posi-

tive. Point estimates for all estimated effects were positive from June

to September 2018 (median value 2.7%), with the exception of

OPVb, for which the estimated effect was negative, but none of the

effects was statistically significant.

Over the full year from the beginning of implementation, we esti-

mated positive impacts of IMI on the number of doses delivered of

Figure 2 Regression results: percent change in doses delivered in treated districts during three 4-month periods. Notes: This figure shows estimates of the effect

of IMI on doses delivered, measured as a percent change in doses delivered in each of three time periods [(1) during implementation (Months 1–4); (2) the 4

months following implementation (Months 5–8); and (3) the 4 months after that (Months 9–12). Covariate values (urbanization and baseline coverage) are fixed at

their mean values. To show percent change, we first exponentiate regression coefficients (because models are fit with a log link function), then subtract one and

multiply by 100. To calculate 95% confidence intervals on the same scale, we first calculate 95% confidence intervals on the log scale using assumptions from the

normal distribution, and then exponentiate the interval bounds, subtract one and multiply by 100.

Figure 3 Increase in immunization sessions held during IMI implementation. Notes: This figure shows time trends in monthly total immunization sessions held in

treated (red) and untreated (blue) districts. The dark grey bar indicates the period of IMI implementation, from October 2017 through January 2018. Raw counts

were adjusted for seasonality by subtracting calendar month fixed effects estimated using linear regression models.
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all infant vaccines and TT1, and a negative impact on doses deliv-

ered of TT2 (Table 2). None of these estimates were statistically sig-

nificant. We estimated that IMI reached between 148 000 and

491 000 additional infants with each of the vaccines in the study.

However, the 95% CIs included the possibility that IMI led to a re-

duction in the number of children reached across all vaccines during

the year. We estimated that IMI reached 6000 additional pregnant

women with TT1, with a 95% CI from �393 000 to 398 000.

Finally, we estimated that IMI reduced the number of women

vaccinated with TT2 by 102 000, with a 95% CI ranging from a

reduction of 441 000 to an improvement of 215 000.

Impact of IMI on coverage and the number of

unvaccinated children
Based on these changes in vaccination volume, we estimated

percentage point changes in coverage ranging from �1.2 (�5.2 to

2.5) for TT2 to 5.9 (�1.2 to 12.5) for DTP1, assessed over the full

year following the beginning of implementation.

We estimated that IMI reduced the number of unvaccinated

children by between 3.9% for HepB0 and 35.7% for DTP1, but these

findings were not statistically significant. We estimated that IMI

reduced the number of pregnant women missing TT1 by 0.7% (with

a 95% CI ranging from a 47.2% decrease to a 49.9 increase), and

increased the number of pregnant women missing TT2 by 6.5% (with

a 95% CI ranging from a 27.8% decrease to a 13.5% increase).

Effects of urbanization and baseline coverage
We found small and inconsistent results for the impact of urbanicity

and baseline DTP3 coverage on IMI impact estimates. The estimated

impact of IMI on coverage was higher in more urbanized areas for

four of the vaccines evaluated (DTP1, OPV1, DTP3 and TT2), and

lower for eleven vaccines. For baseline DTP3 coverage, the esti-

mated impact of IMI was higher in districts with higher baseline

Table 2 Estimated impact of IMI on number of children reached, coverage in the treated districts, and unvaccinated children in India over 1

year (October 2017 through September 2018)

(1) Number of additional children

reached (thousands) (95% CI)

(2) Percentage point increase in

coverage in treated districts (95% CI)

(3) Percentage of unvaccinated children in

the treated districts reached through IMI (95% CI)

BCG 331 3.9 31.5

(�282 to 883) (�3.3 to 10.4) (�26.8 to 83.9)

HepB0 148 1.7 3.9

(�263 to 521) (�3.1 to 6.1) (�6.9 to 13.7)

OPV0 136 1.6 5.2

(�299 to 500) (�3.5 to 5.9) (�11.5 to 19.2)

DTP1 491 5.9 35.7

(�100 to 1033) (�1.2 to 12.5) (�7.5 to 77.4)

OPV1 396 4.8 33.1

(�221 to 969) (�2.7 to 11.7) (�18.5 to 81.2)

DTP2 342 4.1 19.7

(�187 to 832) (�2.3 to 10.1) (�10.7 to 47.8)

OPV2 287 3.5 17.2

(�252 to 823) (�3.0 to 9.9) (�15.1 to 49.4)

DTP3 253 3.1 10.0

(�274 to 733) (�3.3 to 8.8) (�10.9 to 29.0)

OPV3 192 2.3 6.9

(�318 to 670) (�3.8 to 8.1) (�11.5 to 24.3)

M1 377 4.5 16.9

(�23 to 771) (�0.3 to 9.3) (�1.0 to 34.7)

DTPba 233 2.8 NA

(�474 to 857) (�5.7 to 10.3)

M2a 247 3.0 NA

(�372 to 793) (�4.5 to 9.6)

OPVba 79 1.0 NA

(�662 to 773) (�8.0 to 9.3)

TT1 6 0.1 0.7

(�393 to 398) (�4.6 to 4.7) (�47.2 to 49.9)

TT2 �102 �1.2 �6.5

(�441 to 215) (�5.2 to 2.5) (�27.8 to 13.5)

Notes: Table shows point estimates and 95% confidence intervals reflecting estimation uncertainty. Column 1 shows the estimated number of incremental

doses delivered due to IMI. This result is calculated by generating predictions from regression models, with covariates set to their true values in the full set of IMI

districts. Column 2 shows the estimated percentage point change in coverage in IMI districts. This result is calculated dividing the values in column 1 by an esti-

mate of the target population. The target population is estimated using World Bank data on the population size, birth rate, and neonatal mortality rate in 2017,

and HMIS data on the percentage of live births in India that occurred in IMI treatment districts. The full birth cohort is used as the target population for BCG,

TT1, and TT2; the birth cohort size less the infant mortality rate is used as the target population for other infant vaccines. Column 3 shows the estimated percent-

age of unreached children in the treated districts who were reached through IMI. This result is generated by dividing the values in column 1 by an estimate of the

number of children in the target districts who would have been unvaccinated if IMI had not occurred. The denominator is calculated by multiplying 1 minus the

coverage in 2016 (from DHS estimates) by the size of the target population. NA indicates ‘Not Applicable.’
aFor these vaccines, there are no estimates of coverage in the 2016 DHS survey.
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coverage for nine of the vaccines evaluated, and lower for five vac-

cines. None of these differences were statistically significant.

Detailed results are provided in Supplementary Table S2.

Immunization sessions held and doses per session
During implementation, IMI was estimated to have increased the

number of immunization sessions held per treated district by 11.2%

(95% CI 3.7 to 19.4) (Figure 3). For the two subsequent 4-month

periods, the number of immunization sessions was estimated to be

lower than in the absence of IMI, with treatment effects of �7.7%

(95% CI �15.9 to 1.4) and �6.1% (95% CI �15.5 to 4.4), respect-

ively. Assessed over the full year period, IMI was estimated to have

produced limited changes in the total number of immunization ses-

sions in the treated districts (decrease of 61 000, 95% CI �325 000

to 475 000).

During IMI implementation, the ratio of incremental infant vac-

cine doses to incremental immunization sessions held ranged from

0.1 (95% CI �0.9 to 0.9) doses of HepB0 per session to 2.9 (1.0 to

6.2) doses of DTP per session, and for maternal vaccines the ratio

was �0.6 (�8.7 to 6.2) doses per session of TT1 and �0.2 (�1.3 to

0.8) doses of TT2.

Sensitivity analyses
We found similar results across the eight alternative model specifica-

tions we tested, with some variation in point estimates (Supplementary

Figure S6). The single interrupted time-series models generated similar

point estimates (slightly higher than the main analysis for some vac-

cines and slightly lower for others), with narrower CIs than our main

analysis for some vaccines. Notably, the point estimates from these

models were approximately zero for the OPV0 and were negative for

M1 (though the M1 estimates had very wide CIs). The analysis using

coarsened exact matching generated similar results to the main ana-

lysis, again with higher estimates for some vaccines and lower esti-

mates for others. Finally, when control districts that border on

treatment districts were omitted from the analysis, the treatment

effects were slightly higher but the CIs were much wider than in the

main analysis. Detailed results from the sensitivity analyses are

included in the Supplementary Tables S6–S12.

Discussion

IMI represents one of the largest efforts to improve routine immun-

ization coverage using campaign methods that has ever been

attempted. The focus of IMI was to reach children and pregnant

women previously unreached by the vaccination program, to in-

crease coverage and improve equity. Evidence on the effectiveness of

this approach can be used to guide future investments in similar

types of approaches in India and elsewhere.

We found that IMI substantially increased delivery for 13 infant

vaccines but not for 2 vaccines for pregnant women. During

implementation, IMI increased vaccine delivery volume by between

1.6 (95% CI �6.4 to 10.2) and 13.8 (3.0 to 25.7)% across different

vaccines, with a median effect of 10.6 (5.1 to 16.5). Assessed over a

full year, IMI increased infant vaccine coverage by between 1.6

(�3.5 to 5.9) and 4.8 (�2.7 to 11.7) percentage points across differ-

ent vaccines, reaching between 3.9% (�6.9 to 13.7) and 35.7%

(�7.5 to 77.4) of children who otherwise would not have been

reached, if the assumptions of the CITS are met. Among infant vac-

cines, the largest estimated effects were for DTP1 and OPV1, which

suggest that IMI was able to reach previously unvaccinated (‘zero

dose’) children. The smallest effects were for HepB0 and OPV0, and

these effects were not statistically discernable from zero; this was

expected because these vaccines are only administered up to 24 h

and 15 days after birth, respectively, so children who missed these

vaccines were not likely to be still eligible to receive them during

IMI sessions. We found a negligible effect on the delivery of TT1 to

pregnant women, and a slightly negative (though not statistically

significant) effect on the delivery of TT2 to pregnant women.

Previous RCTs that evaluated interventions similar to IMI,

involving immunization outreach at sites closer to communities and

social mobilization to increase awareness of vaccination services,

found larger effects on coverage (Oyo-Ita et al., 2016; Banerjee

et al., 2010). However, interventions that are successful in the con-

text of an RCT do not always have the same effect when imple-

mented at scale. Outside of a trial setting, the intervention may not

be as tailored to the population’s needs, and adherence to program

design may not be as consistent. The smaller effect of IMI could also

be due in part to low efficiency: while the number of immunization

sessions significantly increased during IMI implementation, the effi-

ciency of these sessions (measured as doses delivered per session)

was low. We estimated that for infant vaccines, between 0.9 and 2.2

additional doses were delivered per additional session held during

the implementation period. This could be because awareness or de-

mand was low, or because the session sites were not optimally

located. Further research would be needed to determine how to im-

prove implementation efficiency, such as through incorporating text

message reminders into social mobilization activities (Mekonnen

et al., 2019) or better targeting the session sites.

An earlier evaluation of IMI also estimated larger (though direc-

tionally similar) effects (Gurnani et al., 2018). The earlier study used

data from household surveys, which have several advantages over

the HMIS data used in our study and can provide direct estimates of

coverage. However, this prior study relied on baseline data from 2

years before the start of IMI and was not able to control for time

trends in vaccine delivery that would have occurred in the absence

of IMI. This approach would lead to overestimates of the impact of

IMI if there were secular improvements in coverage over the 2-year

period not attributable to IMI. In addition, the prior study did not

assess the potential for a rebound effect, whereby vaccination deliv-

ery volume decreased in the months following IMI implementation.

Our results suggest that evaluations of campaign-style interventions

should include a sufficiently long post-period to account for the pos-

sibility of rebound after implementation.

While one of the objectives of the IMI program was to have a

sustained effect (by raising awareness of the routine immunization

program and improving routine planning), we did not find evidence

for a sustained effect during the 8-months after IMI implementation

ended. During the first 4 months after implementation, we found a

small rebound effect: vaccination volume decreased, though not by

a statistically significant amount. During the subsequent 4 months,

vaccination volume increased again, though again not by a statistic-

ally significant amount.

The presence of a rebound directly after implementation suggests

that, for some children, IMI may have improved vaccination

timeliness. Reducing delays in immunization can improve health

outcomes by to reducing exposed time, though this was not IMI’s

objective (Clark and Sanderson, 2009). The lack of evidence for a

sustained effect on coverage may be because IMI did not address

long-term health system gaps, which include both supply-side issues

such as human resource constraints and last-mile supply chain chal-

lenges, and demand-side issues such as low vaccine awareness and

vaccine hesitancy. The reasons for lack of sustained impact need

further study to inform the design of future interventions. In
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addition, there is a need to understand whether, and to what extent,

this program diverted resources away from other routine health

services, especially if policymakers are considering repeated imple-

mentation of IMI or similar efforts. When considering trade-offs be-

tween PIRI approaches and other approaches to improving

coverage, such as investing in human resources, it is important to

consider sustainability and the effects on other routine health

services.

Although IMI had a special focus on reaching children in urban

slum areas and in the poorest performing districts, we did not find

substantial variation in treatment effect size by urbanization or base-

line coverage (Ministry of Health & Family Welfare, Government of

India, 2017). Differences in treatment effect size by urbanization

and baseline coverage were mostly small and statistically insignifi-

cant. This could be driven by our use of district-level data, as it is

possible that there was more meaningful variation by urbanization

and coverage within districts. It is important to note that all districts

included in IMI were selected for weak immunization performance,

so, by increasing coverage in the treated districts, IMI had a mean-

ingful impact on geographic equity in India even if the treatment

effect size was similar across treated districts.

While IMI targeted pregnant women in addition to children, we

estimated that it had a negligible or negative effect on the two

maternal vaccines in our study. Baseline coverage of maternal

vaccination was high relative to coverage of childhood vaccination,

possibly due to the success of India’s cash transfer program for preg-

nant women, Janani Suraksha Yojana. IMI program implementation

efforts were particularly focused on childhood vaccination. In addition,

the maternal vaccination schedule is more specific than the childhood

vaccination schedule (with shorter opportunities for catch-up).

We used a rigorous quasi-experimental approach to estimate the

causal impact of IMI on vaccine delivery. Our approach accounted

for secular changes in vaccine delivery volumes that would have

occurred in the absence of IMI, for time invariant confounders, and

for events or policies coinciding in time with IMI that would have

affected vaccine delivery in both the treated and untreated districts.

The use of high-frequency (monthly) data allowed us to estimate the

effects of IMI both during implementation and afterwards to exam-

ine whether the size of the treatment effect changed over time.

Our study has several limitations. First, because HMIS data are

noisy, our estimates have low precision. We used a quasi-Poisson

distribution to accurately estimate uncertainty in the presence of

over-dispersion in HMIS data. While our point estimates for the

treatment effect of IMI over a 12-month period are large in magni-

tude, many of the estimates are statistically insignificant. Second,

routinely collected data, such as HMIS data, can be subject to over-

or under-reporting. Misreporting that was random, consistent over

time or followed similar trends in treated and untreated districts

would not bias our study findings. However, our findings could be

biased if IMI influenced reporting practices. While we cannot know

for sure, we do not believe this happened: IMI doses were reported

into the HMIS system the same way as other doses, and reward pay-

ments for health workers did not change during IMI. Third, due to

changes in administrative districts over time and omissions from the

HMIS dataset, our sample omitted 8 treated and 91 untreated dis-

tricts. The majority of the omitted untreated districts were from

three states that had little to no IMI implementation, and their inclu-

sion or exclusion in the control group would not be expected to

change the results. The remaining omitted untreated districts and

the omitted treated districts made up only a small portion of the

overall birth cohort, so are also not expected to have a substantial

effect on the results. Fourth, our main analysis used data on

vaccination volume rather than direct measures of coverage. We

therefore used auxiliary data sources to calculate target population

size for estimating impacts on coverage and the percent reduction in

the number of unvaccinated children. The accuracy of these impact

estimates relies on the accuracy of the auxiliary data. Fifth, our

causal inference approach relied on the untestable assumption that

vaccine delivery trends would have changed the same way in treated

and untreated districts if IMI had not occurred. We tested the ro-

bustness of our results to a wide range of model specifications and

comparison groups and found qualitatively similar results. Sixth,

there were changes in the delivery of the measles vaccine in India

that coincided with the study period. As a result, our estimates of

the impact of IMI on delivery of M1 and M2 may be less reliable

than our estimates for other vaccines. Seventh, our analysis could be

strengthened through the use of data on vaccine supply stock and

flow, as collected in the electronic vaccine intelligence network

(eVIN), but we did not have access to these data. Finally, we did not

evaluate the impact of IMI on childhood vaccines delivered after 2

years, because the target population was under 2 years, but it is pos-

sible that IMI also had an impact on vaccine delivery to the older

age group.

IMI was a major effort to improve immunization coverage in

India. During the 3-month implementation period, we estimated

substantial increases in coverage for multiple vaccines. However,

these increases in coverage were not observed for all vaccines and

were not always statistically significant. We estimated minimal

impacts on maternal vaccination coverage and minimal impacts

after the implementation period. PIRI may be an effective strategy

for reaching zero dose children, increasing routine childhood

immunization coverage, and improving equity, but may need to be

followed-up with strong routine services to have long-lasting

impact. Further work is needed to understand the sustainability and

cost-effectiveness of this approach compared with other methods for

increasing coverage, particularly for the unreached populations.

Supplementary data

Supplementary data are available at Health Policy and Planning online.
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