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We report our clinical and laboratory experience treating a 
50-year-old patient who was critically ill with extensively drug-
resistant Acinetobacter baumannii necrotizing pneumonia 
complicated by empyema in Detroit, Michigan. A precision 
medicine approach using whole-genome sequencing, suscepti-
bility testing, and synergy analysis guided the selection of ra-
tional combination antimicrobial therapy.
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Acinetobacter baumannii is an urgent threat and critical path-
ogen for which new antimicrobials are needed [1, 2]. Its nu-
merous intrinsic and acquired resistance mechanisms often 
render conventional antimicrobials ineffective, leading to the 
emergence of extensively drug-resistant (XDR) strains, defined 
as nonsusceptibility to ≥1 agent in all but ≤2 antibiotic categories 
[3]. Although infections caused by XDR A. baumannii continue 
to increase worldwide, there remain sparse evidence-based data 
detailing effective therapeutic options. Cefiderocol, Food and 
Drug Administration (FDA) approved in 2020 for hospital-
acquired bacterial pneumonia (HABP)/ventilator-associated 
bacterial pneumonia (VABP) caused by gram-negative sus-
ceptible microorganisms including A. baumannii, has demon-
strated in vitro activity against multidrug-resistant (MDR) A. 

baumannii isolates harboring class D β-lactamases, including 
OXA-23, OXA-24, OXA-40, OXA-51, and OXA-58 [4]. In 
contrast, eravacycline, FDA approved in 2018 for complicated 
intraabdominal infections (cIAIs), has not yet earned an indi-
cation specifically for A. baumannii, nor has it been assigned a 
Clinical and Laboratory Standards Institute or FDA breakpoint 
despite showing in vitro activity against MDR A. baumannii 
isolates [5]. Recently, the investigational drug durlobactam, 
a potent inhibitor of Ambler class A, C, and D β-lactamases, 
when used in combination with sulbactam, restored activity 
of sulbactam against carbapenem-resistant A. baumannii iso-
lates [6, 7]. As the incidence of XDR A. baumannii isolates in-
creases, health care teams are gaining experience with these 
agents as monotherapy and in combination with traditional 
antimicrobials to explore their place in therapy.

CASE PRESENTATION

A 50-year-old man presented to an affiliate hospital with chest 
pain and shortness of breath. Chest computed tomography 
(CT) showed pulmonary emboli throughout the left lower seg-
mental arteries and right lower lobe (RLL) with progression of 
previously seen pulmonary infarction. On hospital day 6, the 
patient transferred in as an intensive care unit direct admis-
sion and was intubated for severe respiratory distress. The next 
day, his repeat CT showed progressive necrosis of the RLL in-
farction, and he underwent a thoracotomy with partial decor-
tication and right thoracoscopy with 3 chest tubes placed and 
was started on empiric piperacillin-tazobactam and intrave-
nous (IV) vancomycin (Figure 1). A bronchoalveolar lavage on 
hospital day 9 resulted positive for meropenem-susceptible A. 
baumannii on hospital day 12, so antibiotics were switched to 
3-hour extended infusion meropenem. Also, on hospital day 12, 
the patient underwent another thoracotomy with RLL resection 
and complete decortication due to a new large multiloculated 
pleural effusion. Pathology of the pleural peel demonstrated 
acute fibrinopurulent exudate, and the resected RLL demon-
strated extensive abscess, necrosis, and hemorrhage. Pleural 
tissue culture demonstrated XDR A. baumannii on hospital day 
18, with intermediate susceptibility to colistin (minimum inhib-
itory concentration [MIC], 0.5 mg/L) and a tigecycline MIC of 
2 mg/L (Figure 1), which prompted the switch from meropenem 
to tigecycline 100  mg every 12 hours on hospital day 19 [3]. 
On hospital day 26, after a week of tigecycline monotherapy, 
the patient required vasoactive agents and his CT chest demon-
strated RLL pyopneumothorax, so tigecycline was switched to 
colistin 150 mg IV every 12 hours and meropenem infused over 
3 hours. Due to persistent purulent chest tube drainage, the 
patient underwent a bronchoscopy on hospital day 28, which 
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identified a right bronchopleural fistula. Additionally, the pa-
tient experienced acute tubular necrosis with serum creatinine 
increasing 7-fold from baseline, from 1.10 to 7.60, which, al-
though likely multifactorial, may have been complicated by 
colistin therapy. For these reasons, the infectious diseases (ID) 
service requested eravacycline and cefiderocol susceptibilities 
on the chest tube fluid culture from hospital day 23, which re-
sulted susceptible with an MIC of 0.5 mg/L for cefiderocol via 
broth microdilution and 0.5 mg/L for eravacycline via E-test (no 
eravacycline breakpoint available for A. baumannii) on hospital 
day 29, so colistin and meropenem were switched to renally ad-
justed cefiderocol. Significant chest tube output continued with 
an average of 225 mL per day. Out of concern for an unresolving 
infection, bronchial washings were collected for culture on hos-
pital day 40, which resulted positive for XDR A. baumannii 
on hospital day 45. The A. baumannii isolate was determined 
to be cefiderocol-resistant (zone diameter ≤11  mm) per disk 

diffusion testing, so cefiderocol was switched to eravacycline 
1 mg/kg on hospital day 49 based on its MIC of 0.5 mg/L from 
the previous culture. On hospital day 54, the patient was febrile 
and tachycardic and had increased chest tube output, and the 
eravacycline E-test MIC increased to 1  mg/L, so eravacycline 
was discontinued and combination therapy with cefiderocol 2 g 
every 8 hours and tigecycline 100 mg every 12 hours was ini-
tiated based on published in vitro data demonstrating synergy 
against 6/6 MDR A. baumannii isolates [8]. While the patient 
received combination therapy, chest tube output remained per-
sistent, so ID requested susceptibility testing for sulbactam–
durlobactam (SUL-DUR), which is available through an 
expanded access program for MDR A. baumannii infections. 
The SUL-DUR MIC was 8 mg/L, 1 dilution above the prelimi-
nary susceptibility breakpoint (4 mg/L); however, the addition 
of meropenem reduced the MIC to 4 mg/L, as determined by 
the institution via broth microdilution.
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Figure 1. Timeline of hospital encounter and Acinetobacter baumannii isolate susceptibility data. Nonsusceptible MIC values and MIC values for which there are no es-
tablished Clinical and Laboratory Standards Institute breakpoints (eg, TIG, ERV) are in shaded table boxes [16, 17]. aDetermined by e-test. bBased on SUL-DUR preliminary 
susceptibility breakpoint (4 mg/L). *Documented in vitro susceptibility based on current and previous data in XDR A. baumannii isolates [8]. Abbreviations: AMK, amikacin; 
AMP-SUL, ampicillin-sulbactam; COL, colistin; CT, computed tomography; CXR, chest X-ray; ERV, eravacycline; FDC, cefiderocol; I, intermediate; ID, infectious diseases; IV, 
intravenous; MEM, meropenem; MICU, medical intensive care unit; MIN, minocycline; N/A, not available; pip/tazo, piperacillin/tazobactam; R, resistant; RLL, right lower lobe; 
S, sensitive; SD, sulbactam–durlobactam; TIG, tigecycline; U, unknown breakpoint for A. baumannii; XDR, extensively drug-resistant. 
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With data demonstrating in vitro susceptibility to SUL-DUR 
plus meropenem, cefiderocol and tigecycline combination 
therapy was discontinued, and 1 g sulbactam/1 g durlobactam 
every 6 hours plus meropenem 1 g every 6 hours was started 
per the manufacturer’s protocol on hospital day 62 due to the 
patient’s increased supplemental oxygen requirement and per-
sistent chest tube output. On hospital day 75, after 13 days of 
SUL-DUR and meropenem and resolution of chest tube output, 
the patient completed 3 weeks of antibiotic therapy with docu-
mented in vitro susceptibility from the last debridement, with 
no reported adverse drug effects [8]. Antibiotics were discon-
tinued, and 2 days later he was cleared for discharge. The patient 
followed up with ID as an outpatient and 4 weeks later was at his 
prehospital baseline.

For all XDR A. baumannii isolates, chromosomal DNA extrac-
tion, whole-genome sequencing (WGS), and genomic content 
analysis were performed at Entasis Therapeutics. Full methods 
and accession numbers are provided in the Supplementary Data. 
Isolates underwent sequence analysis of known antibiotic re-
sistance genes. All 3 tested patient isolates (collected on hospital 
days 12, 23, 40) encoded resistance genes for aminoglycosides, 
fluoroquinolones, macrolides, sulfonamides, and tetracyclines, 
plus 2 Class D and 1 Class C carbapenemase genes: OXA-23, 
OXA-66, and Acinetobacter-derived cephalosporinase (ADC)-
30. The OXA-23 carbapenemase is a type of acquired resistance, 
whereas OXA-66 and AmpC β-lactamases are intrinsic mech-
anisms that confer carbapenem and cephalosporin resistance, 
respectively [9]. The cefiderocol-resistant isolate revealed a mu-
tation in the TonB-dependent siderophore receptor (A1S_0980) 
[K628], which was likely the source of cefiderocol resistance. 
Full WGS results are provided in the Supplementary Data.

Checkerboard assays, combination MICs, and time-kill 
analyses (TKA) were used to explore potential synergistic ef-
fects of SUL-DUR in combination with meropenem for A. 
baumannii against the cefiderocol-resistant isolate. Meropenem 
powder was purchased commercially from Sigma Chemical 
Company (St. Louis, MO, USA), and SUL-DUR powder was 
provided by the manufacturer, Entasis Therapeutics (Waltham, 
MA, USA). All in vitro analyses were performed following 
Clinical Laboratory Standards Institute (CLSI) guidelines 
[10]. Combination MIC testing with SUL-DUR (durlobactam 
4 mg/L kept constant) in the presence of subinhibitory amounts 
of meropenem (0.5 × MIC of meropenem) was performed, as 
was meropenem in the presence of subinhibitory amounts of 
SUL-DUR (0.5 × MIC of SUL-DUR) [11]. Combination MIC 
testing revealed a 4-fold meropenem MIC reduction in the 
presence of SUL-DUR (MIC 64 to 16) and a 2-fold SUL-DUR 
MIC reduction in the presence of meropenem (MIC 8 to 4).

The isolate was further evaluated for SUL-DUR and 
meropenem synergy by checkerboard analysis in duplicate 
(using durlobactam 4  mg/L kept constant). Synergy was de-
fined as a fractional inhibitory concentration (FIC) index ≤0.5 

[12]. The FIC index considers the combination of antibiotics 
that produces the greatest change from the individual MIC. The 
checkerboard assay revealed SUL-DUR and meropenem syn-
ergy with FIC = 0.375 (Figure 2A).

TKAs were performed using inocula obtained from stationary 
phase cultures and 2 replicates obtained at each time point, ac-
cording to CLSI standards [13]. Antimicrobials were tested at 
their respective synergistic concentrations as determined by 
checkerboard analysis or maximum concentration of free drug 
in serum (fCmax) [14, 15]. Sulbactam and durlobactam con-
centrations were kept at a 1:1 ratio (ie, 2/2 mg/L) to mimic the 
proposed dosing regimen. Synergy was defined as a >2 log10 
CFU/mL reduction over the most potent single agent. Against 
the XDR A. baumannii, SUL-DUR plus meropenem was syner-
gistic (Figure 2B), which may have contributed to the successful 
treatment of this patient.

DISCUSSION

The treatment of XDR A. baumannii remains challenging due 
to its propensity to confer multiple resistance mechanisms and 
sparse clinical data evaluating potentially effective therapeutic 
options, including the novel agents eravacycline, cefiderocol, 
and sulbactam–durlobactam, as monotherapy or in combina-
tion with conventional antimicrobials.

While phase 3 trials have demonstrated the efficacy 
of eravacycline in cIAIs caused by Enterobacterales, lim-
ited information exists for A. baumannii infections. 
Pharmacodynamic/pharmacokinetic (PK/PD) evaluations of 
eravacycline in Enterobacterales have identified fAUC/MIC 
targets for stasis and 1-log-kill end points of 27.97 ± 8.29 
and 32.60 ± 10.85, respectively [16]. However, the European 
Medicines Agency (EMA) assessment report for eravacycline 
suggests that fAUC/MIC targets would not be achieved in 
Enterobacterales with MICs >0.12 [17]. Therefore, it is especially 
difficult to interpret the patient isolate eravacycline MICs given 
the lack of efficacy outcome data and PK/PD analyses for A. 
baumannii infections. Eravacycline MICs are, in general, 2-fold 
lower than those of tigecycline against carbapenem-resistant A. 
baumannii isolates. Additionally, eravacycline remains active 
against isolates harboring tetracycline efflux pump genes and is 
reliable against OXA carbapenemases and colistin-resistant iso-
lates [18]. However, clinical trial data evaluating the efficacy of 
eravacycline against MDR A. baumannii isolates are limited to 
data from phase 3 cIAI and complicated urinary tract infection 
(cUTI) trials [19, 20]. For cIAIs, eravacycline was noninferior 
to ertapenem and meropenem, but only 3% and 2% of those 
patients had A. baummannii infections, respectively. For cUTI, 
eravacycline was inferior to levofloxacin and meropenem.

Cefiderocol has demonstrated in vitro activity against 
>95% of meropenem-nonsusceptible A. baumannii isolates 
harboring class D β-lactamases per surveillance data using 

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofac092#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofac092#supplementary-data
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CLSI susceptibility criteria ≤4  mg/L [21]. However, similar 
to eravacycline, clinical data supporting its use for infections 
caused by MDR A. baumannii are limited to 2 phase 3 trials. 
CREDIBLE-CR enrolled 54 patients with infections due to 
carbapenem-resistant gram-negative bacteria. While clinical 
cure rates were similar between cefiderocol and the best avail-
able therapy (mostly composed of polymyxin-based regimens), 
patients who received cefiderocol had increased all-cause mor-
tality, which was driven by higher mortality in patients with A. 
baumannii infections [22]. APEKS-NP enrolled 300 critically 
ill patients with nosocomial pneumonia and identified no dif-
ference in 14-day all-cause mortality between cefiderocol and 
optimized meropenem (2 g IV every 8 hours, 3-hour extended 
infusion). Notably, 16% of those enrolled were infected with A. 
baumannii, of whom 66% were carbapenem-resistant [23].

Durlobactam has demonstrated in vitro activity against 
Ambler class A, C, and D β-lactamases [24]. One study reported 
the in vitro activity of SUL-DUR against 1722 clinical isolates of 
the ABC complex (A. baumannii, Acinetobacter calcoaceticus, 
Acinetobacter nosocomialis, and Acinetobacter pittii) collected 
globally in 2016 and 2017 [7]. Of the isolates tested, 97.7% 
had an SUL-DUR MIC of ≤4 μg/mL, the proposed SUL-DUR 
breakpoint, which is based on preclinical and clinical modeling 
of joint PK/PD target attainment analysis for sulbactam and 
durlobactam [25–27]. Among the SUL-DUR-nonsusceptible 
isolates (2.3%), most encoded either the NDM-1 metallo 

β-lactamase, which is not inhibited by durlobactam, or amino 
acid changes in PBP3, the target of sulbactam [7]. Given this 
information, it is reasonable to conclude that for A. baumannii 
isolates with MIC >4 μg/mL, the addition of a carbapenem to 
SUL-DUR therapy may be an alternative therapeutic choice, al-
though additional studies are warranted.

Results were recently released from ATTACK, a global phase 
3 registration trial evaluating the safety and efficacy of SUL-
DUR for the treatment of carbapenem-resistant A. baumannii 
HABP, VABP, or bacteremia. In the study, patients were ran-
domized to receive either SUL-DUR (dosed 1  g/1  g infused 
over 3 hours) or colistin (2.5  mg/kg infused over 30 minutes 
every 12 hours), both in combination with imipenem/cilastatin. 
In total, 207 patients were enrolled from 95 clinical sites across 
17 countries. SUL-DUR met the primary end point of 28-day 
all-cause mortality showing noninferiority compared with 
colistin in a microbiologically modified intent-to-treat popu-
lation, with a statistical trend toward lower mortality among 
patients who received SUL-DUR vs colistin (19% [12/63] vs 
32.3% [20/62], respectively). Additionally, clinical response at 
test-of-cure once again favored SUL-DUR with 61.9% com-
pared with 40.3% in the colistin arm. The study’s primary safety 
objective was also met with a significant reduction in nephro-
toxicity among patients who received at least 1 dose of SUL-
DUR or colistin (13.2% [12/91] vs/ 37.6% [32/85], respectively; 
ClinicalTrials.gov NCT03894046: http://clinicaltrials.gov/
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Figure 2. A, Checkerboard analysis for synergy. Columns 1–10 contain 2-fold serial dilutions of SUL-DUR, and rows 1 to 8 contain 2-fold serial dilutions of MEM. The 
results are used to calculate the FIC value and then assessed for synergism, additive/indifference, or antagonism. In this illustration, “no growth” is represented by white 
squares and “growth” is represented by blue squares, with increasing darkness representative of higher CFU/mL. The red outline represents the area for potential synergy 
(FIC ≤0.5). The orange dotted outline represents the area of a demonstrated synergistic effect (FIC ≤0.5) between SUL-DUR and meropenem. B, Time-kill analysis. Planktonic 
time kill analyses for XDR A. baumannii patient isolate against combination therapy with sulbactam-durlobactam plus meropenem. The addition of meropenem (30 mg/L) to 
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http://clinicaltrials.gov/ct2/show/NCT03894046


NOVEL ID CASES • OFID • 5

ct2/show/NCT03894046 [28]. While the use of combination 
therapy in this study aligns with the newly published Infectious 
Diseases Society of America guidance for the treatment of mod-
erate to severe infections caused by carbapenem-resistant A. 
baumannii, it leaves in question the optimal combination agents 
to be used with SUL-DUR [29].

To our knowledge, this is the first case report documenting 
SUL-DUR plus meropenem combination therapy as an ad-
juvant to surgical management for necrotizing XDR A. 
baumannii pneumonia complicated by empyema. The addition 
of meropenem to SUL-DUR in this case instead of imipenem–
cilastatin was secondary to institutional formulary restrictions. 
Further in vitro analyses revealed synergistic effects with SUL-
DUR plus meropenem against the third XDR patient isolate, 
which may have contributed to the patient’s resolution of chest 
tube output. However, without safety and efficacy data from 
clinical trials, it is difficult to assess the role of meropenem as 
a combination agent with SUL-DUR in the successful treat-
ment of this patient. The positive impact of this combination 
may also in part be due to durlobactam’s unique ability to re-
store sulbactam activity against MDR A. baumannii. A similar 
case report described combination SUL-DUR and cefiderocol 
therapy for the treatment of XDR A. baumannii in a patient with 
severe COVID-19 and septic shock secondary to HABP [30].

CONCLUSIONS

This case describes the clinical use of combination 1  g 
sulbactam/1 g durlobactam every 6 hours as a 3-hour infusion 
with meropenem 1 g every 6 hours administered via 30-minute 
infusion for necrotizing XDR A. baumannii pneumonia/em-
pyema. The resultant in vitro synergy of this combination may 
have contributed to the successful treatment of this patient. 
Thus, in patients with XDR A. baumannii demonstrating in 
vitro resistance to SUL-DUR, combination therapy of SUL-
DUR with meropenem may be an appropriate therapy option. 
Additional clinical trials are necessary to inform use of SUL-
DUR both as monotherapy and in combination with conven-
tional antimicrobial therapies pending its approval for use in 
Acinetobacter infections.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 
online. Consisting of data provided by the authors to benefit the reader, 
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sponding author.
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