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Abstract Mesenchymal stem cells (MSCs) and
blood plasma/MSC-derived extracellular vesicles
(EVs) offer promising tools to promote longevity and
treat age-related diseases. MSCs have low immuno-
genicity and tumorigenicity, and their efficacy is rela-
tively independent of the donor age in humans (but
not in rodents). Systemic administration of MSCs
and stem cell/blood-derived EVs modified the omic
profiles of various organs of aged rodents towards
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the young ones. The application of EVs appears to
be even more beneficial than MSCs. Remarkably,
over 70% of microRNAs, which are over-presented
in ESC-derived EVs, were found to target longevity-
associated genes. Along with MSCs, other types of
stem cells were reported to display health- and lifes-
pan-extending effects. Pluripotent Muse cells, a spe-
cific subpopulation of MSCs, which possess a num-
ber of unique features, could be particularly relevant
for promoting healthspan. The rejuvenation potential
of MSCs, EVs, and Muse cells warrants further inves-
tigation in both animal models and clinical trials,
using aging clocks for biological age determination as
one of the endpoints.
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Abbreviations

ARDs Age-related diseases

ESC  Embryonic stem cell

EVs Extracellular vesicles

i.p. Intraperitoneally
iv. Intravenously
LAGs Longevity-associated genes

MiRs  MicroRNAs
MSCs Mesenchymal stem cells
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Introduction

Mesenchymal stem cells (MSCs) represent a dis-
tinct population of mesenchymal stromal cells,
which (i) are able to adhere to plastic surfaces, (ii)
express specific cell surface markers (CD73, CD90,
and CD105, but not CD14, CD34, CD45, and HLA-
DR), (iii) and are able to differentiate into osteo-
genic, chondrogenic, or adipogenic cell lineages
in vitro (Kulus et al. 2021; Galderisi et al. 2022).
It should be noted that MSC isolation yields het-
erogeneous, non-clonal cultures of stromal cells,
including stem cells with diverse multipotent poten-
tial, committed progenitors, and differentiated cells
(Galderisi et al. 2022). MSCs are found in virtually
all organs of the adult organism, examined thus far
(da Silva Meirelles et al. 2006). A rapidly growing
body of evidence indicates the beneficial effects of
systemic administration of MSCs or MSC-derived
extracellular vesicles (EVs) in various pathological
conditions, including age-related diseases (ARDs)
(Guy and Offen 2020; Zhuang et al. 2021; Smo-
linsk4 et al. 2023; Emmrich et al. 2024; Rudnitsky
et al. 2024; Tombak et al. 2025). For example, the
systemic administration of bone marrow-derived
MSCs or MSC-derived EVs from young rodents
increased hippocampal neurogenesis and improved
cognitive function in aged animals (Gobshtis et al.
2017, 2021; Yu et al. 2018; Herman et al. 2021; Tfi-
lin et al. 2023).

Longevity is the most general and integrative
parameter for evaluating the therapeutic effects of
any interventions (Lyu et al. 2024). Another inte-
grative parameter directly related to life expectancy
is biological age. Recently, its determination has
become possible, using various biological aging
clocks (Moqri et al. 2025; Muradian and Fraifeld
2024a). However, to date, a comprehensive analy-
sis of the impact of MSCs/MSC-derived EVs on
longevity, biological age, and aging phenotypes
has not been conducted. With this in mind, in this
review, we primarily focus on the effects of MSC
or EV administration on the lifespan of wild-type
or progeroid animals. Other types of stem cells and
EV sources were also considered. Along with the
health- and lifespan-extending effects, we discuss
their putative mechanisms as well as the impact on
biological age and aging omic signatures.

@ Springer

The effects of stem cel/MSC/EV administration
on lifespan in rodents

The effects of systemic administration of stem cells/
MSCs/EVs on lifespan in rodents are summarized in
Table 1. These effects were investigated in both natu-
rally aging rodents and progeroid mice. The MSCs or
EVs were delivered systemically (i.p., i.v., or into the
left ventricular cavity of the heart), and the frequency
of their administration varied from a single injection
to weekly injections until natural death. The trans-
plantation of MSCs or infusion of EVs led to a con-
sistent extension of both median (or mean) and maxi-
mum lifespan in rodents. This was observed in both
naturally aging and progeroid animals. Moreover, in
the vast majority of studies, the lifespan-extending
effects were accompanied by attenuation of aging
symptoms, including preservation of physical activ-
ity, cognitive function, and metabolism (a decrease in
insulin resistance and maintenance of bone mineral
density) (Table 1).

In general, these effects were not significantly
influenced by the source of MSCs (bone marrow, adi-
pose tissue, amniotic membranes, etc.). However, the
comparative analysis conducted by Kim et al. (2015)
revealed that adipose tissue-derived MSCs were more
efficient in extending the lifespan, whereas MSCs
from amniotic membranes were better at maintaining
physical activity and cognitive function (Kim et al.
2015). This could be attributed to the observation that
MSCs from different tissues exhibit slightly differ-
ent properties. In particular, Heo et al. (2016) dem-
onstrated that, compared to placenta- or umbilical
cord-derived MSCs, the bone marrow- and adipose
tissue-derived MSCs possess higher capacity for self-
renewal and the potential to differentiate into other
mesodermal cell lineages (adipocytes, osteoblasts,
and chondroblasts), as well as more pronounced anti-
inflammatory activity.

The lifespan-extending effect was also observed
for EVs extracted from cardiospheres or blood plasma
(Table 1), and this effect was comparable to that of
MSC transplantation. It is worth noting that defining
the cell source of EVs isolated from blood plasma is
difficult. However, based on the study of adipose tis-
sue-specific Nampt knockout mice, it was suggested
that adipose tissue is a valuable contributor (Yoshida
et al. 2019). The important point is that extracel-
lular Nampt, which promotes NAD* generation, is
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contained exclusively in EVs, originating presumably
Tj from adipose tissue (Yoshida et al. 2019). It appears
g that the lifespan-extending effect of blood plasma-
5 B derived EVs is primarily associated with modulation
§ Es of NAD™ levels. Indeed, the age-related decline of
2 ;; e NAD™ was ubiquitously observed, and its prevention
% B g ) was shown to extend the lifespan of both invertebrate
< j:’ -é"@ (yeast, worms, flies) and vertebrate (rodents) organ-
(2 Q ) .
isms (Yaku et al. 2018).
z g T s . &5 Lifespan-extending effects of MSCs as well as EVs
> 5} |72} B . .
== § v oz = = 8 do not seem to be sex-, strain-, or even species-spe-
= - L . .
k= g 2 ig g k| s 28 ? cific, but could be dependent on donor age (Table 1).
BE _ESE5E BoE HEES i i
ESsE8%28% EXRZ Z2% Indeed, stem cells from young mice extended median
55258832 w8C ZE7T lifespan in both naturally aging and progeroid mice
c2d55-288:1% Ei°8 P y JE18 Ane Pros '
” 25=%535 SEET & 22 . & s In contrast, MSCs from old or progeroid mice did not
a“:% gé % 3 g :: ? 2 2 ﬂ_.:) g :‘é £ b5 :é E exert any significant effect on lifespan (Shen et al.
& H <= A " A< 2011; Lavasani et al. 2012; Dorronsoro et al. 2021).
This may be attributed to age-related alterations of
MSC function in rodents (Kasper et al. 2009). Nota-
bly, the lifespan-extending effect was also observed
< =) &0 in the case of MSC transplantation from middle-aged
=] ‘B 5 . .
2 & = human donors to rats (Kim et al. 2015; Mansilla et al.
e £ £ 2016). No significant difference in ‘cellular fitness’
& S 3 in vitro between bone marrow-derived MSCs from
very young (infants and children <6 years) and mid-
2 dle-aged (38-58 years) human donors was observed,
= & g except for a slightly lower rate of cell division in older
%% o B ilf vs. young donors (Lund et al. 2010). Similar results
= O .
T2l €5 % were reported by Liu et al. (2014) for MSCs from
23, 28z w = 2 human donors above 60 years of age. Transplantation
«» g A =} - = ey . . . .
TEvs g é i g ;ﬁ% % g of these MSCs exhibited cardioprotective effects in
= =} . . .
E o 5 % E § % ‘Eof. the myocardial infarction rat model.
" Another important issue is whether the efficacy of
4 7] . 9 ..
58 & § 8 2 2 stem cell or EV therapy depends on the age of recipi-
- < < H o . . .
= :‘i E = & =S %'\g = 2 | ents. Of note, in all studies carried out thus far, the
£ =28 - bé«g §D§ z g g recipient animals were of relatively advanced ages.
= ‘D= = =5 < d . . .
8 5 £ 5 - 8= %w‘i q ZY In mice, the treatment was started in animals of
= == = g o)
= B § = % i Z8L g2 i 18 months of age or older. In rats, the treatment was
N 2] Gy =t . .
g Y g -2 '% T °z 3 s» £ | started no earlier than 12 months of age when animals
g = 8 8= 580 2 o § < < =) : [ 5 Z
& S E53 28 =& 8355 8 5| are considered ‘middle-aged” (Campos-Beltrdn and
A © = Marshall 2021), and was conducted for 4 months or
2 % = until natural death (Table 1). It would be attractive to
M S0 o2 speculate that the age of a recipient is not a barrier for
—~ 7N = < .
3 2 B . g 3 beneficial effects of stem cel/MSC/EV therapy.
= 5] . . .
ERE -g' 2 E £ 3 = To summarize, systemic stem cel/MSC/EV admin-
= T L = . . . .
§ E = €2 "§ 52 istration exerted a clear lifespan-extending effect, and
2| = o g o 2z . .
- % § gs g %‘ g s this effect was observed even if the treatment was
218 [S9R °TE 3 started late in life. It seems that the tissue source of
g1l8 7 o Il MSCs had only a slight impact on lifespan. Donor age

@ Springer
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was of critical value in rodents but not in humans. Not
surprisingly, the longevity-promoting effect of MSC
transplantation was much more pronounced in prog-
eroid mice than in wild-type animals.

Effects of stem cells/MSCs/EVs on aging
signatures

Thus far, only a few studies have been undertaken to
evaluate the effects of systemic administration of stem
cellsyMSCs/EVs on biological age or age-related omic
profiles. To the best of our knowledge, there are only
two papers in which aging epigenetic clocks were used
to evaluate such effects (Sanz-Ros et al. 2022; Horvath
et al. 2024). In both studies, EVs derived from either
MSCs or blood plasma were used, and impressive
results were obtained. Sanz-Ros et al. (2022) found
that proteins extracted from MSC-derived exosomes
of young mice decreased epigenetic age, prevented
frailty, and improved healthspan in old mice. Horvath
et al. (2024) transplanted the exosome fraction of swine
blood plasma to old rats, resulting in a significant rever-
sal of biological age and functional improvement of
various organs.

In several studies, various age-related omic profiles
(transcriptomic, metabolomic, proteomic, peptidomic,
phosphoproteomic profiles, as well as gut microbi-
ota) were evaluated after systemic stem cel/MSC/EV
administration (Table 2). As a result, the omic profiles
of various organs of aged rodents were modified, so
that the profiles were comparable to those of younger
animals. Indeed, the rejuvenative effects in liver, heart,
brain, kidney, gut, and blood were observed (Fig. 1). In
monkeys, transplantation of human ESC-derived MSC-
like cells extended the reproductive lifespan (Yan et al.
2024). The rejuvenative effects of stem cells/MSCs/
EVs do not seem to be species-specific (Table 2), simi-
larly to the lifespan-extending experiments.

All in all, the “younger” state of various organs in
stem cell/MSC/EV-treated aged animals may, to some
extent, explain the lifespan-extending effects of such
a therapy.

Putative longevity-promoting mechanisms of stem
cel/MSC/EV treatment

The accumulated body of evidence indicates that the
transplanted MSCs could exert their beneficial effects

@ Springer

on longevity and health by their secretome which
includes soluble molecules and EVs (Siraj et al.
2023). In particular, the secretome of non-senescent
MSCs revealed anti-inflammatory and anti-apoptotic
properties. Whatever the case, the transplanted MSCs
display their effects in a paracrine manner rather than
by differentiating into other cell types (Boregowda
and Phinney 2013; Francisco et al. 2019; Govin-
dasamy et al. 2021). The comparable effects of MSCs
and MSC-derived EVs strongly support this concept.
Relevant issues are discussed in detail in the recent
review by Li et al. (2023). Yet, EVs have some advan-
tages over MSCs: EVs are much less immunogenic
and fully non-tumorigenic (Tolar et al. 2007; Ali et al.
2024; Hye et al. 2024).

A prominent exception to the predominant parac-
rine mode of action of MSCs is their subpopulation
denoted as Muse cells (multilineage-differentiating
stress-enduring stem cells) (Kuroda et al. 2010).
In contrast to other adult somatic stem cells, trans-
planted Muse cells successfully differentiate into var-
ious cell types (Kushida et al. 2018) and selectively
home to damaged sites after systemic administration
(Minatoguchi et al. 2024). Their beneficial therapeu-
tic effects were shown in several models of ARDs
(Alanazi et al. 2023; Velasco et al. 2023; Minatoguchi
et al. 2024).

Considering the multiplicity of MSC secretome
components, it would be reasonable to suggest mul-
tiple targets and pathways of MSC effects. Among
various types of EV cargos, microRNAs (miRs) are
of particular interest. In longevity-related studies, the
miR content of EVs was explored by Yu et al. (2023)
and Chen et al. (2024). Yu et al. (2023) evaluated the
miRNA landscape of EVs derived from ESCs com-
pared to EVs derived from embryonic fibroblasts.
Based on their results, we noticed that over 70% of
miRs, which are over-presented in ESC-derived
EVs, were found to target longevity-associated
genes (LAGs; Tacutu et al. 2018; https://genomics.
senescence.info/genes/index.html). Furthermore, we
conducted the KEGG analysis which showed that
LAGs targeted by the top 20 over-represented miRs,
are primarily involved in well-recognized longevity
pathways such as FoxO signaling pathway, Insulin
resistance, Cellular senescence, PI3K-Akt signal-
ing pathway, Autophagy, Pathways in cancer, Cell
cycle, and Apoptosis. Of note, 9 of top 20 over-repre-
sented miRs together with their target genes form the
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Fig. 1 The effects of stem
cell/MSC/EV systemic
administration on aging
signatures in various organs
of rodents
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continuous miR-regulated protein—protein interaction
(PPI) network which includes 19 well-known LAGs
(Fig. 2). Moreover, miRs which are differentially rep-
resented in ESC-derived EVs, are involved in regu-
lation of all conditions recognized as hallmarks of
aging (Lopez-Otin et al. 2013, 2023; Harries 2014).
In particular, numerous studies showed the inhibi-
tory effect of EVs on cellular senescence (reviewed
by Rudnitsky et al. 2024). In addition to targeting the
LAGs, the aforementioned miRs could promote lon-
gevity by still unknown mechanisms. For example,
miR-708 which, according to the miRPath database
(Kehl et al. 2020; https://mpd.bioinf.uni-sb.de/overv
iew.html), does not yet have experimentally validated
targets, has been shown to be associated with a longer
lifespan in mice (Lee et al. 2017). Consistent with
the effects of EVs, administration of murine stem
cells extended lifespan in mice, whereas primary
embryonic fibroblasts did not display such an effect
(Lavasani et al. 2012; Table 1).

In another work, the miR content of EVs extracted
from blood plasma of young and old animals was
compared (Chen et al. 2024). The authors identi-
fied three miRs that were over-represented in EVs
from the plasma of young animals: miR-144-3p,
miR-149-5p, and miR-455-3p. Our analysis showed
that all of them target LAGs (APP, TAU/MAPT, and
CRTCI) with anti-longevity action. Accordingly,
miR-induced silencing of these genes might have a

A decrease in
epigenetic age;
Rejuvenation of
transcriptome,
proteome,
phosphoproteome,
metabolome

longevity-promoting effect. It seems plausible that
the lifespan-extending effect of EVs from “young”
plasma is, in part, attributed to the high levels of
aforementioned miRs. It would be attractive to spec-
ulate that MSCs from various tissues (Yoshida et al.
2019) were a valuable source of the plasma-derived
EVs.

Concluding remarks and perspectives

MSCs and MSC-derived EVs hold promise for pro-
moting longevity. Notably, MSCs have relatively low
immunogenicity and tumorigenicity and their efficacy
is only slightly influenced by donor age in case of
humans (in contrast to rodents). Yet, while evaluat-
ing the effects of MSC transplantation, the possibil-
ity of MSCs to undergo cellular senescence should
be taken into consideration (Alessio et al. 2023; Siraj
et al. 2023). Along with MSCs, other types of stem
cells were reported to display health- and lifespan-
extending effects in rodents (Lavasani et al. 2012; Yu
et al. 2023). It is also true with regard to EVs derived
from embryonic stem cells (ESCs) or extracted from
blood plasma (Yoshida et al. 2019; Yu et al. 2023).
The application of EVs appears to be even more ben-
eficial than stem cell therapy. Of note, the safeness
of MSC/EV transplantation in humans was shown
in numerous clinical trials, including ARDs (Strauer

@ Springer
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Fig. 2 MicroRNA-regulated PPI network (see the text for explanations)

et al. 2010; Rodriguez-Fuentes et al. 2021; Koda
et al. 2024). However, to date, the longevity-promot-
ing effects of MSC/EV therapy have been limited to
rodent studies. Direct extrapolation of rodent data to
humans is thus far mostly speculative. Indeed, the
aging phenotype could significantly differ across the
species, mammals included (Rattan 2024). Therefore,
the evaluation of MSC/EV therapeutic potential war-
rants further thorough investigation and is an impor-
tant point for future longitudinal studies in humans.

@ Springer

Pluripotent Muse cells could be particularly rel-
evant for promoting healthspan (Dezawa 2018). Yet,
the age-related aspects of Muse cell biology have
not been fully addressed. An important point for
future investigations would be the evaluation of the
rejuvenation potential of Muse cells, with the appli-
cation of aging clocks for biological age determina-
tion (Muradian and Fraifeld 2024a, b).
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