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N E U R O S C I E N C E

A bird’s-eye view of brain activity in socially interacting 
mice through mobile edge computing (MEC)
Jisoo Kim1,2*, Chaewoo Kim1,3, Hio-Been Han1,4, Cheol Jun Cho1,5, Wooseob Yeom6,  
Sung Q. Lee6*†, Jee Hyun Choi1,3*†

Social cognition requires neural processing, yet a unifying method linking particular brain activities and social 
behaviors is lacking. Here, we embedded mobile edge computing (MEC) and light emitting diodes (LEDs) on a 
neurotelemetry headstage, such that a particular neural event of interest is processed by the MEC and subse-
quently an LED is illuminated, allowing simultaneous temporospatial visualization of that neural event in multi-
ple, socially interacting mice. As a proof of concept, we configured our system to illuminate an LED in response to 
gamma oscillations in the basolateral amygdala (BLA gamma) in freely moving mice. We identified (i) BLA gamma 
responses to a spider robot, (ii) affect-related BLA gamma during conflict, and (iii) formation of defensive aggre-
gation under a threat by the robot, and reduction of BLA gamma responses in the inner-located mice. Our system 
can provide an intuitive framework for examining brain-behavior connections in various ecological situations and 
population structures.

INTRODUCTION
A longstanding problem in the brain and social sciences is to under-
stand the neuronal mechanisms underlying complex social group 
behaviors. The behavior of individuals within groups has generally 
been explained in frameworks of collective motions (e.g., migration 
and huddling), local behaviors (e.g., competition), and population 
architectures (e.g., hierarchy). Conversely, studies on the neural 
mechanisms of social behaviors have depended on comparative 
measurement and analysis at the level of individual brains; yet, group 
behaviors are not a simple sum of individual member behaviors. 
Although these reductionist approaches have clarified the causal 
links between neural elements and social behaviors, in most cases, 
the collective behaviors that arise from communication and inter-
actions among individuals are very difficult to deduce from single 
brain studies, because many global properties of social groups are 
consequences of coordinated interactions among group members 
(1). In addition to the behavior level, the involvement of particular 
brain regions and neural circuits has been reported to be dependent 
on social contexts (2, 3), necessitating the simultaneous study of two 
or more interacting individuals (4).

To link specific brain activities with the execution of specific social 
interactions, there is a critical need for simultaneous monitoring of 
the brain activities of multiple subjects that can be used to discover pre-
viously unidentified brain activities during spontaneous interactions. 
Moreover, successful brain-behavior analysis also requires recogni-
tion of the individual identities. In recent years, efforts have been made 
to record and analyze the correlated neural activities in socially inter-

acting monkeys (5) or mice (6) or bats (7) but were limited to pairs of 
two. On the other hand, solutions to automatically track or pheno-
type the naturally interacting multiple subjects have been proposed 
using radio frequency (RF)–identified tagging (8) or color tracking 
(9) or artificial neural network (10), but simultaneous neural record-
ing has not been assayed yet.

To expand understanding in complex social behaviors of a larger 
number of higher animal groups, a new methodology that supports 
simultaneous spatiotemporal visualization of neural event in socially 
interacting behavior is critically needed. Previous telemetry tech-
nologies offer a convenient means of simultaneously monitoring 
multiple individuals (11–13), as it avoids the need for wiring that 
tethers the individual to a monitoring device. However, because of 
the complexity of the neural signals, the analyses are conducted af-
ter experiments, often describing a complex phenomenon in terms 
of simple constituents. As most of social and ecological contexts are 
hard to reduce into simple prior conditions, some of phenomena 
are seemingly unanswerable without seeing the brain activity during 
experiments. Given these inherent difficulty of reducing complex 
social behavior into individual components, direct observation of 
the brain in behaving animals would provide a more satisfactory 
context in which to explore the neural mechanisms underlying 
complex social behaviors.

To overcome the difficulty in observing brain activities during 
complex social behaviors, we adapted edge computing technology 
(14, 15) in wireless neurotelemetry systems for mice. Edge computing 
is the latest technology in internet-of-things services that support 
real-time and context-aware applications by offloading computing 
tasks from the centralized cloud to an edge (16). Combining edge 
computing and real-time neuroreporting concepts, we integrated 
mobile edge computing (MEC) elements into a telemetry unit that 
records, digitizes, transmits neural signals, and subsequently re-
ports a certain types of neuronal activities by illuminating light 
emitting diodes (LEDs) embedded in the headstage. LEDs provide 
the information of mouse location and the existence of certain neural 
activity with high spatiotemporal resolutions in socially interacting 
mice. This system, which we call CBRAIN (collective brain research 
platform aided by illuminating neural activity), consists of neural 
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signal recording, built-in edge computing processors, LEDs, RF anten-
na, spectral camera, and image processing software that captures and 
analyzes neuroreporting signals to support the bird’s-eye view of brain-
behavior links. Here, we embedded Fourier transform and deviant de-
tection algorithm to detect statistically significantly evoked oscillations. 
To efficiently follow each mouse, a blue LED was continuously illu-
minated and used as a tracker with sub-millimeter spatial resolution.

To demonstrate a proof of concept, we used CBRAIN to monitor 
gamma oscillations in the basolateral amygdala (BLA gamma). 
Gamma oscillatory activities indicate neural synchrony within or across 
brain regions for neural communications (17), and the amygdala is a 
central part of the networks of brain regions underlying social cogni-
tion (18). Recently BLA gamma was shown to be involved in neural 
communication with rhinal cortex (19), prefrontal cortex (20, 21), 
and hippocampus (21). Nonetheless, a unifying description of the 
relevant behaviors and a delineation of the link between particular 
social behaviors and BLA gamma have been lacking. So far, most of 
amygdala studies have been based on individually conditioned ex-
perimental setups rather than group-based natural environments. 
While a vast amount of findings in amygdala have revealed its 
importance in autonomic reaction to fear (22) and higher-level cog-
nitions such as threat expectation (23) and social cognition (24, 25), 
the role of amygdala and BLA gamma in processing the relevant 
cognition is still inconclusive mainly due to lack of dynamic obser-
vation in discrete neuronal events. The difficulty stems, in part, 
from the emergent nature of the behavior and, in part, from the 
substantial individual variance in response to stimuli. Therefore, 
precise information on the spatial and temporal distribution of all 
mice combined with their BLA gamma activities are critical. Here, 
we used an escape paradigm using a spider robot as threat agent and 
applied CBRAIN. A bird’s-eye view of BLA gamma during natural 
actions not only shows the vigilance-associated activation of BLA 
gamma as commonly known (20) but also lifted out some underly-
ing features, which could be missed in offline ensemble analysis. 
Furthermore, post hoc analysis of the trajectories aided by deep 
learning revealed that the BLA gamma during dynamic interaction 
with the threat agent was reduced by the presence of other conspecifics. 
Overall, our research system enables the real-time tracking and the 
identification and characterization of brain-behavior links in freely 
moving groups of mice in a variety of contexts, including ecologi-
cally relevant situations or within particular population structures.

RESULTS
CBRAIN system overview
To study the links between neural activity and social behavior, we 
present the CBRAIN system for simultaneously assessing movements 
and brain activities of individual subjects within a group. Figure 1 (A to D) 
shows the overview of the CBRAIN system consisted of headstage, 
data acquisition, and software, and a spectral camera above the cage. 
The CBRAIN headstage consists of recording, edge computing, te-
lemetry, and LED neuroreporting units, as depicted in Materials and 
Methods. The unique feature of the CBRAIN headstage is simulta-
neous recording, analysis, and result display right on the board, 
which is absent in the recently availed wireless headstages dedicated 
to neural recording, as presented in table S1. Each CBRAIN head-
stage is able to record and transmit neural signals up to 16 channels 
and display neurolabeling up to four channels. In this study, we cus-
tomized the CBRAIN to record the local field potential (LFP) at 

1024 Hz and report gamma bursts, the transient gamma oscillations in 
the low gamma band (30 to 50 Hz), as illustrated in Fig. 1E. Multiple 
headstages were synchronized by a transistor–transistor logic (TTL) 
signal, and counter signals from each device were used for post hoc 
time alignment. The tolerance of synchrony uncertainty was lower 
than the time interval of the interrupt handler (see Materials and 
Methods), which was 976.5 s. The CBRAIN and video were recorded 
with the same computer, and the computer time was logged to syn-
chronize the neural signals and video. The errorless wireless transmis-
sion ranged up to 2 m, approximately (fig. S1A). Here, we used one 
LED for the purpose of tracking using a continuously lit blue light 
and one LED for the purpose of neuroreporting by toggling a red 
light upon the detection of gamma burst. We embedded MEC algo-
rithms for real-time detection of gamma burst and LED trigger, as 
depicted in fig. S1B and Materials and Methods. MEC was invoked by 
the interrupt handler right after data sampling. The execution time 
was 568 s, which did not exceed the sampling interval, 976.5 s in 
the current setup. Basically, CBRAIN is designed to deliver two types 
of neural data—electrophysiological signals transmitted via Bluetooth 
communication and digitized neural event in space obtained from 
camera. The power consumption of the headstage was 31 mW, which 
increases up to its twofold on freely moving mouse. One-third of 
power is used for data recording and transmission and two-thirds are 
consumed for MEC and LED operation.

As an initial validation, we performed the performance test of 
real-time detection via MEC by analyzing the receiver operating 
characteristic (ROC) curve for the detection of gamma burst. Figure 
S2A illustrates how the sensitivity and specificity were calculated in 
each epoch. Figure S2B shows an example of the calculation and the 
ROC curve obtained from the MEC with respect to post hoc visual 
scoring of randomly picked 4-s epochs with set size of 29. The area 
under the ROC curve was 0.938 with an exponential model fit. The 
detected gamma burst can be merged with trajectories of the mouse, 
as exemplified in Fig. 1 (F to H).

Demonstration of CBRAIN in seeing BLA gamma 
and behaviors in mice
As a proof of concept of CBRAIN, we examined transient BLA 
gamma in the frequency range of 24 to 56 Hz in naturally behaving 
groups of mice. BLA gamma is known to be associated with brain 
state of vigilance arising from fear or anxiety (20), suggested as a key 
neural event in studying fear or anxiety-related social cognition. 
Here, we used CBRAIN in monitoring BLA gamma activities during 
spontaneous group behavior and tested the efficacy of the system in 
studying the amygdala’s role in social cognition.

Before group monitoring, we equated the neuroreporting across 
mice by confirming the electrode position via intraoperative stimu-
lation test (fig. S3) and using a calibration process for determining 
the threshold value for BLA power. First, we tested whether a threat 
evokes BLA gamma responses and introduced a spider robot in a 
group of eight mice, who were acquainted with one another via 
group housing. As demonstrated in movie S1, the BLA gamma ac-
tivities occurred a lot as soon as the spider robot entered the arena, 
and this occurrence was significantly higher when the robot was in the 
arena compared to the times without a robot (fig. S4, A to C), which 
is consistent with the previous findings (20, 23). Second, we exam-
ined how BLA gamma occurs in fighting mice by placing three male 
mice together who are naïve to one another (movie S2). As com-
monly seen in male rodents, a mouse aggressively chased and initiated 
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a fight with another mouse. BLA gamma was observed in the bystander 
mouse who was not involved in any form of physical violence. As 
depicted in Fig. 2, the BLA gamma of the bystander occurred sig-
nificantly more when one mouse chased the other or when two mice 
were engaged in a fight than during the baseline (P = 0.008 for base-
line versus chasing, P = 0.008 for baseline versus fighting, and P = 0.84 
for chasing versus fighting; Wilcoxon signed-rank test, N = 5, observa-
tion time per mouse = 40 min). The trajectories with neuroreporting 
events show these features clearly. This BLA gamma did not increase 
when the mouse was in a safe place regardless of hearing and/or seeing 
the fights (fig. S4, D and E).

Effects of group conditions on fear-associated 
BLA gamma oscillations
Next, to investigate the effects of being in a group on BLA gamma 
activity, we compared behavioral and neural responses in individual 
versus group situations. Previous experiments have mainly investi-
gated when one animal encounters a threat alone (26), but the more 
common situation in nature is that prey animals defend themselves 

by grouping together. Here, we conducted threat-and-escape exper-
iments by introducing a spider robot into the arena with two zones 
in a group of eight mice who were acquainted with one another 
during habituation (Fig. 3, A and B; fig. S5; and movie S3). In the 
presence of the robot, the BLA gamma oscillations were activated 
more frequently and more strongly (stage 2), decreased in its occur-
rence after they escaped (stage 3), and further decreased below baseline 
levels of stage 1 after the removal of the robot (stage 4) (Fig. 3, C to F). 
The space occupancy maps of the robot were drawn across trials or 
mice or conditions (fig. S6A). There are no eminent patterns in the 
occupancy maps, indicating that the observed patterns of BLA gamma 
were not induced by stereotyped movements of the robot. Also, we 
tested whether the repetition of experiments affects the BLA gamma. 
The emergence of BLA gamma activity was not attenuated across 
the eight trials in all mice, showing that the repeated exposure to the 
robot did not affect the occurrence of BLA gamma (fig. S7). Multiple 
comparison tests revealed that BLA gamma activity was affected by 
all test sources (single/group × stage × mouse), and their interactions 
with BLA gamma oscillation occurrence and power were statistically 

Fig. 1. Overview of the CBRAIN system for monitoring brain activity in a group of mice. (A to D) Schematic diagrams of the CBRAIN system. (A) Photo of a mouse 
wearing the 2.6-g-weight CBRAIN headstage. (B) A headstage consisting of an amplifier, edge computing processor, telemetry, and LEDs records, analyzes, transmits BLA 
signals, and reports the neural activity. A high-speed bird’s-eye view spectral camera records the group behaviors and LED lights. (C) The data acquisition software CBRAIN 
Studio synchronizes and records neural signals from multiple mice. (D) A schematic diagram of the experimental setup for CBRAIN. Here, the blue and red dots represent 
the tracking and the neuroreporting LEDs. (E) An example trace of the neural signal in the amygdala that contains gamma oscillations (top) and gamma oscillation detec-
tion by edge computing (bottom). (F to H) Example of CBRAIN neurolabeling data with trajectories. (F) Captured image frame with identity markers. (G) A frame of video 
with the trajectory and neuroreporting events provided by CBRAIN for eight mice over a period of about 1 s. (H) The trajectories and neuroreporting events for all mice 
over a 15-s time period. Photo credit: Nam Kyun Kim and Jisoo Kim, Korea Institute of Science and Technology.
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significant (table S2). Second-by-second comparisons showed that 
the influence of the robot on the occurrence and power of BLA gamma 
activity was significantly lower when in the group than when alone 
(Fig. 3, G and H). In the stage-by-stage comparison, the group effect 
appeared as a significantly reduced BLA gamma response during the 
robot attack and a reduced undershoot effect in stage 4 (Wilcoxon 
signed-rank test, P = 0.013 for stage 2, P = 8.6 × 10−3 for stage 4; Fig. 3I). 
The group effect was also present during stage 1  in a way that BLA 
gamma was significantly reduced in group than in single (Wilcoxon 
signed-rank test, P = 1.07 × 10−5; Fig. 3J). We tested the possibility that 
the LED from other mice affects BLA gamma in the group condition 
and confirmed that the flickering red lights of others do not affect BLA 
gamma activity (fig. S6, B and C). In terms of power, the gamma power 
distributions in the single versus group conditions displayed opposite 
patterns in the low and high gamma bands (Fig. 3, K and L). While the 
power in the low gamma band was globally reduced in the group con-
dition, power in the high gamma band was generally elevated in the 
group compared to the single condition. In sum, the BLA gamma 
activities evoked by a threat significantly reduced in the presence of 
other mice, compared to when the mouse was alone.

In addition we used a general linear model (GLM) to identify the 
behaviors or situations that are influential in enhancing BLA gam-
ma and to determine whether the experimental condition of group 
per se is influential in reducing BLA gamma. First, the spider robot 
was detected using a convolutional neural network, and its position 
was determined on the basis of the center of mass of the probabilistic 
mask. Second, six different types of behavior (i.e., mouse escaping, 
mouse approaching, spider moving away, spider approaching, close 
encounter, and staying far) were identified using distance and speed 

values (see fig. S8, A and B). Movie S4 shows one full scene of stage 
2, labeled with classified behaviors, and Fig. 4A shows its snapshot. 
The cumulative time for each behavior was calculated in individ-
ual mice (Fig. 4B). The proportion of each behavior shows that the 
most frequent behaviors were mouse escaping and spider approach-
ing. In the group condition, the cumulative time of mouse escaping 
was significantly reduced (P = 0.011, paired t test), and the cumula-
tive times for mouse approaching and spider moving away were 
significantly increased (P = 0.018 and P = 0.003, respectively, paired 
t test). Next, a GLM was implemented on the classified behaviors 
and experimental condition (i.e., single or group) to predict the 
probability of BLA gamma using a logistic regression model (mean 
R2 = 0.04), and the positivity and negativity of the regression coef-
ficients was tested. Figure 4C shows mean regression coefficients 
obtained from four mice, whose trajectories were determined with-
out any loss across the entire recording sessions (16 sessions). Null 
hypothesis test shows that the situation of mouse escaping, mouse 
approaching, and spider moving away significantly increased BLA 
gamma ( = 0.98, P = 0.005;  = 0.82, P = 0.014; and  = 0.30, 
P = 0.025, respectively), whereas the group condition and the be-
havior of staying far from the robot decreased BLA gamma ( = −0.14, 
P = 0.042 and  = −0.37, P = 0.018, respectively).

Reduced BLA gamma activities of inner-located mice during 
defensive aggregation
An interesting pattern observed in groups is an emergence of aggre-
gation with the spider (Fig. 5A and movie S5). We consider this 
grouping as defensive aggregation, a widely observed antiattack 
behavior in prey species (27, 28). To date, this pattern has been 

Fig. 2. Representative scenes of BLA gamma. (A) A chase scene. BLA gamma activity was not observed in the chasing and chased mice but was observed in a third, 
static mouse (as indicated by the red light). (B) Representations of 6-s trajectories of the three mice in (A) combined with BLA gamma occurrence (red dots). (C) BLA gamma 
rate of the bystander during the other’s chasing moment (P = 8.6 × 10−3, paired t test). (D) A fight scene. BLA gamma oscillations were not observed in the mice involved 
in the fight. However, they were observed in the third static mouse. (E) Representations of 2-s trajectories of the three mice in (C) combined with BLA gamma occur-
rence. (F) BLA gamma rate of the bystander during the other’s fight (P = 0.040, paired t test). The rate was normalized by the baseline rate of the individual mice. There was 
no significant difference in BLA gamma in chasing versus fighting (P = 0.41, paired t test). All trajectories in (B) and (D) were converted to disc coordinates for ease of 
showing the tendency to remain close to the walls by calculating ​​x​ D​​ = x ​√ 

_
 1 − ​y​​ 2​ / 2 ​​ and ​​y​ D​​ = y ​√ 

_
 1 − ​x​​ 2​ / 2 ​​ from the normalized coordinates, x and y. BLA gamma detection 

was conducted at 30 frames per second. Photo credit: Chaewoo Kim, Korea Institute of Science and Technology.
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considered as a form of self-organization that derives from each in-
dividual’s preference to avoid harmful encounters, which enable 
effective defense against predators (29), but the brain activity of in-
dividuals within these groups has not been explored in this context. 
We compared this defensive aggregation with huddling during 
baseline (Fig. 5B) in terms of the number of mice involved in the 
pattern and BLA gamma activities during those two aggregations. 
We found that the two aggregations did not differ in terms of mouse 
number comprising the pattern (P = 0.22, Wilcoxon rank sum test, 
Fig. 5C) but a smaller proportion of mice were exposed at the edges 
than in huddling aggregations, i.e., smaller ratio of outer- to inner-
located mouse numbers (P = 3.4 × 10−3, Wilcoxon rank sum test; 

Fig. 5D). The main effect of aggregation type and position on BLA 
gamma was significant [F[3] = 17.62, P = 5.3 × 10−9, one-way anal-
ysis of variance (ANOVA) test], as were post hoc comparison be-
tween outer- and inner-located mice (P = 4.0 × 10−4 for defensive 
aggregation and P = 0.98 for huddling, Scheffe test) and between 
aggregation types (P = 5.2 × 10−5 for outer located and P = 1 for inner 
located, Scheffe test), showing significantly elevated BLA gamma in 
the outer-located mice of the defensive aggregation type (Fig. 5E). 
To investigate whether the reduction in BLA gamma was due to the 
longer distance from the robot or due to the protection by the outer 
mice, we calculated the gamma rate along the normalized distance 
(the radius from the corner divided by the radius of the outer mouse 

Fig. 3. Effects of the group condition on BLA gamma. (A and B) Movie stills in the single condition (A) and in the group condition (B). The arena was divided into two 
zones by a wall with a retractable door allowing only one mouse to pass through at a time. (C and D) Grand average of BLA gamma occurrence rate subtracted by aver-
aged baseline value (average value of all stage 1 trials in single condition), in single (C) versus group (D) conditions. The dark gray lines indicate the SEM. Each 1-s time 
period with significantly elicited BLA gamma is marked by gray shades (P < 0.005, Wilcoxon signed-rank test). The BLA gamma events across all eight trials are depicted 
in raster plots. (E and F) Mean z scores of spectral power density for all trials and all mice in the single (E) versus group (F). (G and H) Comparisons of single (blue) versus 
group (red) in the relative BLA gamma occurrence rate (G) and power (H). The bars along the x axes mark the moments with a significant difference between single and 
group (P < 0.05, Wilcoxon signed-rank test). (I) Ensemble average of the relative gamma rate, across all stages in the single (blue) versus group (red). (J) Average gamma 
rates during baseline in single (blue) versus group (red) conditions. *P < 0.05, Wilcoxon signed-rank test. (K and L) Gamma power distribution in single versus group. 
Power in the low gamma (24 to 56 Hz) (K) and high gamma (60 to 92 Hz) (L) bands during the baseline stage 1 (black) and threaten stage 2 (red). The low gamma power 
in stage 2 had a significant positive correlation with a slope of 0.52 (R2 = 0.15). In both bands, the threat resulted in increased BLA power (Kolmogorov-Smirnov test, P = 4.1 × 
10−71 and 5.8 × 10−28 for low and high gamma bands, respectively). Photo credit: Jisoo Kim, Korea Institute of Science and Technology.
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position) (Fig. 5F). The distributions in Fig. 5G show that the BLA 
gamma activity of inner-located group did not decrease along the 
distance, reflecting a reduced fear, anxiety, or vigilance of the 
inner-located mice by protection inside of the defensive aggregation.

DISCUSSION
Our real-time edge computing and instant reporting through LED 
lights offer an intuitive way of observing neural activity in a natural-
ly behaving group of mice from a bird’s-eye view, allowing us to 
correlate particular patterns of brain activity with the execution of 
behaviors or with changes in social or environmental conditions 
and to identify brain-behavior links in freely moving groups of 
mice. In addition, in our first application, the monitoring of gamma 
activity in the BLA, we were able to observe not only the expected 
BLA gamma activities at high anxiety levels, as previously reported 
(19, 20), but also previously unreported patterns in affect-related 
and group situations. Furthermore, we were able to quantify the ef-
fects of dynamic social interactions on brain activities of multiple 
mice simultaneously, whereas previous research was conducted pri-
marily in pairs of animals (5, 22). Our initial observations in the group 
context, of initiators, recipients and observers of various behaviors 
present opportunities for novel findings regarding brain-behavior 
links that are less influenced by preconceived notions of what might 
be found. In addition, these types of observations could be comple-
mentary to and interactive with the more standard telemetry signals 
and conventional comparative analyses.

The real-time observation of neural activities in socially engaged 
mice is advantageous in discovering the brain regions that deter-
mine the behaviors of social interactions. A post hoc analysis in 
essence can lead to the integration of behavior and behaviors, but 
direct observation without first having to record and analyze data 
gives the researchers a great degree of freedom in the context of 

rich, unrestricted behaviors. This instant directness might offer the 
chance to discover new phenomena, such as when the popping sound 
of cell firing helped scientists discover neuronal maps, the spatial 
firing fields discover the neuronal maps, and the spatial firing fields 
in the hippocampus (30). This approach will be attractive for re-
searchers in many disciplines because of its intuitiveness and the 
user-friendly readout of brain information and, therefore, is expected 
to promote interdisciplinary collaboration. For example, understanding 
the underlying mechanisms of social influences on behavior, for-
mation of social hierarchies, or resource sharing within a group has 
always been important questions in the behavioral or social sciences. 
Another possible application would be to study the neurobiological 
origins of emergent collective behaviors such as migration, group 
decision-making, and collective intelligence, which do not occur in 
individuals and emerge only through the interactions of many. Also, 
the instant feedback of the LED can enable the experimenters to ac-
tively engage in the interactions with mice for the study of complex 
behaviors such as playing a game (31) and to explore the neuronal 
worlds that go beyond what can be understood in restricted and 
repeated behaviors. In other practical applications, the unrestricted 
movement of mice may enable the development of high-throughput 
assays for testing deficits related to social abnormalities and identi-
fying core symptoms in disease mouse models.

Social interactions have long been emphasized as a crucial com-
ponent of social structures. Hence, many experiments have focused 
heavily on identifying the brain regions devoted to social interac-
tion and related cognitive functions. By simultaneously monitoring 
the brain and behaviors, we show that the adaptability of our system 
in discovering novel brain activities in relation to spontaneous reac-
tions or social interactions. We therefore believe that our method is 
likely to be of wide interest and may expand the topics of neuro-
biology of social behaviors that have been framed in reductionist 
ways. Most of the available tests are highly standardized, primarily 

Fig. 4. Mouse-robot interaction modulates the BLA gamma activity. (A) A captured scene during the spider robot interaction analysis. Small squares denote the loca-
tion of each mouse, and the dots show the trajectories for the past 1 s. (B) Total durations of classified behaviors compared in single versus group conditions. Error bars 
represent the SD of the means. Escap, escaping; aprch., approaching; mov., moving; stay., staying. (C) Regression coefficients of the predictor terms in GLM analysis. Error 
bars represent the SD of the means. *P < 0.05 and **P < 0.01; n.s., nonsignificant. Paired t test. Photo credit: Jisoo Kim, Korea Institute of Science and Technology.
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relying on repeatable simple and short interactions, leaving no room 
for ecological considerations. The examined animals are considered 
identical entities within a test group, fundamentally opposing their 

individualization. Many questions in social science face similar chal-
lenges and need an approach to study how individuals function in 
societies and how they interact with each other when encountered 
with the issues of common interest. In this aspect, individual differences 
in their brain activities may shed light on unveiling the determinants 
behind of individual’s choices and roles in the society.

Our proof-of-concept experiments suggest experiments that can 
expand upon the findings of BLA gamma oscillations described here. 
Recently, there has been some evidence for the significant roles of 
BLA gamma. In the low band (30 to 50 Hz), gamma oscillation is 
enhanced during an appetitive learning task (19, 32) or during for-
aging under explicit threats (20), but which specific function of BLA 
gamma exerts is not fully answered. Our observations confirmed 
that BLA gamma is a brain state–dependent phenomenon and does 
not represent particular behaviors. For example, BLA gamma oc-
curred more frequently in the moments of freezing or escape during 
the robot attack, but not vice versa. With respect to the proximity to 
the threat, our robot experiments showed that not only direct expo-
sure to the robot but also the situations resulting from the interac-
tions of the robot and other mice determine BLA gamma activation, 
suggesting a relationship to perception of the imminence of the 
threat, which is not as well described in animals as in humans in 
terms of spatial proximity (33). Multiple network mechanisms seem 
to underlie BLA gamma oscillations, necessitating further investi-
gation of the gamma subbands. Gamma oscillations in the BLA are 
known to synchronize at different frequencies; hence, neuroreport-
ing for the gamma subbands will reduce heterogeneity in the obser-
vations. For example, BLA-rhinal cortex interactions facilitate 
gamma oscillations, but its peak frequency is different for the peri- 
versus entorhinal cortex and across different learning phases (19). 
The expansion to additional bands will elucidate the amygdala 
circuits in a more comprehensive way [e.g., high gamma for BLA-
hippocampus interactions (34) or a frequency of 4 Hz for the BLA–
prefrontal cortex network (35)]. Our full-spectrum LEDs or use of 
an extra LED for labeling different frequencies of gamma can be read-
ily applied to produce colorful neuroreporting and, thus, will play 
a key role in identifying divergent amygdala circuits orchestrating 
emotional responses.

The method described here opens up a new avenue for investi-
gating how different environments or social relationships influence 
neural activity during social interactions. Although our proof-of-
concept experiments focused on BLA gamma oscillations, the flexi-
bility and scalability of MEC and the potential use of multiple LEDs 
will allow the visualization of other types of neural event. For in-
stance, the current processor can run computational algorithms 
for feature extraction, functional connectivity, and firing rate. In 
the recent past, MEC has been successfully implemented in mobile 
internet-of-things systems by deep learning algorithms (14, 15), 
raising the possibility of reporting categorical neural state represen-
tations in our platform using deep learning algorithms. Other oper-
ations, such as a closed-loop brain stimulation within an individual 
mouse or between mice, are also possible in our on-the-brain analysis 
scheme with an addition of electrode stimulation. In summary, this 
system provides an opportunity for the instant analysis and instant 
display of brain activity on the heads of mice that can freely move in 
their environment, thus providing an observational tool that allows 
the users to explore the brain of animals while they engage in various 
behavioral repertoires under the experimental settings that more 
closely resemble a natural life.

Fig. 5. Reduced BLA activation of inner-located mice during defensive aggrega-
tion. (A and B) Frames from movies showing two different types of aggregation, 
namely, defensive aggregation (A) and huddling (B). Defensive aggregation occurs 
under threat, and huddling occurs at baseline. (C) Group size during defensive aggre-
gation (red) and huddling (blue). Group size is defined as the total number of mice 
that contributed to the aggregation. The group sizes were not different depending 
on aggregation type (P = 0.22, Wilcoxon rank sum test). (D) Ratio of the numbers of 
outer-located mice to inner-located mice (P = 3.4 × 10−3, Wilcoxon rank sum test). 
Outer mice were defined as mice located at the boundary of the aggregation, and 
inner-located mice were defined as mice located inside the aggregation. The outer-
located mice confronted the threat, that is, they were directly exposed to the robot. 
The inner-located mice were protected from the robot by the outer mice. (E) BLA gamma 
rate of the outer- and inner-located mice in defensive aggregation versus huddling. 
BLA gamma rate occurred more frequently in the outer mice compared to the hud-
dling mice and the inner-located mice in defensive aggregation [inner located versus 
outer located: P = 4.0 × 10−4 for defensive aggregation and P = 0.98 for huddling; de-
fensive aggregation versus huddling: P = 5.2 × 10−5 for outer located and P = 1 for in-
ner located; Scheffe test after one-way analysis of variance (ANOVA) test]. (F) Space 
occupancy map of mice forming defensive aggregation pattern (blue). The positions 
were moralized by the outermost location of the aggregated mice. Red dots repre-
sent BLA gamma. (G) The gamma rates of inner- and outer-located mice plotted with 
respect to the normalized distance from the corner. The distance from the corner was 
divided by the distance of the most outer-located mouse in the aggregation. Photo 
credit: Jisoo Kim, Korea Institute of Science and Technology. a.u., arbitrary units.
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MATERIALS AND METHODS
CBRAIN headstage
The completed 2.6-g-weighted headstage consisted of the following 
components: an amplifier, telemetry, a microprocessor, a power 
supply, and an LED display. We designed a four-layer printed inte-
grated circuit board using a software package (Board Station EN2004, 
Mento Graphics Co., USA). One headstage was designed on systems-
on-chips (SoC) and systems-on-module architectures to avoid inter-
ference between the components and to operate it on a hierarchical 
basis for a compact form factor. The headstage is divided into re-
cording, edge computing, LED neuroreporting, and telemetry units. 
The power was supplied by a 2.0-g-weighted rechargeable battery 
(3.7 V, 40 mA, lithium polymer, Taiwoo Battery Co. Ltd., Shenzhen, 
China).
Recording unit
A digital, low-power, 16-channel differential amplifier (RHD2216, 
16-bit, INTAN Technologies LLC, Los Angeles, CA, USA) was em-
bedded on the board. The output was sent to the Bluetooth SoC 
(nRF52832, Nordic Semiconductor) via a serial peripheral interface 
at 8 Mbit/s after band-pass filter was applied (cutoff frequencies of 
1 Hz and 4 kHz).
Edge computing unit
MEC was processed in the ARM cortex-M4 (64-MHz clock, Arm 
Limited, Cambridge, UK, embedded in the Bluetooth SoC), which 
provides a single-cycle multiply and accumulate unit. Here, a gamma-
detection algorithm was built in firmware and processed in the in-
terrupt service routine, invoked by an interrupt handler every 976.5 s 
(i.e., 1024 Hz) based on 32.768-kHz crystal oscillator clock. The size 
of an edge data for computation was 256 data points (i.e., 250 ms), 
and its power was calculated by a fast Fourier transform function in 
CMSIS-DSP library (https://github.com/ARM-software/CMSIS) after 
being smoothed by using a Hamming window. The arithmetic of each 
process was performed in the single-precision floating-point unit to 
reduce the execution time. The MEC execution time per edge data 
was 568 s, which was faster than one sample collection time, i.e., 
976.5 s (fig. S1B). The result was updated every 10 data points (i.e., 
97.65 s), and pending the detection of gamma burst, a trigger signal 
was sent to an LED driver.
LED neuroreporting unit
For LED neurolabeling, the individual CBRAIN headstage was 
equipped with four red-green-blue LEDs (LTRB R37G, OSRAM, 
Regensburg, Germany). For simplicity in this study, two LEDs were 
used: one LED emitting blue that remained illuminated for tracking 
and another in red that was turned on and off depending on the 
presence of amygdala gamma band oscillations. The LEDs were 
toggled via the general purpose input/output pins in nRF52832. The 
update rate for the red LED switch was identical to the result up-
date, which was 97.65 s. The latency of LED toggling after MEC 
execution was 25 ns. Light intensities of blue and red LEDs were 
0.32 ± 0.02 W/cm2 and 0.4 ± 0.05 W/cm2, respectively, at a distance 
of 1 cm from the LED center measured by a photo-power sensor 
(PM100D, Thorlabs Inc., Newton, NJ, USA).
Telemetry unit
The Bluetooth Enhanced ShockBurst broadcasting scheme was 
used in CBRAIN. The maximum data payload was 224 bytes with a 
wireless data bandwidth of 2 Mbit/s at a 2.4-GHz carrier frequency. 
The current communication system, enterprise service bus can ac-
commodate 128 separate pairs without interference among multi-
ple devices at the transmission rate of 2 Mbit/s. In this study, 16 bits 

of the electrophysiological signal was transmitted at 1024  Hz. To 
allow a post hoc time alignment, we sent a counter signal, whose 
value was incremented by 1 at every sample update. The synchrony 
between multiple devices was achieved with a TTL signal before ap-
plying them to the mice.

Data acquisition
LFP recording was accomplished through the use of custom soft-
ware, CBRAIN Studio, which is a graphical user interface (GUI) 
program built in MATLAB 2020a (MATLAB Inc. Natick, MA, 
USA). CBRAIN Studio includes GUIs for device-dongle pairing, 
defining parameters for data acquisition, logging and displaying in-
coming data, and saving data. The parameters to be defined are the 
pairing frequency, channels to be recorded, and input variables for 
MEC (e.g., frequency of interests and thresholds for deviance detec-
tion). The sampling rate is settable between 256 Hz to 16 kHz. The 
recording time is dependent on the sampling frequency and the environ-
ments surrounding the headstage. In the current setup (sampling rate 
of 1024 Hz, on the head of freely moving mouse), the recording time 
lasts approximately 2 hours.

Animals
All animals were kept at the Animal Facility in the Korea Institute of 
Science and Technology on a 12-hour light/dark cycle in a temperature-
controlled colony and given unrestricted access to food and water. 
All experiments were approved by the Korea Institute of Science 
and Technology Animal Care and Use Committee (permit number: 
2019-095) and complied with the National Institutes of Health 
Guidelines for minimizing the pain and discomfort of animals. 
Thy1-ChR2-YFP, line 18, mice were obtained from the Jackson lab-
oratory [B6.Cg-Tg(Thy1-COP4/EYFP)18Gfng/J, stock number 
007612]. Healthy 8-week-old male mice weighing more than 25 g 
were selected for the surgery and participated in the experiments 
1 to 8 weeks after the surgery.

Intraoperative stimulation test
To guarantee that the LED light represents the BLA activities, we 
performed an intraoperative stimulation test during the electrode 
implantation surgeries. The whole procedure is depicted in fig. S3. 
To avoid stimulation-induced artifacts, we used optogenetic stimu-
lation in the Thy1-ChR2-YFP mice, the BLA of which is known to 
have its selective expression of ChR2. First, the mice were anesthe-
tized with a ketamine-xylazine cocktail (120 and 6 mg/kg, respec-
tively) and placed in a stereotaxic instrument (Model 900, David Kopf 
Instruments, Tujunga, CA, USA). A custom-made optrode con-
sisting of a tungsten electrode (575400, A-M Systems, Calsborg, WA, 
USA) and a fiber optic cannula (FOC-C-1.25-200-7-0.37, Newdoom, 
China) was inserted on top of the BLA (anteroposterior, −1.6 mm; 
mediolateral, 3.12 mm). A stimulation test was conducted from a 
depth of 4-mm dorsoventral from the bregma with a pulse train of 
12.5-ms stimulation with a 3-s interstimulus interval repeated 20 times 
with 0.5-mW-powered blue light (wavelength = 470 nm, MBL-
FN-473 model, Thorlabs Inc. NJ, USA). The LFP was concurrently 
recorded using the Intan data acquisition system (RHD2000 series, 
Intan Technologies LLC, USA) at 30 kHz and instantly analyzed for 
the evoked potential. Using a custom-made real-time analysis tool 
written in MATLAB (MathWorks Inc., Natick, MA, USA), the aver-
aged evoked potential and peak amplitude were returned immedi-
ately after the stimulation. From 4.2 to 4.9 mm, the stimulation test 

https://github.com/ARM-software/CMSIS
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was performed with 0.1-mm interval, and the final depth was fixed 
at the depth where maximum voltage was yielded. Then, the ground 
and reference electrodes were implanted into the cerebellar skull, 
and all electrodes were fixed with dental cement (Vertex Self-Curing, 
Vertex Dental, Zeist, The Netherlands). After the whole experiment, 
we histologically checked the optrode position for double confirmation.

Experimental setup and camera configuration
The customized arena, with a floor area of 60 cm by 60 cm, was made 
in the machine shop at (erased for double-blind review), and the 
insider walls were covered with black textile to avoid light reflection. 
To separate the colors from the LED, a high-speed, complementary 
metal-oxide semiconductor–based camera (Lt225, Teledyne Lumenera, 
Ottawa, ON, Canada) was installed at the top of the arena at a dis-
tance of 1.6 m. This top-view camera was placed to record the entire 
arena and was aligned perpendicular to the bottom of the arena. 
Because mice are nocturnal animals, animal behaviors were record-
ed under a dim light, and the room temperature was maintained 
from 22° to 24°C. We configured the camera in such a way as to 
minimize the color saturation and afterimage. Frames from the 
spectral video camera were recorded by StremPix 7 (Norpix Inc., 
Montreal, Quebec, Canada) at 30 fps with a resolution of 1000 × 
1000 pixels.

A robot-based escape experiment
After testing several types of robots, we used a spider robot (Model 
18143A, Academy Plastic Model Co. Ltd., South Korea) because all 
tested mice displayed a strong reaction even after repeated exposure 
to it. Before the main experiments, each mouse had experienced a 
CBRAIN recording in multiple exploratory environments and had 
been acquainted with each other through 3 hours of group housing 
performed over five successive days. The arena was divided into two 
zones by a wall with a manually retractable door, and the size of 
the door would allow only one mouse to pass through at a time 
(Fig. 3, A and B). The door allowed only one mouse to pass through, 
and the two sides were assigned to be either a safety or a threat zone. 
Initially, each mouse was placed in the threat zone with a closed 
door either alone or in a group. After observing them to be comfort-
able with the zone, we started the experiments. Typical signs of 
being comfortable were ceasing of explorative behaviors, a reduction 
in red LED lights, huddling, etc. The experiment paradigm consists 
of four stages: In stage 1, the mice were placed in the safe zone. After 
2 min, a spider robot was placed in the same zone, and its motion 
was controlled manually with wired controller to simulate a predator 
in a threatening way (e.g., approaching to the mice, raising the legs 
high when the robot near mice, etc.) (stage 2). After 1 min, the door 
opened, and recording was performed for 1 min (stage 3), followed 
by the removal of the robot from the arena (stage 4). The experi-
ment was performed with a mouse alone and then in a group and 
repeated eight times in total (fig. S5).

Mouse tracking
The moue tracking detects mouse position by precisely locating the 
position of the blue LED corresponding to a specific mouse. The 
procedures are illustrated in fig. S8C and the tracking program was 
custom built in Python 3.7 using openCV version 3.4.5. The funda-
mental principle of mouse tracking is a detection of particles that 
travels in space conducted by the following steps: (i) Preprocessing: 
To reduce noise and selectively enhance blue LEDs, the image was 

converted into a binary image of 0 and 1 using a higher threshold 
for blue at 220 and a lower threshold for red and green at 235 on a 
scale of 0 to 255. (ii) Point extraction: To identify individual LEDs, 
sets of connected white pixels were detected, and the images with 
putatively identified LEDs were extracted by combining dilation 
and connected component algorithms using built-in openCV func-
tions, dilate() and connectedComponent(), respectively. The for-
mer increase in the white region of pixels belongs to a cluster of 
connected pixels and the later finds the connected components for 
follow-up labeling. The point for individual object was extracted by 
calculating the center of mass of the image. (iii) Eliminating errone-
ous object: Depending on the lighting and experimental conditions, 
false-positive detection of the blue object occurs. As most of the 
false detections are due to the reflection of LED lights from the 
acrylic walls or from the surface of the spider robot, we eliminated 
any fixed points or points inside the robot bounding area in each 
frame. (iv) Identity tracking: Starting from the manually validated 
frame, we traced individual mouse by connecting the nearest point 
in the subsequent frame. Even though connecting the two points 
automated identity tracking in substantial amount of videos, the 
nature of mouse movements challenged automated multimouse 
tracking. One of the challenges was an occlusion of two or more 
mice. We handled the occlusion periods through frame-by-frame 
visual validation to avoid any identity swapping. The other challenge 
was missing the point, mostly due to weakened LED illumination 
while the mouse moves its head. In this case, we manually identify 
the next frame having the point and then interpolate two points for 
missed trajectory. All trajectories were validated manually in the 
original video with mouse labeling (movie S6).

Robot tracking
The position of spider robot was extracted using a convolutional 
neural network, which takes a grayscale image frame (448 × 448) as 
an input and produces a probability map (448 × 448) of the spider 
robot as an output (fig. S8D). At first, raw video files were parsed 
into single grayscale frames and converted into 448 × 448 resolution. 
Then, 1000 frames were randomly sampled from the whole dataset 
to form a training set. Corresponding 1000 binary masks (spider robot 
area coded in 1, otherwise 0) were generated manually. The network 
architecture followed the U-Net (https://doi.org/10.1007/978-3-
319-24574-4_28) motif, which is known to perform well in image 
segmentation tasks (36), and this network was implemented in 
Keras with Python 3.7 (dropout = 0.2, number of filters = 16, activa-
tion function = ReLU, number of output class = 1, output activation 
function = sigmoid, number of convolution/deconvolution blocks = 4, 
optimizer type = Adam, and loss function = binary cross-entropy). 
The position of a spider robot was estimated by taking the center of 
mass of the probability map and rescaling it in the centimeter unit 
to match the mouse tracking data.

Calibration for LED
Annotating a specific neuronal event based on the light illumination 
assumes that the LEDs from all mice represent the same neuronal 
event. To guarantee this, a calibration process is needed to normalize 
the individual differences particularly exhibited in low-frequency 
regions. After testing different methods of normalization, we used 
4 as the threshold for detecting the transient gamma, where  is 
the SD of the baseline gamma during 10 min of LFP recording in a 
Faraday-shielded calibration box. The gamma power values were 

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
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estimated to be between 24 and 56 Hz across a 0.25-s epoch period. 
During our observation time, the intramouse variability did not ex-
ceed 1% across different days, but it is recommended to repeat the 
calibration on a daily basis.

LFP signal analysis
LFP signals from multiple mice were simultaneously collected in 
the CBRAIN system at a 1024-Hz sampling rate. The impedance of 
each electrode was kept below 300 kilohms. Using counter signals 
from CBRAIN, the periods of communication error were identified 
and reconstructed using the cubic spline interpolation. The percent-
ages of data loss were below 1%, normally being as low as 0.1%. A 
power spectrogram was obtained by applying a fast Fourier trans-
form with a sliding Hanning window (256 ms) to the LFP with a 
10-ms moving window, fulfilling 10-ms time resolution and 128-ms 
maximal delay in the event detection. The frequency band of gamma 
oscillations in this study was 24 to 56 Hz. For the z-score analysis, 
the ensemble average of the power for all trials and all mice (eight 
trials × eight mice) under the single and group conditions were cal-
culated. The z score was calculated by dividing the deviation from 
the baseline mean by the baseline SD and used to draw the spectro-
gram. The baseline data were obtained from the initial 10 s of the 
baseline.

MEC judgment value analysis
MEC computes the power spectral density and reports the gamma 
oscillation as a judgment value (LED signal). On the basis of the 
threshold (4) obtained from the baseline data in the calibration 
box, we saved the detected value of the gamma oscillation. The 
judgment value obtained from MEC has two values: 0 and 1. In a 
given time domain (256 data points, 0.25 s) of filtered data, a value 
of 1 represents a time point exhibiting gamma oscillations, while 0 
indicates that a time point does not contain gamma oscillations. We 
smoothed the data by averaging the data with a 1-s time domain 
and a 10-s moving window. The gamma occurrence rate (N) was 
obtained from the smoothed data and defined as the number of oc-
currences per second of one mouse. The gamma occurrence rate at 
the baseline (NB) was calculated from the average of the baseline 
stage (0 to 60 s). The difference between the gamma occurrence rate 
of each stage (N) and the baseline (NB) was calculated by subtract-
ing NB from N (N = N − ⟨NB⟩).

Generalized linear model
The GLM was used to determine the influential factors for BLA 
gamma. The binary nature of neurolabeling makes logistic regres-
sion suitable for modeling BLA gamma. A logistic function was 
defined as

	​ logit(​​ BLA​​ ) = ​​ 0​​ + ​ ​ 
 i=1

​ 
7

  ​ ​​ i​​ ​X​ i​​ + ​​ i+1​​ G,​	

where logit() is logit function, BLA is the binary coded occurrence of 
BLA gamma, and Xi is a binary variable as a result of behavior 
classification. G is 0 or 1 for single or group condition, respectively. 
The regression coefficients i were obtained via using the fitglm 
function in MATLAB 2020a (MathWorks, Inc. Natick, MA, USA). 
The signs of i were tested using null hypothesis ( = 0.05) to deter-
mine whether the parameter is consistently increasing or decreasing 
the probability of BLA gamma.

Statistical tests
BLA gamma rate of bystander between two conditions (without ag-
gression versus chasing and without aggression versus fighting) was 
compared by paired t test (Fig. 2, C and F, and fig. S4, D and E). The 
effect of group condition on gamma power and gamma rate was 
tested by Wilcoxon singed-rank test (Fig. 3, G to J, and fig. S4, A to 
C). Gamma power distributions of baseline and threat were com-
pared by two-sample Kolmogorov-Smirnov test (Fig. 3, K and L). 
The difference of duration per behavior between single and group 
conditions was tested using paired t test (Fig. 4B) Statistical test for 
GLM analysis of behavior and BLA gamma in stage 2 was paired 
t test (Fig. 4C). Group size of defensive aggregation and huddling 
was compared by Wilcoxon rank sum test (Fig. 5, C and D). The dif-
ference of gamma rate between four group types (outer located and 
inner located in defensive aggregation/outer located and inner 
located in huddling) was tested with one-way ANOVA, and post 
hoc tests were performed using Scheffe test (Fig. 5E). The dependent 
variables (gamma rate and power) were analyzed with the design 
session type (single/group) × stages (no threat 1/threat/door open/
no threat 2) ×  individuals (eight mice) using three-way ANOVA. 
When significant, post hoc tests were performed using the Kruskal-
Wallis test. The  level for all tests was set at P < 0.05.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/49/eabb9841/DC1

View/request a protocol for this paper from Bio-protocol.
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