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Purpose:Develop a hierarchical longitudinal regressionmodel for estimating local rates
of change of macular ganglion cell complex (GCC) measurements with optical coher-
ence tomography (OCT).

Methods: We enrolled 112 eyes with four or more macular OCT images and ≥2 years
of follow-up. GCC thickness measurements within central 6 × 6 superpixels were
extracted frommacular volume scans. We fit data from each superpixel separately with
several hierarchical Bayesian random-effects models. Models were compared with the
Watanabe–Akaike information criterion. For our preferredmodel, we estimated popula-
tion and individual slopes and intercepts (baseline thickness) and their correlation.

Results:Mean (SD) follow-up time andmedian (interquartile range) baseline 24-2 visual
field mean deviation were 3.6 (0.4) years and −6.8 (−12.2 to −4.3) dB, respectively. The
random intercepts and slopes model with random residual variance was the preferred
model. While more individual and population negative slopes were observed in the
paracentral and papillomacular superpixels, superpixels in the superotemporal and
inferior regions displayed the highest correlation between baseline thickness and rates
of change (r = –0.43 to –0.50 for the top five correlations).

Conclusions: A Bayesian linear hierarchical model with random intercepts/slopes and
random variances is an optimal initial model for estimating GCC slopes at population
and individual levels. This novel model is an efficient method for estimating macular
rates of change and probability of glaucoma progression locally.

Translational Relevance: The proposed Bayesian hierarchical model can be applied to
various macular outcomes from different OCT devices and to superpixels of variable
sizes to estimate local rates of change and progression probability.

Introduction

Glaucoma is a progressive optic neuropathy and is
one of the leading causes of blindness worldwide.1,2
Detection of glaucoma progression is essential for
preventing irreversible visual loss. Earlier detection of
glaucoma worsening would allow clinicians to titrate
treatment in a timely fashion. Rates of progression vary
among patients. Identifying eyes that are progressing
rapidly is important for the appropriate allocation of
available resources. In some glaucoma eyes, progres-

sive structural changes can be detected earlier than
functional changes.3–8

Macular optical coherence tomography (OCT) is
an essential tool for the evaluation of central retinal
ganglion cells (RGC).9–14 There is now evidence
supporting the utility of macular OCT imaging for
detection of glaucoma progression, especially in later
stages of glaucoma.2,10,15–17 Most prior studies of
macular thickness changes over time have used global
outcome measures or thickness measurements in
hemiretinal regions. These approaches may fail to
identify local or regional progressive thinning of the
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inner macular layers. Hence, estimating macular thick-
ness changes in smaller areas such as 3° × 3° superpix-
els is of interest.4,18–23 Miraftabi et al.24 reported that
repeated thickness measurements across the macula at
the level of 3° × 3° superpixels demonstrated a low
and uniformwithin-session variability. Nouri-Mahdavi
et al.25 recently showed that between-session variability
of local inner retinal thickness measurements was very
low and thatmost of the total between-session variabil-
ity could be explained by within-session variability.
While measurement of change in localized areas of
the macula is essential for detecting local changes,
there is a significant correlation between thickness
measurements and thickness changes in physically
or physiologically adjacent regions of the macula.20
A hierarchical approach, once fully developed, can
address the varying behavior of superpixels across
the macular region while at the same time taking
into account any potential correlations in rates of
change or their variance among superpixels of varying
sizes.

Several studies have employed linear mixed models
for enhancing estimation of functional and struc-
tural rates of change in glaucoma eyes.26–30 Most
such studies addressed functional measurements in
glaucoma.31–40 Random-effects models can more
accurately estimate rates of structural change if appro-
priately implemented as compared to fixed-effects
models that do not take population information into
account.41–45 Random-effects models are known to
be more efficient and accurate in modeling subject-
specific effects in longitudinal data, allowing popula-
tion information to help estimate individual trends.46
Random-effects longitudinal models, therefore, would
be superior models for analyzing macular thickness
measurements over time, both to accommodate within-
subject correlations over time and to take advantage of
such correlations to more efficiently identify progres-
sion.

Bayesian methods have advantages over non-
Bayesian methods of estimation in appropriately
accommodating all uncertainty in the model and
being able to deal with situations where variance
components are small without setting the variances to
zero. Bayesian approaches are able to handle smaller
data sets, estimate subject-specific parameters such as
slopes, and provide appropriate measures of uncer-
tainty.

The aim of this study is to validate a hierarchi-
cal model for estimating rates of change of macular
ganglion cell complex (GCC)measurements at the level
of superpixels in a cohort of glaucoma eyes followed
over a period of 4 years and to determine the relation-
ship between baseline GCC thickness measurements

and corresponding local rates of change for the popula-
tion and for individuals.

Methods

Study Sample

In total, 112 eyes from the Advanced Glaucoma
Progression Study, an ongoing longitudinal study at
the University of California, Los Angeles (UCLA),
with a minimum of four macular OCT images, ≥2
years of follow-up, and no other ocular pathology
at baseline and during follow-up were recruited. We
analyzed observations up to 4.2 years after baseline in
this study. All data from visits less than 0.2 years after
a previous visit were omitted.

The study adhered to the tenets of the Declara-
tion of Helsinki, was approved by UCLA’s Human
Research Protection Program, and conformed to
the Health Insurance Portability and Accountability
Act policies. All patients provided written informed
consent at the time of enrollment in the study.

The enrolled eyes met the following inclusion
criteria: (a) clinical diagnosis of primary open-angle
glaucoma, pseudoexfoliative glaucoma, pigmentary
glaucoma, or primary angle-closure glaucoma and (b)
evidence of either central damage on 24-2 visual field
(VF), defined as two or more points within the central
10° with P < 0.05 on the pattern deviation plot or VF
mean deviation (MD) worse than −6 dB. Exclusion
criteria were baseline age less than 40 years or greater
than 80 years, best-corrected visual acuity <20/50,
refractive error exceeding 8 diopters (D) of sphere or
3 D of cylinder, or any significant retinal or neurologic
disease potentially affecting OCT measurements.

Imaging Procedures

Macular imaging was carried out with the Poste-
rior Pole Algorithm of Spectralis spectral domain OCT
(Heidelberg Engineering, Heidelberg, Germany). The
Posterior Pole Algorithm acquires 30° × 25° volume
scans of the macula (61 B-scans spaced approximately
120 μm) centered on the fovea. The software segments
the central 24° × 24° of the measurement cube and
presents data in an 8 × 8 array of 3° × 3° superpix-
els. Each B-scan was repeated 9 to 11 times to reduce
speckle noise.

Automated segmentation of individual retinal layers
was performed with the Glaucoma Module Premium
Edition software (Heidelberg Engineering, Heidelberg,
Germany) before data export. Images were reviewed
for segmentation errors and image artifacts. Any
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Figure 1. The 8× 8 grid of 64 superpixels from themacular volume
scan as provided by Spectralis OCT’s Posterior Pole Algorithm. The
central 36 superpixels (shown in gray) were selected for final analy-
ses.

segmentation errors the reviewer believed could
be improved by manual correction were manually
corrected with the OCT device’s built-in software. The
8 × 8 arrays for retinal nerve fiber layer, ganglion cell
layer, and inner plexiform layer (IPL) were summed
up to create the GCC measurements, which represents
data delimited by the internal limiting membrane and
the IPL/inner nuclear layer boundary. Due to signifi-
cant variability observed in the peripheral regions of
the macular volume scans, we chose to include only the
central 36 (6 × 6 or 18° × 18°) superpixels for further
analyses (Fig. 1).

Data Inspection, Exploration, and Outlier
Removal

A single observation yijk is the GCC thickness
observed on subject i at time tij at subject i’s jth visit,
in superpixel k, where the time of the first visit for
all subjects is tij = 0. A profile is the time-ordered
sequence of observations (tij, yijk) from j = 1 to nik,
where nik is the number of observations on superpixel
k for subject i. Profiles were plotted by connecting
consecutive observations with line segments. Plotting
data helps in identifying appropriate classes of models
for fitting data. We plotted profiles for all subjects and
superpixels to look for outliers, check for the time
trend, and understand variability within a person and
between people. Profile plots suggested that outliers
were present.

Outlier Detection and Removal
Because of the large number of observations, we

developed a semiautomated process to identify outliers.
For each person and superpixel, we calculated consecu-
tive visit absolute differences |yijk − yi(j − 1)k| and consec-
utive visit absolute centered slopes, | (yijk − yi(j − 1)k)/(tij
− ti(j − 1)) + 0.5|. Slopes were centered around –0.5
μm/year as that was the mean of the pooled set of
slopes across all subjects, superpixels, and pairs of
consecutive visits. We plotted histograms of the differ-
ences and slopes and examined the largest values. Large
absolute differences and large absolute centered slopes
are caused by unusual GCC measurements that are
high or low compared to preceding or subsequent visit
measurements. We flagged absolute slopes greater than
24 μm/year with differences greater than 5 μm between
sequential visits; this identified the ijth and i(j − 1)th
observations as candidates for removal. We calculated
the sum of absolute visit differences in each superpixel
for each subject,

nik∑
j=2

∣∣yi j − yi( j−1)
∣∣

and deleted the candidate outlying observation that
caused the largest decrease in the sum of absolute
visit differences. If we deleted an observation, we then
treated the reduced data set with the same algorithm
to see if another observation from the same profile
should be deleted as well. Because visits less than 0.2
years after a previous visit generated a large number
of candidate outliers, we opted instead to remove all
short-term successor visits less than 0.2 years follow-
ing a previous visit.

Empirical Residuals
We calculated empirical residuals as ei jk = yi jk −

ȳik, where ȳik = ∑
yi jk/nik, and the summation is

over all nik observations for subject i in superpixel
k. Using empirical residuals in profile plots makes
it easier to understand time trends as compared to
plotting raw data profiles.45 We calculated averages and
standard errors of the empirical residuals eijk in 6-
month windows and plotted the averages ±2 standard
errors against time to understand the population time
trend for each superpixel.

Hierarchical Longitudinal Models and
Inferences

We modeled data from each superpixel k separately
with a set of hierarchical random-effects models. Our
initially preferred model was linear in time, with a
linear population time trend α0k + α1ktij and random
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intercepts β0ik and random slopes β1ik (RIAS),

yijk = α0k + α1ktij + β0ik + β1iktij + εijk (1)

where for superpixel k,

α0k is the population intercept, the average intercept at
time tij = 0;

α1k is the population average slope;
β0ik is the ith subject’s random intercept: the unknown
difference between subject i’s intercept and the
population intercept α0k;

β1ik is the ith subject’s random slope: the unknown
difference between subject i’s slope and α1k; and

εijk is a random error at time tij.

While model (1) was our preferred model prior to
fitting to data, we considered several variations. We
considered a fixed and random intercept (RI)–only
model where subject GCC profiles are constant over
time; that is, in Equation (1), we set α1k = β1ik = 0; a
random intercept and fixed slope (RIFS) model, where
β1ik = 0 but α1k is free to vary; and a random intercept
and slope and fixed quadratic (RIASFQ) model, which
adds a term α2kt2i j to the right-hand side of Equation
(1). This is a total of fourmodels for the population and
individual time trends: RI, RIFS, RIAS, and RIASFQ.
We modeled residuals εijk as normal with unknown
variance σ 2

k ,

εi jk| σ 2
k ∼ N

(
0, σ 2

k
)
.

Alternatively, we considered a random-effectsmodel
where each eye has its own residual variance σ 2

ik,

εi jk| σ 2
ik ∼ N

(
0, σ 2

ik
)
.

We also considered the possibility of autocorrela-
tion between consecutive observations within an eye
and superpixel with fixed σ 2

k or random σ 2
ik residual

variances. Thus, we considered 4 * 2 * 2 = 16 distinct
models.

We modeled the random effects, β ik = β i0k in the
RI models or β ik = (β i0k, β i1k)′ in the RIAS models,
as normal βik|D ∼ N(0,Dk), where Dk is scalar for
the RI models and Dk is a 2 × 2 matrix for the RIAS
models:

Dk2×2 =
(
Dk11 Dk12
Dk21 Dk22

)

We are particularly interested in the correlation

ρk = Dk12

(Dk11 Dk22 )1/2

between the intercepts and slopes. Priors for σ ik
were inverse gamma with unknown mean σmk and

unknown standard deviation σ sk. For the hyperparam-
eters α0k, α1k, σ 2,Dk, ρk, and (σmk,σ sk), we used conve-
nient prior distributions. Parameters of these distribu-
tions were specified so that they worked well and were
appropriate for all superpixels. While this approach
uses the cohort data to specify these priors, data from
each superpixel represent only 1/36th of the entire
superpixel data, so very little of each superpixel data
contributed to the prior construction. Fullmodel speci-
fications and exact parameter values of the priors are
given in the online supplement. We plotted summary
measures of our analyses over the 6 × 6 grid of super-
pixels.

For each superpixel, we calculated one-sided
Bayesian P values defined as the posterior probability
that the population slope is greater than zero. This
is a measure of how well the sign of the population
slope is determined and corresponds asymptotically
to a one-sided frequentist P value. This number can
be doubled to construct a two-sided P value but then
loses its Bayesian interpretation. Bayesian P values
that are near zero or 1 indicate a slope whose sign is
well determined; we used P < 0.025 and P > 0.975 as
traditional cutoffs to identify statistical significance.
We discuss this in more detail in the online supplement.

We inspected posterior distributions of individual
slopes α1k + β1ik , and we calculated the posterior
probability pik = P(α1k + β1ik > 0|Y) that the slopes
were positive. Small values of pik < 0.025 identify
subjects whose GCC thickness is decreasing at a signif-
icant rate over time. We report the fraction of eyes
that are decreasing in thickness, determined as the
fraction of eyes whose slopes α1k + β1ik are signifi-
cantly negative or significantly positive.

Model Comparison, Model Checks, and
Computations

We compared models using the Watanabe–Akaike
information criterion (WAIC), with smaller WAIC
values representing a better model.47,48 We also
explored an alternative criterion called the widely
applicable Bayesian information criterion (WBIC) and
compared the results to WAIC for model selection.
WBIC led to similar results as WAIC, and results for
WBIC are provided in the online supplement.

For each superpixel, we inspected profile plots of the
data and plots of the posterior mean of the residuals
ε̄i jk = Yi jk − E [α0k + α1kti j + β0ik + β1ikti j |Yk], where
Yk represents all the data for the kth superpixel.45

Computations were run on the R platform using
JAGS for the Bayesian computations using UCLA’s
Hoffman Cluster.49,50 We ran three chains with 50,000
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iterations of burn-in followed by 200,000 samples with
a thin of 10, resulting in 60,000 samples from each
posterior.

Results

Data and Outliers

We started with 29,628 observations in 36 superpix-
els of 112 unique eyes (112 patients) from 823 visits.
Inspection of profile plots showed occasional outliers;
Supplementary Figure S1 plots example profiles with
outliers that are to be removed. We identified and
removed 145 (0.5%) outlying data points; therefore,
29,483 observations contributed to subsequent analy-
ses. Table 1 summarizes the clinical and demographic
characteristics of the study patients. The mean (SD)
age and median (interquartile range) of baseline 24-2
visual field mean deviation (MD) were 66.9 (8.4) years
and −6.8 (−12.2 to −4.3) dB, respectively. The average
follow-up time was 3.60 (0.44) years with a median
(range) of 3.63 (1.94–4.20) years.

We reviewed the macular volume scans of 40 eyes
in whom outliers were noted based on the criteria
above and identified the following reasons for presence
of outliers: one eye had local inner retinal retinoschi-
sis corresponding to superpixels that were marked as
outliers, one eye was found to have a mild epireti-
nal membrane in the superpixels of interest, four eyes
had thick vessels that affected thickness measurements
in the corresponding areas, and the remaining super-
pixels displayed poor-quality single B-scans, in which

Table 1. Demographic and Clinical Characteristics of
the Study Eyes

Characteristic Value

Age, mean (SD), y 66.9 (8.5)
Gender, No. (%)
Female 70 (62.5)
Male 42 (37.5)

Ethnicity, No. (%)
White 59 (52.7)
Asian 24 (21.4)
African American 15 (13.4)
Hispanic 14 (12.5)

Baseline 10-2 MD (dB), mean (SD) −8.9 (5.9)
Baseline 24-2 MD (dB), mean (SD) −8.7 (6.1)
Follow-up, mean (SD), y 3.60 (0.44)
Baseline GCC (μm), mean (SD) 77 (20.2)

manual correction could not provide accurate thickness
measurements.

Example profile plots after removing outliers are
presented in Supplementary Figure S2 (showing
profiles for all 112 subjects at superpixel 5.5) and
Supplementary Figure S3 (showing profiles for all 36
superpixels for 5 random subjects).

Figure 2 presents summary plots of the empirical
residuals for each of the central 36 superpixels. Many
superpixels showed a strong decreasing linear popula-
tion time trend, with superpixels 4.3 to 4.7, 5.3 to
5.7, and 6.4 to 6.7 demonstrating the largest negative
slopes; the remaining superpixels had slight negative
slopes or were flat.

Model Selection

Among the 16 models we considered, models with
autocorrelation were rarely better based on WAIC
than corresponding models without autocorrelation
and were never the best model, and we do not consider
those further. Table 2 presents WAIC values for the
remaining 8 models for all 36 superpixels. Smaller
WAIC indicates a better model. Random residual
variance models were always substantially better than
the fixed residual variance models. Consistently, the
best models were random intercepts and slopes with
random residual variances and either a linear popula-
tion time trend or a quadratic population time trend.
Given that we observed strong linear trends rather than
strong population quadratic trends (Fig. 2), we felt that
a linear population time trend was more justifiable and
appropriate and for the remainder of this article, we
discuss only the random intercept and slopemodel with
random residual variances. Additionally, the longitu-
dinal empirical summary plots of standardized residu-
als in Supplementary Figure S4 did not suggest strong
quadratic trends.

Supplementary Table S1 (web appendix) presents
summaries of the posteriors of the parameters for all
36 superpixels for the random intercept and slope and
random variance model. Figure 3 provides grayscale
plots of the posterior means of the population inter-
cepts, population slopes, Bayesian P value of the
population slopes, the posterior mean of the corre-
lation between slopes and intercepts and Bayesian P
value of the correlation, and the proportion of individ-
ual subject slopes that were significantly negative.
The largest population slopes were observed in super-
pixels 4.3 to 4.7, 5.6, 5.7, 6.5 and 6.6. Superpixels
whose posterior mean population slope was below –
0.2 microns per year (meaning decreasing more rapidly
than 0.2 microns per year) had slopes that were
significantly negative (one-sided Bayesian P < 0.01
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Figure2. Empirical summaryplots of the average trendofmeancenteredganglion cell complex thickness across all 36macular superpixels.

and mostly P < 0.001). The fastest thinning (most
negative) population superpixels were mostly located
in the paracentral and nasal (papillomacular) region.
The parafoveal superpixel population slopes were most
likely to be significantly less than zero. Point estimates
of the correlations between random intercepts and
random slopes were negative in 34 of 36 superpix-
els and were significantly negative in 20 of the 36
superpixels; negative correlations stronger than −0.25
were always significant and correlations weaker than
−0.22 were never significant. Superpixels in the super-
otemporal and inferior regions tended to demonstrate
the highest correlation between the baseline thick-
ness (the intercept from the hierarchical model) and
their rates of change. The top five coefficients for the
correlation between random slopes and baseline thick-
ness at the level of superpixels ranged from –0.43
to –0.50.

The proportion of individual significantly negative
slopes at Bayesian P < 0.025 are given in the last plot
of Figure 3. Superpixels 4.3 to 4.6, 5.6 to 5.7, and 6.5 to
6.6 had at least 30% of individual eyes that were identi-
fied as significantly decreasing (Bayesian P < 0.025).

Discussion

We present the results of Bayesian hierarchical
models applied to longitudinal and multidimensional
macular GCC thickness measurements at the level of
3° × 3° superpixels. This is the first study investigating
this type of data within the proposed framework. We
designed rules for excluding outliers, reviewed longi-
tudinal trends at the superpixel level, investigated the
possibilities of a fixed quadratic component as well
as autocorrelation over time in addition to linear
fixed and random intercepts and slopes, and estimated
the correlation between individual baseline thickness
measurements and rates of change.

Our final algorithm for removal of outliers excluded
145 observations representing 0.5%of the total number
of available superpixels. The removed outliers were all
visually distinctive based on inspection of profile plots.
We further checked patients’ raw B-scans to detect
issues and found many problems with the removed
observations. Not all outliers may be identified by any
statistical algorithm, including the one used in this
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Table 2. WAIC for Each of the Eight Models (Without Autocorrelation) Fit to Data From Each Superpixel

Fixed Variance Models Random Variance Models

Superpixel RI RIFS RIRS RIRSFQ RI RIFS RIRS RIRSFQ

2.2 3774.80 3776.92 3621.54 3605.51 3605.24 3607.89 3510.99 3481.50
2.3 3832.67 3832.35 3716.20 3705.80 3683.18 3684.41 3614.65 3601.72
2.4 3896.34 3897.93 3764.03 3757.12 3747.50 3749.68 3655.79 3647.36
2.5 3857.61 3853.54 3696.44 3689.04 3661.43 3660.54 3561.21 3548.37
2.6 4009.56 4007.89 3871.53 3872.16 3798.94 3798.70 3743.39 3743.14
2.7 4303.81 4291.94 4038.73 4035.85 3956.03 3958.96 3835.46 3832.98
3.2 3600.96 3601.57 3411.11 3384.68 3467.08 3469.26 3331.76 3295.26
3.3 3915.21 3898.01 3676.32 3677.27 3644.17 3637.91 3557.03 3557.47
3.4 3920.41 3875.03 3584.25 3586.11 3685.31 3665.66 3542.33 3543.87
3.5 3982.34 3932.00 3666.24 3665.38 3769.80 3735.89 3601.25 3602.82
3.6 4076.30 4036.22 3736.94 3738.35 3783.85 3744.33 3609.05 3610.57
3.7 4254.84 4238.02 3974.57 3975.13 3967.64 3960.06 3803.62 3805.85
4.2 3588.15 3564.81 3339.35 3322.81 3463.24 3455.51 3279.29 3267.98
4.3 3996.82 3870.40 3594.75 3572.00 3718.20 3626.27 3449.64 3429.23
4.4 4157.36 3949.33 3779.14 3781.42 4000.50 3825.67 3731.80 3733.80
4.5 4258.22 4116.84 3911.79 3911.44 4141.84 4013.98 3874.16 3874.95
4.6 4036.47 3926.13 3525.89 3526.47 3730.53 3628.01 3367.98 3365.32
4.7 3981.74 3874.25 3631.33 3632.80 3729.78 3612.14 3476.21 3479.19
5.2 3496.77 3475.88 3329.95 3317.88 3381.16 3374.06 3259.92 3245.47
5.3 3914.25 3830.04 3545.99 3547.07 3554.34 3492.85 3403.12 3405.10
5.4 3911.69 3885.50 3654.75 3646.99 3663.38 3660.93 3507.41 3489.10
5.5 4218.13 4203.12 3791.65 3783.09 4009.03 3986.32 3742.10 3731.46
5.6 4220.45 4031.34 3606.49 3607.11 3958.04 3803.42 3514.32 3515.53
5.7 4278.88 4119.37 3862.60 3839.79 4033.10 3859.94 3698.80 3664.28
6.2 3402.13 3400.46 3256.24 3255.20 3322.04 3322.06 3199.52 3194.18
6.3 3685.76 3643.89 3488.99 3486.58 3512.02 3506.20 3404.90 3402.78
6.4 3888.18 3811.88 3492.60 3494.41 3642.45 3582.33 3431.45 3429.70
6.5 4177.54 4066.24 3748.77 3745.82 3833.85 3747.39 3549.54 3548.15
6.6 4055.69 3946.21 3690.24 3683.41 3749.28 3652.55 3530.10 3521.71
6.7 4107.33 4064.23 3783.13 3781.77 3851.76 3811.73 3668.85 3663.21
7.2 3645.33 3647.61 3608.10 3601.47 3484.74 3485.43 3451.64 3422.26
7.3 3730.56 3729.19 3645.24 3639.22 3571.06 3567.10 3462.11 3444.69
7.4 3939.05 3921.83 3819.27 3817.01 3745.34 3728.61 3642.23 3632.47
7.5 4001.91 3984.82 3843.98 3846.21 3723.73 3708.95 3601.86 3600.90
7.6 4094.93 4071.44 3790.73 3792.76 3829.88 3820.65 3679.00 3679.97
7.7 4326.06 4317.63 4215.70 4216.41 4137.63 4136.94 4045.78 4047.87
Total 142,538.29 140,693.86 132,714.58 132,541.52 134,557.11 133,082.33 128,338.28 128,060.22

For each superpixel and for the four models with constant residual variance, the best model WAIC is bolded and similarly
for the four models with random residual variance. The best model across all eight models is shaded for each superpixel.

study; we believe that the outliers we identified were
mostly incorrect or inappropriate measurements. A
lower threshold for detection of outliers would result
in excluding potentially valid data. Therefore, we kept
as much as possible of valid data to provide accurate
results from the model. We recently reported that GCC
is potentially the optimal inner macular parameter for

detection of glaucoma progression across the spectrum
of glaucoma severity,4,20 and thus we used GCC as the
macular outcome of interest for this study.

We believe that the proposed model is appropri-
ate for estimating rates of change of GCC thickness
measures over time for several reasons. First, to
properly estimate slopes and their uncertainty, a correct
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Figure 3. Summary of the results from the best-fit hierarchical model (random intercept and random slope with random variance). The
grayscale grids display the distribution of (A) the estimated intercepts, (B) slopes, (C) P values for slopes, (D) correlation between random
intercepts and random slopes, (E) P values for correlation, and (F) the proportion of subjects with significant slopes. The grids show the
central 36 superpixels (out of 64 superpixels provided by Spectralis OCT’s Posterior Pole Algorithm) selected for fitting hierarchical models.
The key to the grayscale maps is provided on the right side of each image.

or near-correct covariance structure has to be identi-
fied for within-eye residuals for the GCC thickness
measurements. Based on our results, the model needs
to allow for different residual variances for different
eyes and random subject-specific intercepts and slopes.
We also investigated the possibility of an autoregres-

sive variance structure for the within-eye measure-
ments; this would mean that residuals for individual
eyes are correlated in time even after accounting for
random intercepts and slopes. We found no evidence
for an autoregressive variance-covariance structure in
the final model.
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The final model presented here is a hierarchical
linear random intercept and random slope model.
This model allows for individual superpixels to start
at different baseline levels and to have varying slopes
within and between individuals. A model incorporat-
ing a fixed quadratic effect performed as well as or
better than the linear model based on WAIC, but the
quadratic trend was not reflected in the profile plots
(e.g., see Supplementary Figures S2 and S3), empirical
summary plot (Fig. 2), or Supplementary Figure S4,
which is similar to the empirical summary plot but is
the empirical summary plot for the standardized resid-
uals of our preferred model. There was some evidence
for population-level short-term nonlinearity over time,
but we are unable to formulate rationales for nonlinear
population trends that later return to linearity.

Overall, the magnitude of global perimetric change
was fairly small in this cohort (about 1-dB change in
the 10-2 visual field MD). However, study of localized
structural rates at the level of 3° × 3° superpixels and
our Bayesian model allowed detection of significant
local or regional trends both in the population and for
individual eyes. Linear regression applied to measure-
ments from single eyes will not have the same power to
detect trends in individual eyes. Linear regression that
treats observations over time within an eye as indepen-
dent and is applied to longitudinal series from multiple
eyes is inappropriate for identifying population trends
and will vastly overstate the significance of the result-
ing inferences.

The central 4 superpixels of the Spectralis macular
volume scan are unique because the RGC density in
the perifoveal region changes drastically, rising from
near zero to near the peak level of density reached
in the outer adjacent superpixels. Smaller superpixels
could help in identifying trends more accurately in the
perifoveal region. The rates of change at the super-
pixel level tended to be most rapid (most negative)
in the perifoveal area and the papillomacular bundle
(Fig. 3), but the strongest correlations between the
baseline thickness and rates of change were actually
seen in the temporal macula.

Wewere able to identify 75% (27) of the 36 superpix-
els as having significantly negative population average
GCC rates (Bayesian P < 0.025) using 4 years of data
from 112 subjects. Our Bayesian hierarchical random-
effects model is helpful for identifying individual eyes
that are thinning at a significant rate because it uses
population-level information to help estimate slopes
in individual eyes, increasing our chances of identify-
ing individual eyes as decreasing compared to a simple
linear regression model analyzing a single individual’s
observations. The Bayesian approach provides a justi-
fied and informative prior for subject-level slopes; the

prior, in turn, yields additional information about a
given slope above and beyond the information in an
individual’s observations.

Bayesian models have been reported to more
efficiently identify glaucoma progression when
combining various structural and functional measure-
ments.16,35,38,40 Our current work represents an initial
effort toward developing an optimized hierarchical
model for fitting longitudinal structural macular data.
Superpixels or even clusters of superpixels across the
macula are correlated, with the correlation being a
function of physical or physiologic distance between
the superpixels.20 We analyzed data for each superpixel
separately. This made the modeling easier, at a cost of
not allowing us to borrow strength from neighboring
superpixels to better estimate trends at each superpixel
and preventing us from making joint statements about
individual trends across superpixels. Our results are
valid despite the lack of a spatial component: poste-
rior means of parameters estimate the corresponding
underlying parameters, and standard deviations of
the parameters are appropriate summary measures
of the uncertainty. For example, posterior estimates,
standard deviations, and 95% confidence interval of
subject-specific slope estimates could be used as inputs
to treatment decisions. Combined spatial-longitudinal
models come with high computational costs and have
yet to be developed for macular thickness measure-
ments.

We plan future work on multivariate modeling of
data from multiple superpixels over time. Statistical
models for multivariate macular thickness data need
to have longitudinal components, hierarchical compo-
nents, and spatial components. Each component is a
distinct statistical modeling project. Settling on a utile
model for the longitudinal component substantially
eases the modeling task in the hierarchical and spatial
components, and modeling the hierarchical and spatial
components would be daunting before an appropri-
ate longitudinal model is identified. Thus, it is now
possible to continue to multivariate models incorpo-
rating our single most appropriate longitudinal model
instead of having to consider multiple possible longi-
tudinal models. Our model has seven hyperparameters
for each superpixel: a population intercept and slope
(two parameters), random intercept and slope covari-
ance matrix (two variance parameters and one correla-
tion parameter), and two parameters (superpixel mean
and variance) for modeling the subject-specific resid-
ual variances. The next component modeling step is to
incorporate this model in a hierarchical model where
each superpixel has a seven-dimensional random effect.
The spatial component could then follow, although
numerous modeling decisions remain to be explored
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for longitudinal structural macular data. For example,
a spatial model specification requires a choice of type
of spatial correlation model, details of the model speci-
fication such as neighborhood structures, and number
of spatial components.

Covariates such as age, other demographic
variables, and impact of various interventions and
other diseases can be considered for predictingmacular
thickness with both short- and long-term impacts.
While the influence of some covariates on macular
thickness measurements might be modeled as part of a
single research project and a single paper, other covari-
ates such as age and the impact of treatment are likely
to result in multiple papers. Effectively, the more inter-
esting the covariate, the harder the modeling project.
Identification of regions of interest (i.e., areas of eyes
where progression is occurring) requires accurate data
and high-quality complex statistical models of which
this article is a key first step. Future models will also
incorporate functional measurements in joint models
for disease deterioration in the central macula. The
most crucial RGCs of the human eye reside in this
area, and progress in detection of ongoing damage in
this region has important uses in the implementation
and enhancement of therapeutic measures in patients
with glaucoma.

Validation of our model in future data sets is an
important task for future work. In the end, our claim
is that this model is appropriate for our data set. In
validating this model for our data, we compared 16
different models and conducted extensive inspections
of our data graphically to eliminate many other possi-
blemodels. In addition to our conclusion about the best
longitudinal model for our data, we have also outlined
an approach to modeling future longitudinal data sets
of macular thickness measurements over time. Other
data sets may include non- or preglaucomatous eyes
or may include longer timeframes since disease onset
compared to our data set. Similarly, other data setsmay
include younger patients, different mixes of glaucoma
types, and different demographics. These featuresmean
that ourmodel may ormay not be appropriate for these
other data sets; in contrast, our process is appropriate,
and the process can lead to different models for differ-
ent data sets.

Our results heremay speed analyses of newdata sets.
If initial graphical inspection of the new data set shows
decreasing linear time trends, then our model may well
be appropriate, and researchers can jumpstart their
analyses directly with our model followed by graphical
checks of the residuals to confirm the appropriateness.
We will make our algorithms publicly available as this
body of work is funded by the National Institutes of
Health.

Data sets with longer follow-up times or collected
on patients with more severe damage at baseline may
show floor effects; this would require extensions of
our model. Similarly, data sets from younger patients
and/or healthy patients may show ceiling effects. We
did not see evidence of floor effects in our data despite
our extensive graphical data inspection. In particu-
lar, Figure 2 did not show population-level floor effects;
rather, the population mean continued to decrease at
a linear rate throughout the study period. Similarly,
Supplementary Figure S2 did not show individual floor
effects for superpixel 5.5; we inspected similar plots
for all superpixels and observed no floor effects. In
the same vein, Supplementary Figure S3 did not show
floor effects for the five selected subjects. We reviewed
similar plots for all subjects and were unable to ascer-
tain floor effects. In contrast, similar plotting of longi-
tudinal visual field data in patients with glaucoma can
and does illustrate floor effects.51

Over the short term, linearity of change in the
macula seems reasonable, as seen in our longitudinal
cohort; however, over longer periods of time, nonlinear
time trends must be considered and different nonlinear
time trends be allowed for different superpixels within
an eye and for different eyes. Random errors εijk might
demonstrate autocorrelation over time, although we
did not see that in our analysis. Recent research has
suggested that the superpixels in which measurements
behave similarly are not just neighbors but may belong
to differently shaped nonconvex clusters.20 Similarly,
random intercepts, random slopes, and random errors
may have complex spatial associations not easily
modeled by local spatial autocorrelation models. Our
future work will consider spatial location and physio-
logic relationships of superpixels (clusters) in expanded
Bayesian hierarchical models.

It can take years of regular data collection to be
able to detect that the GCC thickness of an individ-
ual eye is decreasing. Our study includes data collected
every 6 months for 4 years. However, practitioners may
not want or need to wait until enough data have been
collected and small values of pik have been reached
before deciding on a change in treatment. Rather, one
might use a more generous cutoff of, for example, 0.1
instead of 0.025, for flagging a clinically significant
thinning of the GCC in an individual eye.

Translational Relevance

We provide an initial Bayesian hierarchical model
for estimating local rates of change for GCC thickness
measurements across the macula. Such estimates are
better estimated by using data from the entire patient
sample to estimate individual eye superpixel rates
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of change and appropriately modeling the correla-
tion between repeated measurements over time. The
proposed Bayesian hierarchical model can be applied
to various macular outcome measures from different
OCT devices and to superpixels of variable sizes to
estimate local rates of change and progression proba-
bility. Future models will have to be able to handle
the very complex anatomic and physiologic correla-
tions between macular superpixels. Such models, when
optimized, will provide clinicians with estimates of
rates of change and the probability of progression
globally and at the level of superpixels or clusters of
superpixels at any given point in time and also provide
prediction probabilities for the future course of the
disease. Structural and functional rates of change may
be combined in joint hierarchical models to better
define the longitudinal structure–function relation-
ships in the macular region in glaucoma.
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