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ABSTRACT 
Epidemiological studies have indicated that a disturbed circadian rhythm resulting from 
night-shift work is a potential risk factor for breast cancer. However, the mechanism of 
increased risk of breast cancer by night-shift work remains unclear, and there have been 
few in vivo studies conducted to definitively associate the two factors. In this study, 
BJMC3879Luc2 mouse breast cancer cells were transplanted into BALB/c mice. Mice 
were maintained under lighting conditions that modeled the two-shift system and were 
investigated for the effect of light/dark cycle disruption on tumor growth and lymph 
node metastasis. Circadian dysfunction, which was confirmed by measuring circadian 
locomotor activities using a nano tag device in our light/dark shift model, did not affect 
tumor growth. However, a significant increase in the number of lymph nodes with 
distant metastasis was observed. Neutrophil-to-lymphocyte ratio, which is an adverse 
prognostic factor of breast cancer and also indicator of inflammation, also increased. It 
has been demonstrated that a chronic inflammatory response is associated with cancer 
malignancy and poor prognosis in various cancers. These results suggest that night-shift 
work may also affect distant metastasis and prognosis. In addition, we investigated 
whether dietary quercetin has anti-metastatic activity against light/dark shift-induced 
metastasis. A diet containing 0.3 % quercetin significantly inhibited distant lymph node 
metastasis, particularly metastasis to the iliac and kidney lymph nodes. Our results 
contribute to our understandings of the effects of the external light environment on 
breast cancer metastasis and provide a glimpse into potential protective effects of dietary 
quercetin on light/dark disturbance-induced metastasis.
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1. INTRODUCTION

The mammalian circadian system controls various 
physiological functions including body temperature, 
hormone secretion, blood pressure, and sugar metabolism, 
and is affected by the master clock [1–5]. The master clock 
synchronizes the rhythm of peripheral clocks to the time 
of the external environment (i.e., a 24-hour cycle) through 
stimulation by the light signal received by the eye [6–8]. In 
other words, the light environment surrounding mammals 
is an important input signal for controlling circadian rhythm. 
Clock genes controlling biological rhythms interact with each 
other, and each has its own circadian rhythm [9]. It has been 
reported that BMAL1, a clock gene, has an antitumor effect on 
ovarian cancer, colon cancer, and head and neck squamous 
cell carcinoma [10–12]. Another study showed that PER2 
is associated with the development of breast cancer [13]. 
Night and shift workers are inevitably exposed to light at 
night. Our group previously reported that nocturnal light 
exposure disturbed the regular expression rhythms of clock 
genes such as PER2, BMAL1, and CRY2 [5]. The increase in 
the incidence and mortality rate of breast cancer in women 
is a worldwide problem. An epidemiological survey of cancer 
mortality, morbidity, and survival years, conducted in 195 
countries and territories from 1990 to 2015 reported that 
breast cancer is the most common cancer in women (2.4 
million cases) [14]. Another study conducted a follow-up 
survey of female nurses for 10 years and revealed that night 
or shift work was associated with an increased risk of breast 
cancer [15]. Furthermore, other epidemiological studies 
also demonstrated that the potential risk of breast cancer 
increased in women engaged in shift work [16, 17]. Under 
these circumstances, shift work that results in circadian 
disruption was categorized as “Group 2A” because it was 
determined to be probably carcinogenic in the carcinogenic 
risk assessment by International Agency for Research on 
Cancer (IARC) in 2007. However, the mechanism of increased 
risk of breast cancer by shift work remains unclear, and 
there have been few in vivo studies conducted to definitively 
associate the two factors.

It is known that the survival rate of breast cancer 
patients markedly decreases as tumor stage progresses, 
particularly regarding the occurrence of metastasis [18]. 
Cancer cell migration from breast tissue to lymph nodes 
can be an important process in breast cancer progression. 
It has been reported that noradrenaline (NA) contributes to 
the acquisition of breast cancer cell invasiveness and escape 
pathways of cancer cells [19, 20], although NA is secreted 
through the activation of the sympathetic nervous system 
and has a role in the recruitment of lymphocytes to lymph 
nodes to enhance the body’s defense functions [21]. In our 
previous studies, it was shown that light exposure during 

the dark phase activates the stress response pathways 
and increases secretion of stress hormones adrenaline and 
NA [5, 22]. Hence, internal desynchronization and stress 
responses caused by disruption of the light environment 
may affect breast cancer progression and metastasis.

We report here that we investigated the influence of 
circadian rhythm disruption by light/dark shifts on breast 
cancer development, especially metastasis, using BALB/c 
mice transplanted with BJMC3879Luc2 mouse breast 
cancer cells. We used a light/dark shift cycle pattern that 
imitated the rotating two-shift work pattern adopted in 
several types of workplaces, such as production industries, 
fire departments, and medical institutions [23–25]. To 
clearly disrupt the circadian rhythms of the mice, we chose 
a radical shift pattern: 12:12 light:dark inverted every two 
days. BJMC3879Luc2 cells are estrogen receptor positive 
breast cancer cells derived from metastatic foci within 
lymph node and lung, and they show a high metastatic 
potential to lymph nodes and lung [26]. It has been reported 
that chronic inflammatory responses are associated with 
the adverse prognosis of various cancer types, including 
breast cancer. Above all, neutrophil-to-lymphocyte ratio 
(NLR) correlates with poor prognosis in breast cancer 
patients [27, 28]. Therefore, we also investigated the effect 
of light/dark shifts on NLR. 

We also investigated the preventive effect of quercetin 
on breast cancer metastasis promoted by circadian 
disruption in mice implanted with mouse mammary cancer 
BJMC3879Luc2 cells. Flavonoids are widely distributed in 
the plant kingdom and their intake has been reported to 
be inversely correlated with breast cancer risk [29, 30]. 
Quercetin, a representative flavonoid compound, is found 
in many plant foods such as onions in the O-glycoside 
form, and its anticarcinogenic effects are receiving 
attention due to its strong antioxidant activity [31, 32]. 
We have previously shown that Quercetin-3-O-glucuronide 
(Q3G), a quercetin metabolite, acts as β2-AR antagonist and 
suppresses invasion of human breast cancer cells in vitro 
[20]. However, there is no report on the suppressive effect 
of quercetin on metastasis resulting from disruption of the 
circadian rhythm in mice. Therefore, we investigated the 
preventive effect of quercetin on light disruption-induced 
breast cancer metastasis by feeding quercetin mixed diet 
to breast cancer transplanted model mice. 

2. MATERIALS AND METHODS
2.1. CELL CULTURE
A highly metastatic murine BJMC3879Luc2 mammary 
adenocarcinoma cell line, which is estrogen receptor-positive 
and expresses luc2 gene, was a kind gift from Dr. Masa-Aki 
Shibata (Osaka Medical College, Osaka, Japan) [33]. The 
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cells were maintained in RPMI-1640 medium (Wako, Osaka, 
Japan) containing 10% heat-inactivated fetal bovine serum 
(FBS; Invitrogen, Carlsbad, CA, USA) with 50 U/mL penicillin 
and 50 U/mL streptomycin (Invitrogen, Carlsbad, CA, USA) at 
37 °C in 5% CO2 in a humidified cell incubator.

2.2. ANIMALS AND EXPERIMENTAL LIGHT/DARK 
CONDITIONS
Female BALB/c mice (7 weeks of age) were purchased 
from Japan SLC (Shizuoka, Japan). Five mice were kept 
in each plastic cage (W × D × H = 25.5 × 38.8 × 14.0 cm) 
on soft wood chip bedding in a controlled environment of 
23 ± 1ºC, 60% humidity, and 12:12 h light/dark cycles (light 
on at 8:00) in the Multi-chamber Animal Housing System 
(Nippon Medical & Chemical Instrument Co., Osaka, Japan). 
The bedding in each cage was changed and the food and 
water were refreshed twice a week. For the lighting in 
each chamber, a high color-rendering cold cathode lamps 
having a wavelength near-natural light was installed. The 
light intensity was measured by installing an illuminometer 
(T-10, Konica Minolta, Tokyo, Japan) on the floor in the cage 
and set to 250 lux intensity. All animals were provided with 
MF diet, Oriental Yeast Co., Tokyo, Japan) and water ad 
libitum. Mice were held for 1-week acclimatization period 
before test initiation and then subjected to experiments 
at 8 weeks-old. After acclimatization, the light/dark cycle 
in each experimental group was set as follows: Control, 
12:12 h light/dark cycle; Shift, 12:12 light:dark cycle with 
inverting every two days, which imitated the rotating two-
shift work [34] (Figure 2A). Lighting time is denoted as 
Zeitgeber time (ZT), where ZT0 represents the start of the 
light period (the light period was from ZT0 to ZT12 and the 
dark period was from ZT12 to ZT24). During the test period, 
the general condition and body weight of the animals were 
observed once a week. All procedures were carried out 
under protocols approved by Animal Experiments Ethics 
Committee of the University of Shizuoka (Approval number: 
165149, 175172).

2.3. LOCOMOTOR ACTIVITY RECORDING
Under anesthesia with isoflurane, a momentum measuring 
device (nano tag®, Kissei Comtec Co., Ltd. Nagano, Japan) 
was subcutaneously implanted into the necks of mice. 
During operation, the animals were cared for with a thermal 
pad to prevent decrease body temperature. After an 
acclimatization period of one week, animals were randomly 
assigned to either of the two types of light/dark cycles and 
kept for 4 weeks. Locomotor activity was measured by 
3-axis accelerometer inside the device. The recording of the 
momentum data was aggregated every 5 minutes, and the 
threshold was set to 170. The recorded locomotor activity 
data was captured by FeliCa communication, and changes 

in behavioral rhythms were analyzed with the nanotag/
Viewer (Kissei Comtec Co., Ltd. Nagano, Japan).

2.4. BREAST CANCER MODEL
After acclimatization, mice were randomly divided into 
Control group and Shift group. BJMC3879Luc2 tumor cells 
were implanted into the right fourth mammary fat pad of 
female BALB/c mice by injection of 0.1 mL PBS containing 5 
× 106 cells. Mice were kept for 3, 5, or 8 weeks, either under 
normal or irregular light/dark cycle conditions. Transplanted 
tumor size was measured with a caliper once a week, and 
volume was calculated using the following formula: tumor 
volume = maximum diameter (mm) × (minimum diameter 
(mm))2 × 0.4 [35]. The endpoint for tumor size defined a 
maximum diameter of 20 mm. Rate of metastasis to 
lymph node that located distal to the implantation site was 
calculated as follows: Rate of metastasis (%) = (Number of 
metastasis to individual lymph node/Total number of mice 
in each group) × 100.

2.5. EX VIVO IMAGING OF METASTATIC SITES
Prior examination has shown that the development of 
peak luciferase activity is strongly influenced by depth of 
anesthesia and body temperature. The general condition 
of mice varied in distribution from mild to severe. 
Therefore, ex vivo imaging was performed to avoid the 
effects of anesthesia depth and body temperature to 
luciferase activity. For imaging of tumors and metastatic 
sites, mice received an intraperitoneal (i.p.) injection of 
120 mg/kg D-luciferin (Wako) dissolved in PBS. 7 minutes 
post-injection, tissue-specific metastasis in lung, kidney 
lymph nodes, and axillary lymph nodes were tracked with 
bioluminescence using the Vivo Vision IVIS Lumina imaging 
system (PerkinElmer, Waltham, MA, USA) by measuring 
luciferase activity for 50 seconds exposure time. Images 
were analyzed with Living Image software version 3.0.

2.6. DETERMINATION OF NA IN TUMOR TISSUE 
To detect intratumoral NA, breast tumors developed in 
the mammary fat pad were collected. Tumor tissues 
were homogenized in 0.01 N HCl (containing: 1% sodium 
disulfite and 1 mM EDTA) and supernatant was collected. 
NA was measured using the Noradrenaline Research ELISA 
kit (ImmuSmol, Talence, France) in accordance with the 
manufacturer’s protocol.

2.7. COUNTING AND CLASSIFICATION OF 
PERIPHERAL WHITE BLOOD CELLS
For counting of peripheral white blood cells (WBCs), blood 
samples were treated with 10-fold the amount of Tuerk’s 
solution (Sigma-Aldrich, St. Louis, MO, USA), and the number 
of WBCs per 1 mm3 were calculated by hemocytometer.
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To perform WBC classification, heparinized blood was 
smeared onto a slide glass and quickly dried with cool 
air using a blow-dryer. Slides were fixed and stained with 
May-Gruenwald stain solution (Sigma-Aldrich) for 3 min, 
and then stained using 1:20 May-Gruenwald stain solution 
diluted with phosphate buffer (pH 6.4, M/15, Sigma-Aldrich) 
for 3 min. Slides were then stained with Giemsa stain 
solution (Merck, Darmstadt, Germany) diluted 20 times 
with phosphate buffer for 15 min. Blood smear specimens 
were inspected (magnification, × 1,000) using immersion 
oil. One hundred WBCs were counted and classified into five 
types (i.e., lymphocyte, monocyte, neutrophil, eosinophil, 
and basophil). Each WBC count per 1 mm3 was calculated 
using the following formula: presence ratio of each type of 
WBCs × total WBC count.

2.8. FEEDING A QUERCETIN-MIXED DIET IN THE 
BREAST CANCER MODEL
BJMC3879Luc2 cells were transplanted into female BALB/c 
mice as described above. The mice were provided MF diet 
or 0.3% quercetin-containing MF diet. All food was changed 
three times a week to reduce the effects of deterioration 
of quercetin in the MF diet. Mice were maintained for 8 
weeks in normal light conditions (Control) or light/dark shift 
environment (Shift). All mice were divided into the following 
four groups: MF diet (Control) or 0.3% quercetin-containing 
MF diet (0.3%Q-Ctrl) in a normal light/dark environment; 
MF diet (Shift) or 0.3% quercetin-containing MF diet 
(0.3%Q-Sh) in an irregular light/dark shift environment. 
The lymph node metastasis inhibition rates in 0.3% Q-Ctrl 
and 0.3% Q-Sh were calculated by following formula using 
the frequency of metastasis occurrence in the Control or 
Shift groups as the baseline data: Inhibition (%) = 1–[(rate 
of lymph node with metastasis/mouse in 0.3% Q-Ctrl or 
Q-Sh group)/(rate of lymph node with metastasis/mouse in 
Control or Shift group)] × 100.

2.9. QUANTITATIVE RT-PCR
Total RNA was extracted from primary tumor, liver, 
cardiac atrium and cardiac ventricle using TRIzol Reagent 
(Life Technologies, Carlsbad, CA, USA), and then cDNA 
was synthesized using a Prime Script RT reagent kit 
(Perfect Real Time, Takara Bio Inc., Shiga, Japan). RT-
PCR was performed using Power SYBR Green PCR Master 
Mix (Applied Biosystems, Warrington, UK) with specific 
primers on a StepOne Real-Time PCR System (Applied 
Biosystems). All specific primer pairs were modeled using 
web-based software Primer 3 and synthesized at STAR 
Oligo (Rikaken Co. Ltd., Nagoya, Japan). For PCR primers 
for Per2 were 5’-GGCTTCACCATGCCTGTTGT-3’ (forward) and 
5’-GGAGTTATTTCGGAGGCAAGTGT-3’ (reverse), the primers 
for Pai-1 were 5’-GGTCAGGATCGAGGTAAACGA-3’ (forward) 

and 5’-TGCCGAACCACAAAGAGAAA-3’ (reverse), and the 
primers for Actb were 5’-GGCTGTATTCCCCTCCATCG -3’ 
(forward) and 5’-CCAGTTGGTAACAATGCCATGT-3’ (reverse).

The relative gene expression levels were calculated using 
the 2-∆∆Ct method, and normalized against Actb mRNA levels.

2.10. STATISTICAL ANALYSIS
All data are indicated as mean ± standard error (S.E.M.). 
Statistical analyses were performed using Student`s T-tests 
with Pharmaco Basic Statistics (Three S Japan Co., Ltd., Tokyo, 
Japan). Differences were taken to be significant at P < 0.05.

3. RESULTS
3.1. DISTURBANCES IN LIGHT CYCLES CAUSE 
BREAKDOWN OF CIRCADIAN RHYTHM AND GENE 
EXPRESSION
To investigate whether circadian rhythm was impacted by 
light/dark shifts, a behavior analysis was performed using 
nano tag® devices. Under regular lighting conditions, active 
behavior was confirmed from several hours before the lights-
out to during the dark period. Moreover, inactive behavior 
was observed in the light period. In contrast, mice activity  
during the dark period decreased due to irregular turn-on 
and/or -off the lights. The peak behavioral time was no 
longer clear, and some animals seemed to free-run under 
the shift condition (Figure 1A and S1). Furthermore, the 
repeated light/dark shift caused dysregulation of expression 
of the representative circadian clock gene, Per2 gene in 
cardiac atrium (Figure 1B), cardiac ventricle (Figure 1C) and 
liver (Figure 1D), and Pai-1 gene in cardiac atrium (Figure 1E), 
cardiac ventricle (Figure 1F) and liver (Figure 1G).

3.2. LIGHT/DARK CYCLE DISRUPTION PROMOTES 
BREAST CANCER METASTASIS
To investigate the effect of irregular light/dark cycles on breast 
cancer metastasis, BJMC3879Luc2-bearing mice were kept 
for 3, 5, or 8 weeks under the conditions shown in Figure 2A, 
and metastases to tissues were evaluated. No difference in 
body weight (Figure 2B), tumor volume (Figure 2C), or tumor 
weight (Figure 2D) was observed between normal light 
conditions and shift conditions. However, in the shift group, 
the survival rate began to decrease after about 5 weeks 
of tumor-bearing (Figure 2E). In addition, 8 weeks after 
inoculation, several mice in the shift group had symptoms 
of crouching, irregular respiration, and piloerection (data not 
shown). At the terminal sacrifice, cancer cell migration was 
captured using luciferase activity as a reporter and revealed 
that luminescence intensity tended to increase in the lung 
tissue and axillary lymph nodes of the shift group (Figure 3).

Necropsy of the major lymph nodes (i.e., axillary, 
brachial, mediastinal, renal, iliac, inguinal, and 
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popliteal) revealed markedly increased lymph node 
metastasis per mouse in the shift group (Figure 4A). In 
addition, metastasis in the right inguinal lymph node 
was observed in all mice (Figure 4B). However, the 
incidence of cancer metastasis in the right brachial 
lymph node was significantly higher in the shift group 

(Figure 4B). Furthermore, metastasis in the left brachial 
and inguinal lymph nodes, lymph nodes located distal 
to the implantation site, were significantly increased by 
light/dark shifts (Figure 4B). These results suggested that 
disturbances in the light/dark cycle may promote distant 
metastasis of breast cancer.

Figure 2 Disturbance of the light/dark cycle does not affect tumor growth and decrease survival. Schematic representation of 
the experimental plan and light/dark conditions (A). Female BALB/c mice were implanted with BJMC3879Luc2 cells in the right fourth 
mammary fat pad and then maintained under each light/dark cycle condition for 3 to 8 weeks. The lighting conditions of each group were 
set as follows: Control group, 12:12 h light/dark cycle (lights on at 8:00; ZT0); Shift group, light on ZT0 for 2 days and then conversely on 
the following 2 days. The star mark (★) indicates the timing of body weight and tumor volume measurement (between ZT7 and ZT8). 
Mice were killed between ZT7 and ZT8 at 3, 5, or 8 weeks after tumor cell inoculation. Effect of light/dark shifts on body weight (B), tumor 
volume (C), tumor mass (D), and survival (E). Data represent mean ± S.E.M. (n = 10–30).
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Figure 1 Circadian locomotor activity profiles, and Per2 and Pai-1 mRNA expression pattern in peripheral tissues. Circadian activities 
were measured for approximately 4 weeks using a nano tag. Actograms in the left and right panels represent the Control and Shift 
groups, respectively (n = 4, A). Locomotor activity levels were measured at 5-min intervals and are indicated by black bars. Per2 and Pai-1 
expression levels in atria (B and E), ventricle (C and F) and liver (D and G) were analyzed at ZT2, 6, 11, 18, and 23. Values were normalized 
using Actb mRNA levels. Control gene expression levels at ZT2 were defined at as 1. Data represent mean ± S.E.M. (n = 4). *, P < 0.05; **, P < 
0.01.
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3.3. LIGHT/DARK SHIFTS INCREASE NLR
The influence of light/dark shifts on the immune system, 
especially total WBC count and NLR, were analyzed. 
There was no effect of light/dark shifts on total WBC 
counts in both groups (Figure 5A). However, a decrease 

in the lymphocyte ratio and an increase in the neutrophil 
ratio at 5 weeks after cancer cell transplantation were 
confirmed in the Shift group, and the NLR was significantly 
higher in the Shift group than in the Control group (1.64-
fold, Figure 5B).

Figure 3 Bioluminescent imaging of metastatic lesion areas of mice housed under normal or light/dark cycle shift conditions.
Representative bioluminescent images of metastatic lesions obtained at 8 weeks after inoculation (A). Bioluminescent images were 
obtained 7 min after intraperitoneal administration of luciferin to mice. Quantification of bioluminescent intensities in each tissue taken 
from mice (B). Regions of interest (ROI) from displayed images were identified in the primary tumor, lung, kidney lymph node, and axillary 
lymph node, and quantified as photons per second. Data represent mean ± S.E.M. (n = 13–15).
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Figure 4 Frequency of metastasis in lymph nodes. Number of lymph node metastasis in each group (A) and frequency of metastasis in 
distant lymph nodes (B). Data represent mean ± S.E.M. (n = 18). *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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3.4. NA CONTENT IN PRIMARY TUMOR
Intratumoral NA concentration tended to increase in 
the Shift group after 5 weeks of inoculation, but the NA 
concentrations in both groups were not significantly 
different after 8 weeks of inoculation (Figure 6).

3.5. EFFECT OF QUERCETIN ON CANCER 
METASTASIS IN VIVO
To investigate the anti-metastatic effect of quercetin 
on breast cancer cells, a 0.3% quercetin diet was given 
to tumor-bearing mice for 8 weeks under the same 
conditions as described previously (Figure 2A). There were 
no differences in food intake or body weight changes in 
each group (Figure 7A and 7B). There was also no effect 
of quercetin intake on tumor volume and tumor weight 
(Figure 7C and 7D). Regarding lymph node metastasis, 
metastasis to various lymph nodes was suppressed in 
the 0.3%Q-Ctrl and 0.3%Q-Sh groups. In particular, it was 
observed that metastasis to the kidney lymph nodes and 
iliac lymph nodes was strongly suppressed (Figure 7E).

4. DISCUSSION

Breast cancer is the most frequent cancer type in women 
worldwide. Many previous epidemiological studies reported 
that shift and night workers are at a higher risk of breast 
cancer than day shift workers [16, 36]. These reports 
suggest that circadian disruption of biological functions 
due to deviations from the natural day/night cycle may 
affect breast cancer development. In this study, the effect 
of circadian rhythm disruption by light/dark shifts on 
metastasis of breast cancer was investigated using BALB/c 
mice transplanted with BJMC3879Luc2 mouse breast 
cancer cells. A radical shift pattern (12:12 light:dark cycle 
with inverting every two days) that imitated the rotating 
two-shift work was chosen to disrupt the circadian rhythms 
of the mice. The 12-hour rotating shift cycle caused clear 
circadian disruption and a free-running behavioral rhythm 
was observed (Figure 1A and Figure S1). Also, the peak 
times of Per2 and Pai-1 were phase advanced about for 7 h 
(Figure 1B and 1C) and 12 h (Figure 1E and 1F) in shift group 
mice, respectively. Furthermore, the expression levels of 
Per2 and Pai-1 showed noticeable downregulation. The 
association of Per2 or Pai-1 in many types of cancer, including 
breast, is well-documented [37, 38]. Per2 is known to have 
tumor suppressive activity against mammary tumors, and 
its down-regulation is advantageous for cancer progression 
[39]. These outcomes support the hypothesis that light/dark 
shift accelerate breast cancer progression. Incidentally, the 
relationship between breast cancer malignancy and Pai-1 
has been discussed in several papers and it is presumed 
that Pai-1 promotes cell migration [40, 41]. 

We demonstrated that disruption of biological rhythms 
by light/dark shifts promoted tissue metastasis, especially 
distal lymph node metastasis and further caused a decrease 
in survival (Figures 2E, 3 and 4). But it did not affect the tumor 

Figure 5 Total white blood cells (WBCs) and neutrophil-to-lymphocyte ratio (NLR). Total WBCs were measured at 5- or 8-weeks post-
inoculation (A). NLR was calculated from the neutrophil and lymphocyte percentage of WBCs at 5- or 8-weeks post-inoculation (B). Data 
represent mean ± S.E.M. (n = 6). *, P < 0.05.
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Figure 6 Change in tumor NA levels. Intratumoral NA 
concentration was measured at 5- or 8-weeks post-inoculation. 
Data represent mean ± S.E.M. (n = 5–10).
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volume or weight of transplanted breast tumors (Figure 2C 
and 2D). The effect of biorhythm disturbance on tumor 
growth and metastasis has been reported in previous study 
[42], along with downregulation of per2 by jet lag condition. 
And, it presents interesting data on the acquisition of 
the stemness and growth potential of tumor cells and 
antitumor immunity. In contrast, as mentioned above, 
our model did not show the effect of light-disturbance on 
tumor growth. It is difficult to make a general comparison 
with previous study [42], because of the different tumor 
model (spontaneous or orthotopic transplant), subtypes 
of breast cancer cells (estrogen receptor and progesterone 
receptor sensitivity and HER2 protein expression) and light/
dark conditions. Therefore, we think that it will be necessary 
to consider the systems that more closely resemble 
human rotating shift work, e.g., comparison with a 3-shift 
work system (shifted by 8 hours for 3 groups), of different 
light-dark compositions (6:18 light:dark cycle, and/or 18:6 
light:dark cycle) in future studies.

In mammals, various physiological functions including 
temperature regulation, sleep/arousal, and hormone 
secretion are known to change periodically over 
approximately a 24-hour period over a day/night cycle, 
which is an environmental time signal [1]. Our previous 
studies revealed that nocturnal light exposure increases 

secretion of adrenaline and NA through the function of the 
sympathetic-adrenal-medullary axis (SAM) system and the 
sympathetic nervous system, the stress response systems, 
showing evidence that a departure from the natural light/
dark cycle is a stress factor [5, 22]. A recent investigation 
demonstrated that chronic stress load activated the 
sympathetic nervous system accompanied by secretion of 
NA, and promoted remodeling of tumor lymphatic vessels 
and cancer metastasis in mice transplanted with MDA-
MB-231 cells [43]. We previously reported that NA elevated 
breast cancer cell infiltration via adrenergic receptors 
and upregulated MMP9 expression, which contributes to 
extracellular matrix degradation in MDA-MB-231 cells [20]. 
These findings suggest that disruption of light/dark cycles 
causes a stress response accompanied by NA secretion, which 
may affect breast cancer development. As shown in Figure 6, 
the concentration of NA in breast tumors tended to increase 
due to light/dark shifts. However, no increase in Mmp9 
expression in tumors due to light/dark shift was observed 
(data not shown). As mentioned above, some biological 
functions including enzyme activity and gene expression 
show circadian rhythms. It is known that the activity and 
expression levels of these factors are continuously changing 
[44, 45]. All final sampling in this study was conducted at 
the same time (ZT 7–8). Therefore, to resolve the relationship 

Figure 7 Effect of 0.3% quercetin diet on the lymph node metastasis. All animals were given normal MF diet or 0.3% quercetin-
containing MF diet over the experimental period. Food intake (A), body weight (B), and tumor volume (C) were measured once a week 
(n = 6–10). Tumor weight was measured at the final necropsy (D, n = 6–10). Data represent mean ± S.E.M. The lymph node metastasis 
inhibition rates in 0.3% Q-Ctrl and 0.3% Q-Sh were calculated using the frequency of metastasis occurrence in the Control or Shift groups 
as the baseline data (E, n = 6–10). *, P < 0.05 vs. control; †, P < 0.05 vs. shift.

������ ���

��� ���

�

�

��

��

��

��

��

� � � � � � � �

��
��
��
��
��
�

�
��
�


	
��
��
��
�

��
���������������

�������
����� ����
­����
����� ­�

��

��

��

��

��

� � � � � � � � �

��
��
��
��
�

���
�


	�����������������

�������
����������
 
�­�
������ 


�

����

����

����

����

� � � � � � � � �

��
�
��
��
��
��
��

�
�
� �

�
	���������������

�������
����������
��� �
��������

�

�

�

�

�

��
���
��

���
�
��
��
��

��
� �

���
�
��
��

��
�
��
��
��
­�
��

­�

���
���
���
�
��
��
��
��
���

��
���
���

�

����
��
��
��
�
����
�

��­
���
��

��
���
���

�

����
��
��
��
�
����
�

��­
���
��

��
��
��
���
��

�
�

����������
��������

��­�� �� �

�
� � �



9Numata et al. Journal of Circadian Rhythms DOI: 10.5334/jcr.203

between NA and MMP9, further experiments at multiple 
time points are required in future studies.

We here shown that the NLR is significantly increased by 
light/dark shifts (Figure 5B). At the same time, shortening of 
survival was observed (Figure 2E). It is known that the survival 
rate of breast cancer patients markedly decreases as tumor 
stage progresses, particularly regarding the occurrence of 
metastasis [18]. Cancer cell migration from breast tissue to 
lymph nodes can be an important process in breast cancer 
progression. Various internal and external factors affect the 
metastasis of many cancers including breast cancer through 
the complex mechanisms, and in recent years there have 
been many reports that neutrophils have an active role 
in tumor progression [46, 47]. It has been reported that 
frequent changes in the light/dark environment can induce 
chronic inflammation and increase the early mortality rate 
[48]. It has been also reported that the risk of developing 
liver and lung cancer increases with long-term light/dark 
shifts [49, 50]. In addition, it has been demonstrated that 
a chronic inflammatory response is associated with cancer 
malignancy and poor prognosis in various types of cancer 
[49, 51, 52]. From these findings, the inflammatory response 
is an important factor in cancer progression. Peripheral blood 
NLR is a parameter that reflects systemic inflammation, 
and it has been shown that a high NLR is associated with 
poor prognosis in various cancers such as breast, lung, and 
prostate cancer [28, 53]. These outcomes suggest that 12-
hour rotating shift cycle is an environmental factor that 
affects the survival of breast tumor-bearing mice. 

To prevent metastasis, treatment with anticancer drugs 
and/or radiation is performed. On the other hand, adverse 
effects associated these treatment cause complications and 
add to increased morbidity and mortality among patients 
[54]. Therefore, chemoprevention by food is important. We 
here focused on quercetin contained in plants as a tool to 
prevent cancer progression (i.e., development, proliferation, 
and metastasis). Our laboratory previously reported 
that a quercetin metabolite, Q3G inhibited MDA-MB-231 
human breast cancer cell invasion induced by NA via β2-
adrenoreceptor [20]. It has also been shown that quercetin 
inhibited the proliferation of MCF-7 human breast cancer 
cells [55]. In addition, quercetin has an inhibitory effect on 
cancer cell migration, and it has been reported that cancer 
metastasis is suppressed by quercetin therapy [56–58]. 
Thus, evidence on the antitumor effect of quercetin is 
accumulating. However, the suppressive effect of quercetin 
on metastasis progression as a result of disturbances 
to the circadian rhythm has not been verified. Therefore, 
we investigated whether breast cancer metastasis 
suppression by feeding a 0.3 % quercetin diet is observed 
or not in breast cancer-transplanted mice under a light/
dark shift environment. The effects of quercetin on food 

consumption and tumor size and weight were not observed 
in all groups (Figure 7A, 7C and 7D). Whereas, metastasis 
to kidney lymph nodes and iliac lymph nodes was strongly 
suppressed in mice fed a 0.3 % quercetin diet in a light/
dark shift environment (Figure 7E). In previous reports of the 
pharmacokinetics of quercetin and quercetin metabolites,  
high levels of quercetin and its metabolites were observed 
in lung, kidney, and liver after quercetin ingestion [59]. 
Another report showed that Quercetin glucosides 
administered to the duodenum is partly transported to the 
iliac lymph vessels [60]. From these studies, it is assumed 
that the tissue-specific kinetics of quercetin cause local 
accumulation of quercetin in the iliac lymph nodes and 
kidney lymph nodes, leading to suppression of cancer 
cell migration. In examining the preventive effect of the 
ingestion of quercetin-containing foods on breast cancer, 
further investigation is required to clarify the detailed 
mechanism of metastasis inhibition by quercetin.

In conclusion, our study has shown that an irregular 
light environment that reverses the light and dark phases 
every two days induced shorter lifespan and high level 
NLR that is a poor prognostic factor of breast cancer. 
Circadian rhythm disruption contributes to distal lymph 
node metastasis even though it did not affect the tumor 
growth in breast cancer transplanted in mice. These results 
with breast cancer transplant model and the modified light 
environment suggest that night-shift work may also affect 
distant metastasis and prognosis. In addition, in order to 
investigate the preventive effect of plant components on 
breast cancer, we fed quercetin mixed diet to breast cancer 
transplanted model mice and examined the anticancer 
effect against photodisturbation-induced breast cancer 
metastasis. We have demonstrated that distant lymph 
node metastasis due to disruption of the light/dark cycle 
is suppressed in certain lymph nodes by quercetin. This 
suggests that quercetin may be useful as a novel tool 
for the food prevention of light environment-induced 
breast cancer migration. To the best of we knowledge, 
this is the first report to the effect of quercetin on distal 
lymph node metastasis promoted by the disruption of 
circadian rhythm by the light environment modeled shift  
worker.

ABBREVIATIONS

DMSO, dimethyl sulfoxide; FBS, fetal bovine serum; IARC, 
International Agency for Research on Cancer; MMP, matrix 
metalloproteinase; NA, noradrenaline; NLR, neutrophil-to-
lymphocyte ratio; PBS, phosphate buffered saline; Q3G, 
quercetin-3-o-glucuronide; SAM, sympathetic-adrenal-
medullary axis; WBC, white blood cell; ZT, Zeitgeber time.
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The additional file for this article can be found as follows:

•	 Supplementary Figure 1: Circadian locomotor activity 
profiles of the other mice. DOI: https://doi.org/10.5334/
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