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Introduction
In clinical research, prognostic and predictive models play 
important roles. Prognostic model is constructed to predict 
patients’ clinical outcomes, given their demographic, clinical, 
and genetic characteristics. It is important to define interpreta-
ble prognostic classification rules for understanding the nature 
of patients’ performance. On the other hand, predictive model is 
developed for treatment decision-making, such as optimization 
of treatment strategy for patients with specific characteristics.

In cancer research, researchers usually deal with the time-
to-event clinical endpoints, such as standard censored survival 
outcomes. Typical example is the overall survival. Sometimes 
the research interests are on more complicated type of data, 
such as recurrence-free survival, which involves competing 
risk events (ie, death without tumor recurrence). A compet-
ing risk event can preclude the event of interest from occur-
ring. For example, we could not observe tumor recurrence if 
a patient died without recurrence. There is loss of informa-
tion if we ignore this type of event. Thus, it is important to 
pay attention to these complex time-to-event data as a way of 
understanding real-world cancer outcomes.

First introduced by Morgan and Sonquist,1 the tree-
based method became widely used due to the work by Breiman 
et al.2, who developed the Classification and Regression Tree 

algorithm. An attractive feature of the tree-based model is 
the connection between partitioning a covariate space and a 
binary decision-making process. The methodology was further 
developed for both continuous and categorical outcomes, 
adjusting for the effect of confounders.3 For standard censored 
survival data, we have developed a general framework to create 
prognostic and predictive survival trees for time-to-event out-
comes based on recursive partitioning algorithm.4 This frame-
work also allows for adjusting for possible clinical confounders, 
which are not of direct interest. The tree-based methods are 
appealing as the flexibility to detect direct or interactive effects 
on survival outcomes and select covariates in the presence of 
high-dimensional data. Simulation results show the well per-
formance of the method and robustness to large-dimensional 
covariate spaces for time-to-event data.4 However, currently, 
little work has been applied on competing risk outcomes for 
prognostic and predictive model development.

To model competing risk events, the most commonly 
used method is based on the Cox proportional hazards models. 
While some argue that in large epidemiological studies, the 
assumption of proportional hazards is sometime problem-
atic. A flexible parametric model5 and a parametric mixture 
model6 are developed to model the cause-specific hazard func-
tion to corporate time-dependent hazards. Another method is 
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developed to model the cumulative incidence function directly 
based on pseudovalues.7

Several decision tree models were developed for survival 
data,8,9 but only few were found for competing risk outcomes. 
One work on competing risk survival data generates prognostic 
survival tree only,10 and all the input covariates are potential 
splitting variables. It cannot adjust for potential confounders. 
As we know, there is no existing method that is applicable 
for predictive tree construction that can deal with treatment 
interactive effect on competing risk outcomes.

The primary aim of this article is to extend our current 
survival tree framework to competing risk data for both prog-
nostic and predictive tree constructions. We focus on the semi-
parametric method using Cox proportional hazards algorithm 
and use likelihood ratio test (LRT) for the splitting rule. This 
novel tree framework is quite flexible that it can also corporate 
parametric competing risk model and overcome the restriction 
of proportional hazards assumption.

In this article, first we introduce the basic structures of 
a recursive partitioning algorithm of competing risk deci-
sion trees. In addition, we define the splitting rules, pruning 
algorithm, and methodology to choose the final tree struc-
ture on the competing risk outcomes. Extensive simulations 
are conducted to evaluate the performance of this innovative 
methodology framework for both prognostic and predic-
tive trees. To deal with time-dependent hazards, we develop 
a method to combine the flexible parametric model5 and the 
semiparametric survival tree framework. Finally, we apply 
both Cox proportional hazards model and flexible parametric 
model for prognostic tree construction on an oropharyngeal 
cancer study.

Method
Algorithm overview. The tree-based method using 

a recursive partitioning procedure consists of a splitting 
rule, a  pruning algorithm, and an approach to select the 
f inal tree structure. The splitting rule is used to partition 
covariate space into subgroups representing patient prog-
nosis or prediction.

The partition is represented as a tree T, with terminal 
nodes T  corresponding to the partition of the covariate space 
into T  subsets. It is applied recursively until there are very few 
patients in each group or a prespecified number of groups are 
created. For competing risk outcomes, different algorithms can 
be applied for splitting rule constructions, such as LRT, log-
rank test, and Gray’s test.11 We developed a likelihood ratio-
based test and used as the splitting rule. This also implies the 
flexibility of the tree framework. It can solve various problems 
with different likelihood constructions. The large tree created 
by the splitting rule usually has the problem of overfitting and 
performs poorly out of samples. Thus, pruning is necessary to 
search and find the optimal subtree structure. The final subtree 
structure is then selected using a resampling algorithm.

Competing risk method based on Cox model. Splitting 
rule. Competing risks model are developed when an event 
can be caused by multiple reasons and interest lies in mod-
eling one particular cause.12,13 There are two key measures in 
competing risks analysis, cause-specific hazard, and hazard of 
the subdistribution, which differ in the risk sets by definition. 
Several regression approaches are applicable to estimate these 
two quantities.14 In this article, we focused on modeling cause-
specific hazard. For simplicity, in this article, we only consider 
making binary splits on binary splitting variables.

To partition a node h, we need to find the split s such that 
some measure of the improvement G(s, h) with or without this 
split is maximized.

	
G s h G s h

s Sh

* , ,( ) = ( )
∈

max

where Sh is the set of all the possible splits that can be made at 
node h. s* represents the best split for node h with the maxi-
mum measure of improvement.

Data setup for competing risks model is (yi, xi, δi).  
For observation i, xi is the covariate vector and yi is the  
time-to-event outcome. δI = 0 if censored, δi = 1 if an event is of 
interest, and δi = 2, 3, … indicating other events that are com-
peting risks. Compared to standard censored survival data, the 
major difference is on the definition of censoring indicator.

We can also define the cause-specific hazard rate for 
cause j,
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t x
P t T t dt J j T t x

dt
( , ) lim

( , , )
=

< < + = >

→0

Then, the cumulative hazard for cause j is
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holds for each cause j.
The likelihood involving a specific type of failure is 

exactly the same as the likelihood obtained by treating all 
other types of failures as censored observations. Thus, the full 
likelihood is the product of likelihood of each specific cause 
failure. Here, we assume

	 λ
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where kj is the number of distinct times of event due to cause 
j, tji denotes the ith such time, R(tji) is the risk set at time 
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tji, and i(j) is the index of the event that happened at tji. We 
maximize log-likelihood l(β) to obtain the MLE of param-
eters βj′s.

Consider two nested models, m0 0 0: log λ = β ′x  and 
m1 0 0 1 1: log λ β= +β ′ ′x x . The LRT statistic corresponding to 
the hypothesis test

	 H0 1 0: β =

is

	 ( )
ˆ ˆ( ( ) ( )) ~m m m m rank xl lβ β− −

0 0 1 1

2
12 X

Here, lm0 and lm1 are the log-likelihood of the two nested 
models. In order to adapt the competing risk model to the 
survival tree structure, the constructed LRT can be regarded 
as G(T), the goodness of split of tree T.

To specify, let vector x0 be the covariates that needs 
to be adjusted for confounding effects, x1 the true splitting 
covariates, and xt the treatment. We define two splitting 
rules that are used to create adjusted prognostic (mar-
ginal) trees and adjusted predictive (interactive) trees, 
respectively.

For prognostic tree, the null model is log λ j j= β 0 0′x
j
 

and the alternative is log λ j j j= +β β0 0 1 1′ ′x x
j j

. j represents 
a specific cause of the event that is of interest. While for 
competing risks, we assume log λl l= β 0 0′x

l
. The LRT statistic 

corresponding to H j0
1 0: β =  is defined as the split complex-

ity Gm(s, h).
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For predictive tree, the null model is log λ j j= +β 0 0′x
j
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defined as the split complexity Gi(s, h).
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Pruning algorithm. The split complexity Gα(T) is 
defined as

	 G T G T Sα α( ) = ( ) −

where S T T= −   is the set of internal nodes of tree T; |S| is 
the cardinality of S; α $ 0 is the complexity parameter; and 
G(T), the goodness of split of tree T, is the sum of the splitting 
statistics over the full tree.

	
G T G h

h S
( ) = ( )

∈
∑

We can interpret G(T) as how well the prognostic or pre-
dictive tree structure fit in the data. LRT, log-rank test, or 
other standardized statistical distance measures can be used 
for such measurement. Here, we use the LRT statistics. From 
the above definition, if α is small, the penalty on the tree size 
is small and the tree with large tree size has large split com-
plexity. On the contrary, if α gets larger, the final tree size will 
be smaller. This is a trade-off between the tree size and good-
ness of split of the tree structure.

The idea of the pruning algorithm is to cut the branches 
that have the weakest link to the tree. Statistically, it is the 
improvement of the overall split complexity. Performing this 
cut once at a time, a nested sequence of subtrees Tm ≺  … 
≺  Tk ≺  … ≺  T0 are obtained where Tm is the root node 
and corresponding complexity parameters ∞ . αm . … . αk 
. … . α1 . α0 = 0.15

Selection algorithm of final tree. The previous section yields 
a sequence of optimally pruned subtrees. In this section, we 
aim to select a final tree structure for decision-making. Since 
the tree structures are determined by maximizing LRT statis-
tics, the split complexity would be larger than expected with 
the same training sample.

An effective method to deal with this issue is to randomly 
split the data into two sets, namely, a training set and a test set, 
and repeat the process multiple times. To implement this, boot-
strap method is applicable. We first grow and prune a tree with 
the training set and then force test set data into the sequence 
of the pruned trees. The split complexity G(h) can be calculated 
for each internal node h using the test sample. The best pruned 
subtree is chosen with the maximum split complexity. For sim-
plicity, we recommend using the penalty α = 4 since it is simi-
lar to the 0.05 significance level for a single split.15

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Xu et al

12 Cancer Informatics 2016:15(S2)

Flexible parametric model. In cancer epidemiological 
studies, sometimes the proportional hazards assumption is not 
relevant for each specific cause. This leads us to explore a more 
general method to overcome this issue. The use of parametric 
model may have some advantages. Efron16 and Oakes17 showed 
that, under certain circumstances, parametric models result in 
more efficient parameter estimation than Cox’s model. With 
decreasing sample sizes, parametric models may have better 
performance in terms of efficiency. When empirical informa-
tion is sufficient, parametric models can provide some insight 
into the shape of the baseline hazard. In addition, it does not 
have the restriction of proportional hazards assumption, thus 
is easier to deal with time-dependent effects. It gives an esti-
mation of the baseline hazard, and the visualization of the 
hazard function is much easier.18 Royston and Parmar18 also 
proposed an extension of Weibull and log-logistic model using 
cubic splines to smooth the baseline log cumulative hazard. 
Hinchliffe and Lambert5 further applied this flexible para-
metric model to competing risk framework. In this article, we 
incorporate Hinchliffe and Lambert model into our survival 
tree framework and applied on a real clinical study.

Flexible parametric model. The basic idea of flexible para-
metric model starts from the Weibull distribution,5,19,20

	 S t t( ) = −( )exp µ γ .

If we take a complementary log-log transformation, we 
have

	 ln ln lnH t t( ) = +µ γ

In this setting, ln H(t) is a linear function of ln t, it can 
be generalized to use restricted cubic spline for the estimation. 
Introducing linear combination of covariates to estimate ln µ, 
we have the following,

	 ln ln , )H t s t nT( ) = +x β ( γ 0

s(ln t|γ, n0) = γ0 + γ1z1 + … + γN–1 zN–1is the restricted 
cubic spline function, which is a function of ln t. γ0, γ1, …, γN–1 
are parameters and n0 is a vector of N knots. zi ’s are functions 
of ln t and the knots. Then, maximize the likelihood to obtain 
the estimation of parameters γi and β.

With the estimation of ln H(t), it is easy to calculate the 
following,

	 S t H t( ) = − ( )( )exp

	
λ

γ
t

ds t n
dt

H t( ) = ( )( ln , )
exp ln0

Likelihood construction. Based on flexible parametric sur-
vival tree model, we construct a likelihood function to be used 
as a splitting rule within the survival tree framework to apply 

to the competing risk data. The likelihood function can be 
written as the product of k distinct likelihood for each failure 
cause. Thus,

	
L L y S yj j i j i

i

n

j

k

j

k
ij= =

===
∏∏∏ λ δ( ) ( )

111

i represents the index of subject and j the index of failure cause. 
λ δ

j it ij( )  and Sj(ti) can be calculated for each specific failure 
cause according to the previous section. Hence, the likelihood 
function is estimable.

Time-dependent hazards. The flexible parametric model 
can be adapted to time-dependent hazards by adding the 
interaction terms between covariates and the restricted 
cubic spline function.5 Suppose there are D time-dependent 
effects, then

	
ln ln , ) ln , )H t s t n s t n xT

j

D

j j j( ) = + +
=

∑x β ( (γ α0
1

At each splitting time, to select a best splitting covariate, 
we compare the improvement of the following two models,

	 m H t s t n0 0: ln ln , )( ) = ( γ ,

and

	 m H t s t n s t n xT
k1 0: ln ln , ) ln , ) ,( ) = + +x β ( (γ α

xk represents a potential time-dependent effect.
By doing this, no matter this potential effect is time 

dependent or not, there will be an improvement on the test 
statistics and our algorithm will capture this effect if it is truly 
related to the outcome.

Simulation settings. Extensive simulations are con-
ducted for the competing risk tree-based model perfor
mance evaluation.

Simulation parameters. For the simulation parameters, 
first, we choose different sets of the sample size and the number 
of covariates for potential splitting. We assume that all the 
splitting variables are binary and generated from Bernoulli 
distributions with parameter p, x ∼ B(n, p). The true covariate 
x1 among the splitting variables associated with the outcome 
is set for different hazard ratios. A continuous confounding 
variable xc is generated from normal distribution N(0, 1) and 
its hazard ratio is set to be 0.5. All the simulations are run 
adjusting for this confounder. For splitting algorithm, maxi-
mum number of splits and minimum number of events are set 
to 10 and 20, respectively, in advance. The parameter settings 
for each model are shown in Table 1.

Simulate time to event. There are two types of time to 
event. One is time to event that is of interest t1 and the other 
is time to competing risk t2. Both of them are simulated to 
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follow exponential distribution with different prespecified 
hazard ratios. These hazard ratios are determined by the type 
of trees and the true related variables.

For example, the log hazard ratio for event of interest assumes 
to be log h1 = xc log 0.5 + x1 log β, β is the hazard ratio for x1. The 
log hazard ratio for competing risk is log h2 = xc log 0.5. t1 is gener-
ated from T1 ∼ Exp(h1) and t2 is generated from T2 ∼ Exp(h2).

Simulate censoring time. Censoring times c are generated 
from uniform distribution on (0, σ * Tmax). Tmax is the maxi-
mum of t1 in the previous step. σ can be chosen to control the 
censoring rate. In our simulation, σ is set to 0.8.

Simulated response time. Then, we take the minimum of t1, 
t2, and c as the response time for each individual. The status of 
each individual is defined according to the minimum time.

After generating the data from above, we then use our 
tree model to fit the data.

Results
Simulation results. The simulation results for both prog-

nostic and predictive tree models are presented for this study.
Prognostic tree. Table  2  shows the model performance 

under the null model for prognostic tree for type I error 
evaluation. A total of 500  samples are simulated for each 
replication, and 1000 replicates have been conducted. The 
chance of selecting the wrong tree slightly increases as the 
number of splitting covariates becomes larger, but the model 
still performs well with only a 1.2%–4.3% chance of having 
wrong tree.

Tables 3–5 show the power performances under alterna-
tive model with different hazard ratios. Increasing the splitting 
covariates will reduce the chance of selecting the right tree. 
The model performs better when the effect size is larger. When 
the hazard ratio is 3.0, the probability of selecting the right 

Table 2. Tree performance under null hypothesis for prognostic tree.

Sample  
size n

P Splitting 
Covariates

Type I 
Error

500 0.6 10 0.012

500 0.6 50 0.036

500 0.6 100 0.043

Table 3. Tree performance under alternative model for prognostic 
tree HR = 2.0.

n  Splitting 
covariates

Hazard 
Ratio

Proportion 
of trees 
have x1 as 
the first 
split

Proportion of 
trees only have 
x1 as the first 
split (correct 
trees)

500 10 2.0 0.63 0.57

20 2.0 0.43 0.34

50 2.0 0.38 0.17

100 2.0 0.29 0.02

Table 4. Tree performance under alternative model for prognostic 
tree HR = 2.5.

n  Splitting 
covariates

Hazard 
Ratio

Proportion 
of trees 
have x1 as 
the first 
split

Proportion of 
trees only have 
x1 as the first 
split (correct 
trees)

500 10 2.5 0.91 0.87

20 2.5 0.83 0.74

50 2.5 0.68 0.40

100 2.5 0.51 0.15

Table 5. Tree performance under alternative model for prognostic 
tree HR = 3.0.

n  Splitting 
covariates

Hazard 
Ratio

Proportion 
of trees 
have x1 as 
the first 
split

Proportion of 
trees only have 
x1 as the first 
split (correct 
trees)

500 10 3.0 1.00 0.99

20 3.0 0.98 0.95

50 3.0 0.94 0.85

100 3.0 0.89 0.66

tree remains high as the number of potential splits increases. 
Even for 100 potential splits, the probability of identifying the 
true tree as an optimal subtree remains 89% and the chance of 
selecting the correct tree is 66%.

Table  6  shows that the model has better performance 
when the true splitting variable is more balanced. With pro-
portion of the splitting variable (p) to be 0.3 and 0.6, 91% of 
chances will the true tree be identified as an optimal subtree 
and 87% and 91% chances of selecting the correct tree, respec-
tively. For highly unbalanced variable with P = 0.1, the chance 
of selecting correct tree is only 59%.

Predictive tree. For predictive tree, Table 7 shows the per-
formance under null hypothesis and Table 8 focuses on the 
effect of number of splitting covariates and effect size under 
alternative. Similar patterns can be found as in prognostic 

Table 1. Parameter settings for different tree models.

Tree type Sample 
size n

Splitting 
Covariates

P Hazard 
ratio

Null tree 500 10,50,100 0.6 1

Prognostic 
(Marginal)

500 10,20,50,100 0.6 2.0,2.5,3.0

500 10 0.1,0.2,0.3 2.5

Predictive 
(Interactive)

1000 10,20 0.6 2.0,2.5,3.0
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tree results. The model performance is better when there are 
smaller number of split variables and stronger effect size.

When effect size is greater than 2.5, there is over 91% 
chance of predictive tree model selecting the true tree with 
20 potential split variables. If there are only 10 potential split 
variables, the chance will be increased to over 96%.

Application to clinical data. We applied the competing risk 
tree model on a Human papillomavirus positive (HPV+) oropha-
ryngeal cancer (OPC)  study with 573 patients.21 The endpoint 
of interest is recurrence-free survival with death without recur-
rence defined as competing risk. Potential splitting covariates are 
age, gender, smoking pack-year, alcoholism, T stage, and N stage. 
For this retrospective data, prognostic tree model is constructed 

with treatment been adjusted for confounding effect. Appling 
both Cox-based model and flexible parametric model22 to this 
cancer clinical data, we obtain the following tree structures for 
outcome prognoses, see Figures 1 and 2.

Overall samples (n = 55/573)
3-year incidence rate: 9%

Smoking PY ≤ 20 (n = 30/359)
3-year incidence rate: 7%

Smoking PY > 20 (n = 25/214)
3-year incidence rate: 12%

1

2 3

4 5

T1–T3 (n = 19/306)
3-year incidence rate: 5%

T4 (n = 11/53)
3-year incidence rate: 21%

Figure 2. Tree structure using flexible parametric model. For each 
subgroup, n indicates the number of event/sample size, and incidence 
rate represents three-year cumulative incidence rate of recurrence-free 
survival. Splitting covariate is indicated within each node. The number 
under each node identifies each subgroup.

1.0 Subgroup 3 (19/104)
Subgroup 4 (30/426)
Subgroup 5 (6/43)

0.8

0.6

0.4
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Time (years)
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Figure 3. Cumulative incidence curves for each subgroup with 
Cox-based method.

Table 6. Tree performance under alternative hypothesis for 
prognostic tree.

n P  Splitting 
covariates

Hazard 
Ratio

Proportion 
of trees 
have x1 as 
the first 
split

Proportion 
of trees only 
have x1 as the 
first split 
(correct 
trees)

500 0.1 10 2.5 0.59 0.49

0.2 10 2.5 0.80 0.77

0.3 10 2.5 0.91 0.87

0.4 10 2.5 0.91 0.91
 

Table 7. Tree performance under null hypothesis for predictive tree.

Sample  
size n

P Splitting 
covariates

Type I 
Error

500 0.6 10 0.014

500 0.6 50 0.051

500 0.6 100 0.077
 

Table 8. Tree performance under alternative for predictive 
(interactive) tree.

n P  Splitting 
covariates

Hazard 
Ratio

Proportion 
of trees 
have x1 as 
the first 
split

Proportion 
of trees only 
have x1 as the 
first split 
(correct 
trees)

1000 0.4 10 2.0 0.83 0.77

0.4 10 2.5 1.00 0.96

0.4 10 3.0 1.00 0.97

0.4 20 2.0 0.69 0.54

0.4 20 2.5 0.99 0.91

0.4 20 3.0 1.00 0.96

Overall samples (n = 55/573)
3-year incidence rate: 9%

T1–T3 (n = 36/469)
3-year incidence rate: 7%

1

2 3

4 5

T4a–T4b (n = 19/104)
3-year incidence rate: 18%

N1–N2 (n = 30/426)
3-year incidence rate: 6%

N3 (n = 6/43)
3-year incidence rate: 12%

Figure 1. Tree structure using Cox-based method. For each subgroup, 
n indicates the number of event/sample size, and incidence rate 
represents three-year cumulative incidence rate of recurrence-free 
survival. Splitting covariate is indicated within each node. The number 
under each node identifies each subgroup.
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Both methods provide final tree structures after split-
ting, pruning, and final tree selection. Since the two methods 
are based on different modeling assumptions, they perform 
differently on the choice of splitting variables and tree struc-
tures selection. However, both of them capture the important 
factors that are associated with the outcomes. They both pro-
vide a good separation of the patients into prognostic groups, 
see Figures  3 and 4. We also apply multivariable analysis 
on the splitting covariates. Table  9  shows that tumor size 
(T stage) and nodal status (N stage) are the important prog-
nostic factors to be significantly related to the competing risk 

outcome, and smoking is moderately significant. These factors 
are chosen as splitting covariates in both trees.

Conclusion and Discussion
In this article, we develop a novel survival tree framework on 
competing risk outcomes. This innovative method can deal 
with both prognostic and predictive models, which is impor-
tant for cancer clinical research. This method fills the gap of 
current tree model development on clinical time-to-event out-
comes. We define specific splitting rules, pruning algorithm, 
and final tree selection algorithm for this competing risk tree 
model. Both prognostic and predictive tree models are develo
ped to adjust for potential confounding factors.

Extensive simulations show that the performance of our 
methods is well controlled under the null hypothesis. This 
performance is quite robust with a large number of potential 
splitting variables, which is important for many cancer phar-
macogenomics research studies with high-dimensional bio-
marker space. Moreover, we have shown that the interaction 
survival tree can perform well with the large number of genetic 
factors often found in personalized medicine research. Once a 
tree is created and subgroups are identified, summary statistics 
such as hazard ratios of treatment, Kaplan–Meier curves, and 
median survival times for each group can be presented to cli-
nicians. The clinicians can make treatment decision based on 
the predictive tree results.

Simulations have shown that the power of selecting the 
right tree structure under the alternative hypothesis is usu-
ally high. For predictive tree, to have adequate power, there 
should be a sufficiently large number of events, interactive 
effect between the split and treatment, and the balance of 
the potential splits. In addition, adjusting for clinical con-
founders in the splitting rule seems to have statistical ben-
efits on most of the cancer clinical studies with potential 
outcome-related clinical factors such as age, tumor stage, 
and smoking status.

Our methodology is quite flexible that it can corporate 
both semiparametric method using Cox proportional hazards 
model and parametric competing risk model. There are sev-
eral advantages. First, it can deal with cancer clinical studies 
that the proportional hazards assumption is not relevant for 
each specific cause. Furthermore, using parametric models 
sometimes results in more efficient parameter estimation than 
Cox’s model.16,17 In addition, when empirical information is 
sufficient, parametric models can provide some insight into 
the shape of the baseline hazard. And it is easier to deal with 
time-dependent effects. However, our application on the real 
clinical data shows that, since the two methods are based on 
different modeling assumptions, their performance can be 
slightly different on the choice of splitting variables and the 
tree structures selection. Hence, data exploration and model 
assumption assessment are critical. We suggest conducting 
proportional hazards assumption test on the data before 
applying the competing risk tree methods.
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Figure 4. Cumulative incidence curves for each subgroup with flexible 
parametric model.

Table 9. Multivariate analysis results for HPV+ OPC data with 573 
patients.

Covariate HR (95%CI) Global 
P-value

Tx Regimen ,0.001

CRT reference

RT alone 2.9 (1.54,5.46)

Age 0.57

,70 reference

70 0.8 (0.36,1.74)

T ,0.001

T1/T2/T3 reference

T4ab 2.8 (1.52,5.13)

N 0.0018

N0/N1/N2 reference

T4ab 3.33 (1.57,7.06)

Smoking PY 0.83

20 reference

.20 1.07 (0.6,1.88)
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For predictive tree, the current method is applicable to 
randomized clinical trial data in which the treatment assign-
ment is independent of other risk factors. However, for a 
large number of cancer retrospective studies, the treatment 
decisions are based on the characteristics of demographic or 
clinical factors such as age, physical condition, tumor size, 
stage, performance score, and metastasis. Further extensions 
of the predictive survival tree model are needed to deal with 
this challenge for personalized medicine development.
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