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Abstract: The organophosphorous hydrolase (PTE) from Brevundimonas diminuta is 

capable of degrading extremely toxic organophosphorous compounds with a high catalytic 

turnover and broad substrate specificity. Although the natural substrate for PTE is 

unknown, its loop remodeling (loop 7-2/H254R) led to the emergence of a homoserine 

lactonase (HSL) activity that is undetectable in PTE (kcat/km values of up to 2 × 104), with 

only a minor decrease in PTE paraoxonase activity. In this study, homology modeling and 

molecular dynamics simulations have been undertaken seeking to explain the reason for the 

substrate specificity for the wild-type and the loop 7-2/H254R variant. The cavity volume 

estimated results showed that the active pocket of the variant was almost two fold larger 

than that of the wild-type (WT) enzyme. pKa calculations for the enzyme (the WT and the 

variant) showed a significant pKa shift from WT standard values (ΔpKa = 3.5 units) for the 

His254residue (in the Arg254 variant). Molecular dynamics simulations indicated that the 

displacement of loops 6 and 7 over the active site in loop 7-2/H254R variant is useful for 

N-acyl-L-homoserine lac tone  (C4-HSL) with a large aliphatic chain to site in the 

channels easily. Thence the expanding of the active pocket is beneficial to C4-HSL binding 

OPEN ACCESS



Molecules 2013, 18 15502 

 

and has a little effect on paraoxon binding. Our results provide a new theoretical 

contribution of loop remodeling to the rapid divergence of new enzyme functions. 

Keywords: PTE; homology modeling; molecular docking; molecular dynamics  

 

1. Introduction  

Organophosphorous compounds (OP) are efficient insecticides utilized for more than 70 years for 

protecting agricultural crops [1–6]. However, the extensive use of organophosphorus pesticides can be 

cause a lot of direct or indirect toxic effects. Because they are a serious threat to the environment 

and human health, it is important to develop of a cost-effective way to remove them from the 

environment. Currently organophosphate poisoning treatment involves the use of chemicals (atropine 

and pralidoxime), but their side effects (excessive use can cause poisoning again) are very difficult to 

overcome [7,8].  

OP-degrading enzymes, with their broad activity against diverse OP pesticides in vitro and  

in vivo [9–14], and against several G-type nerve agents (sarin, soman, tabun) [15] have attracted 

researcher’s attention. The enzyme organophosphorus hydrolase (PTE; EC 3.1.8.1) from the Gram-

negative bacterium Brevundimonas diminuta (PDB Id 1HZY) hydrolyzes OP compounds with high 

catalytic efficiency [16]. In addition, PTE has also been shown to catalyze the detoxification of 

chemical warfare agents such as sarin (GB), soman (GD), and VX [16,17]. From X-ray 

crystallographic analyses, each subunit of PTE is known to adopt a “TIM” barrel motif with the 

binuclear metal center located at the C-terminal portion of the β-barrel [16,18–20]. In the wild-type 

enzyme, the two zinc ions are ligated to the protein through the side chains of a single aspartate 

(Asp301) and four histidines (His55, His57, His201, and His230) [16]. In addition, the two metal ions 

are bridged together by a carbamate functional group, formed by the carboxylation of Lys169, and a 

water (or hydroxide ion) from the solvent. The active site of PTE has previously been denoted as the 

small, large, and leaving group pockets and are defined by the space enclosed by the side chains of 

Gly60, Ile106, Leu303, and Ser308; side chains of His254, His257, Leu271, and Met317; and side 

chains of Trp131, Phe132, Phe306, and Tyr309, respectively [16,21–23]. 

It was reported that PTE exhibits a weak, promiscuous lactonase activity that could be a vestige of 

its PTE-like lactonase (PLL) ancestor, although PTE only share ~30% sequence identity with PLLs [24]. 

Tawfik et al. found that PTE has two closely related clades: PLL-A, which hydrolyzes N-acyl-L-

homoserine lactone (HSLs) with different N-acyl chains and PLL-B which hydrolyzes other γ- or even 

δ-lactones [24]. Most notably, PTE’s loop 7 is 14 amino acids longer than in PLL-As [25], and 11 

amino acids longer than PLL-Bs. However, deletion of this 14-amino-acid stretch resulted in a soluble 

but completely inactive protein. Parallel attempts to transplant PTE’s loop 7 along with loop 8, or all 

eight active-site loops, into various PLLs resulted in an insoluble, or inactive, proteins [26,27]. Further 

examination of the sequence and structure alignments indicated that the 14-aminoacid insertion in 

PTE’s loop 7 actually consists of two individual insertions events separated by a 4-amino-acid spacer 
(annotated as L7-1 (residue 255-260) and L7-2 (residue 265-273) (see Figure 1). The two loop 7 

segments differ in their structural features. Compared to L7-1, the L7-2 segment is solvent exposed, 
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loosely packed, and exhibits fewer interactions with the rest of PTE’s structure [24]. These two parts 

of loop 7 could diverge independently from one another. Tawfik et al. remodeled active-site loops of 

PTE by exchange with PLL’s loop(s) resulted in nonfunctional proteins, and found that a deletion in 

L7-2 of PTE, combined with a mutation (H254R) can lead to the emergence of an HSLase activity that 

was undetectable in PTE (kcat/KM values of up to 2 × 104) [24]. At the meantime, a minor decrease in 

PTE’s paraoxonase activity appeared in the variant. But the structural difference between the wild type 

(WT) enzyme and the variant enzyme is still not known. 

In this study, the variant type was built by homology modeling. Docking study and molecular 

dynamic method were used to explore the conformational variability of the WT type upon and the 

variant upon N-acyl-L-homoserine lactone (C4-HSL) and paraoxon binding. Further experimental and 

theoretical studies are still needed. 

Figure 1. Sequence alignment between the WT PTE and loop7-2/H254R.  

 

2. Results and Discussion 

2.1 Protein Preparation 

The 3D structure of the variant enzyme, loop 7-2-H254R, is shown in Figure 2a. The variant 

enzyme, loop 7-2-H254R, was similar to the WT enzyme, except for the loop 7 domain (the RMSD 

between the variant and the WT enzyme is 0.9 Å). The homology model was used for validation with 

Procheck [28], Verify_3D [29,30] and Errat [31]. The results are listed in Table 1. Seen from Table 1, 

the model was of high quality, with an above average QMEAN Z-score for a protein of its size (0.74), 

while the WT enzyme is 0.83. The second validation was carried out using Ramachandran plot 

calculations computed with the Procheck program by checking the detailed residue-by-residue stereo-

chemical quality of a protein structure [28]. Altogether, 86.7% of all residues were in favored regions, 

and 100% of all residues were in allowed regions. In comparison with the homology model, the 

template, 7, WT PTE, had a similar Ramachandran plot 100% in the allowed regions. ERRAT is a  

so-called “overall quality factor” for nonbonded atomic interactions, and higher scores mean higher 

quality [31]. The normally accepted range is >50 for a high quality model. In the current case, the 

ERRAT score for the loop 7-2-H254R model is 98.722, well within the range of a high quality model, 

in the mean time the ERRAT score for the template is 99.379. Thus, the above analysis suggests that 

the backbone conformation and non-bonded interactions of homology model is all reasonable within a 

normal range. The final evaluation of the built loop 7-2/H254R structure was checked by  

Verify_3D [29,30]. It is to be noted that compatibility scores above zero correspond to acceptable side 

chain environment.  
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Figure 2. (a) The 3D structure alignment between the loop 7-2-H254R (green) and the WT 

PTE (purple); (b) The protein contact potential of the WT PTE generated with Pymol; (c) 

The protein contact potential of the loop 7-2-H254R variant; (d) The binding pocket 

between between the loop 7/H254R (purple) and the WT PTE (blue).  

 

We can see in the Table 1 that almost all residues in loop 7-2-/H254R are reasonable. All 

evaluations suggest that a reasonable homology model has been obtained that can be exposed for 

examination of protein-substrate interactions. 

Table 1. Homology model validation with QMEAN, Procheck, Verify_3D and Errat. 

Protein 
QMEAN 
Z-Score 

Procheck Verify_3D Errat 

Loop7 -
2/H254R 

0.74 
86.7% core 12.6% allow 0.7% 

gener 0.0% disall 
96.90% of the residues had an 

averaged score > 0.2 
98.722

PTE(PDB ID 
1HZY) 

0.83 
89.6% core 9.7% allow 0.7% 

gener 0.0% disall 
98.49% of the residues had an 

averaged score > 0.2 
99.379

Figure 2b and 2c show the protein contact potential between the loop 7-2-H254R variant and the 

WT enzyme, respectively. There was no significant change of the protein contact potential between the 

loop 7-2-H254R variant and the WT enzyme. The cavity volume estimated by CASTp [32] is 

dependent on the radius of the probe sphere; a probe radius of 1.4 Å outlines a cavity of 1239 Å3 for 

loop 7-2-H254R variant , while a probe radius of 1.4 Å outlines a cavity of 651.5 Å3 for the WT PTE 

(seen Figure 2d). The different binding pocket site may influence the substrate specificity between the 

variant and the WT PTE. 

Hydrogen bonds may be important in the substrate binding and catalytic efficiency. There are eight 

hydrogen bonds between residue 265 and residue 273 (listed in Table 2). In the loop 7/H254R variant, 

these hydrogen bonds are eliminated. H254 forms three hydrogen bond with Asp232, Asp233, and 

His257, respectively (seen Figure 3a). In the loop 7-2-H254R variant, the three hydrogen bonds are 
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still present (seen Figure 3b). Leu271 is an important residue in the active pocket. Firstly, the large 

binding pocket contains Leu271. Secondly, Leu271 and Phe132 function as the entrance gate which 

allows for the controlled and selective passage of different substrates across the channel (Figure 3c). 

However, in the PTE variant, Glu263 and F132 became the entrance gate (Figure 3d). The distance 

between the Cα of Leu271 and the Cα of Phe132 was 18.55 Å in the WT PTE, while in the variant, the 

distance between the Cα of Glu263 and Phe132 was 18.52 Å. Nevertheless, Leu271is a hydrophobic 

residue, and Glu263 is a negatively charged residue. The changes discussed above may influence the 

substrate specificity between the variant and the WT PTE.  

Table 2. The hydrogen bonds between residue 265 and residue 273. 

Hydrogen bond Donor Hydrogen bond acceptor

Asn165:NH Leu262 :O 
Ser267:HG Asn265:OD1 
Ala268:HN Asn265:OD1 
Ser269:HN Asn265:O 
Ala270:HN Ala266:O 
Leu271:HN Ser267:O 
Leu272:HN Ala268:O 
Gly273:HN Ser269:O 

Figure 3. (a) H254 makes three hydrogen bonds with D232, D233, and H257, respectively 

in WT PTE; (b) R254 makes three hydrogen bonds with D232, D233, and H257, 

respectively in loop 7-2-H254R variant; (c) Leu271 and F132 function as the entrance gate 

in WT PTE; (d) Glu263 and F132 function as the entrance gate in loop 7-2-H254R variant. 
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2.2. Docking Study 

The 3D structure of paraoxon and C4-HSL are shown in Figure 4a,b. B3LYP/6-31+G* set with 

Gaussian software was used to calculate atomic charges for the substrates paraoxon and C4-HSL. 

Figure 4. (a) The 3D structure of paraoxon optimized with Gaussian software at 6-31+G* 

set; (b) The 3D structure of C4-HSL optimized with Gaussian software at 6-31+G* set.  

 

The docking scores are listed in Table 3. The docking score between the C4-HSL and loop  

7-2/H254R variant (−6.6) was lower than that of the C4-HSL-PTE complex’s (−4.4). But the binding 

energy between the WT, the variant enzymes and paraoxon is very similar. Our result is consistent 
with the experimental data by Tawfik et al [24]. With the substrate paraoxon, the kinetic parameter 

Kcat/kM(M−1·s−1) for PTE and loop 7-2-H254R were 9.08 × 107 and 5.4 × 106, respectively, but with 

C4-HSL, Kcat/kM(M−1·s−1) were ≤ 9.5 and 2.2 × 104, respectively [24]. 

Table 3. The docking score calculated by Autodock vina. 

Protein/substrate Paraoxon (Kcal/mol) C4-HSL (Kcal/mol) 

PTE −6.1 −4.4 
loop7-2-H254R −5.4 −6.6 

Figure 5 showed the docked complex of the enzyme and the substrates [(a) paraoxon-PTE; (b) 

paraoxon-loop 7-2/H254R variant; (c) C4-HSL-PTE; (d) C4-HSL-loop 7-2/H254R variant]. The 

substrates were all in the active pocket. Figures 5(e) and 5(h) show the calculated and visualized 

molecular hydrophobic/hydrophilic properties using the concept of “Molecular Hydrophobicity 

Potential” (MHP) with enzyme-substrate. Hydrophobic and stacking interactions in the enzyme-

substrate complex can be used to re-rank the molecular docking results (in the substrate surface, the 

grey color represents a match and a color brown represents a mismatch). From Figure 5e and 5h, it can 

be concluded that all the substrates were fitted in the active pocket. 
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Figure 5. Paraoxon in the (a) WT PTE; (b) loop 7-2/H254R variant. C4-HSL in the (c) 

WT PTE; (d) loop 7-2/H254R variant. (e) Calculate and visualize molecular 

hydrophobic/hydrophilic properties using the concept of “Molecular Hydrophobicity 

Potential” (MHP). Hydrophobic and stacking interactions in paraoxon-PTE complexes can 

be used to re-rank the results of molecular docking. Color grey represent for a match and 

color brown represent for a mismatch; (f) Hydrophobic and stacking interactions in 

paraoxon-loop 7-2/H254R complexes; (g) Hydrophobic and stacking interactions in C4-HSL-

WT PTE; (h) Hydrophobic and stacking interactions in C4-HSL-loop 7-2/H254R variant. 

 

It is well known that the small binding pocket of PTE is the most isolated from the external 

environment compared to the large and leaving group pockets. The large binding pocket formed by 

His254, His257, Leu271, and Met317, is accessible to solvent molecules. The leaving group pocket is 

even more exposed to solvent than the large binding pocket [33]. Figure 6a,b show the active residues 

of the WT and the loop 7-2/H254R variant (residue number is used as WT PTE) around paraoxon. 

From Figure 6a,b, the phenolate substituent group was placed in the leaving group pocket (Trp131, 

Phe132, Phe306, and Tyr309) while the methyl and O-alkyl groups were positioned in the small and 

large pocket. Figure 6c,d indicate the active residues of the WT and the loop 7-2-H254R variant 

around C4-HSL. From Figure 6c,d, the aliphatic chain was placed in the leaving group pocket (Trp131, 

Phe132, Phe306, and Tyr309). In Figure 6, two Zn2+ were in all the active pockets, so the four docked 

complexes are reasonable and can be used for further study. 
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Figure 6. (a) The active residue of WT PTE around paraoxon calculated by the Discovery 

Studio 3.5 client. Residue interaction: pink: eletrostatic, green: van der Waals, blue: water 

interaction, black: metal interaction; (b) The active residue of loop 7-2/H254R variant 

around paraoxon; (c) The active residue of WT PTE around C4-HSL (residue number used 

PTE); (d) The active residue of loop 7-2/H254R variant around C4-HSL. 

 

2.3. Protonation States of Residues His254 (Arg254) and Arg275  

pKa values were calculated for all ionizable residues of PTE using the program propKa version 3.0 

(Table 4) [34]. The calculations were performed for the WT and the variant form of the enzyme, 

namely loop 7-2-H254R. The catalytic activities of Asp233 variant were previously characterized for 

substrate paraoxon, and the residue was proposed to participate in the shuttling of protons from the 

active site [24]. By exploring possible combinations of the most probable protonation states of PTE 

residues, it has been found that, in addition to residues His254 and Asp301, residues Asp232, Asp235, 

and Arg275 take part in a hydrogen-bond network that may serve as the proton-shuffling pathway 

proposed by Aubert and co-workers [35]. Two residues, His254 (Arg254) and Arg275 in the active site 

displayed pKa values significantly shifted from their standard values. Arg275 has a l i t t le  pKa 

value change.  The pKa of His254 in the WT PTE was 6.9 units while Arg254 was 10.4 units, 

whereas Arg275 exhibits pKa values shifted from 9.2 units in the WT PTE to 9.4 units in the variant. It 

was reported that PTE displayed a maximal activity in the pH range of 9–9.5 units for the hydrolysis of 

paraoxon [36,37], which corresponds approximately to the estimated pKa of the Arg275. It can be 
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inferred from the crystallographic data that both residues are involved in interactions with catalytic 

residues: His254 forms hydrogen bonds to Asp232 and Asp233 (In the loop 7-2/H254R variant, these 

hydrogens still remain) whereas Arg275 is spatially close to Asp233, near the end of a small cleft 

leading outward from the active site. It is reasonable to assume that the protonation states assigned to 

such conformation are the predominant ones at a given pH thence influence the hydrolysis of different 

substrates (paraoxon and C4-HSL).  

Table 4. Residues of the Active-Site Region with Large pKa Shifts. 

Protein/substrate His254 (R254) Arg275 

PTE 6.9 9.2 
loop7-2/H254R 10.4 9.4 

2.4. Conformational Dynamics of the PTE and the Variant upon Substrate Binding 

Root-mean-square deviations (RMSDs) of backbone atoms of PTE from the X-ray structure 

(1HYZ) for the substrate-bound state: paraoxon (black) and C4-HSL (red) are shown in Figure 7. 

Average RMSD for the simulated systems are between 0.18 (C4-HSL (red) and 0.15 nm (paraoxon 

(black), reaching a first plateau around 12 ns (Figure 7a). Figure 7(b) shows the RMSD of the 

backbone atoms of the loop 7-2-H254R variant for the substrate-bound state: paraoxon (black) and  

C4-HSL (red). Average RMSD for the two simulated systems reached a first plateau around 0.23 nm, 

indicating a decrease of conformational flexibility upon substrate binding to the loop7-2/H254R variant.  

Figure 7. (a) Root-mean-square deviation (RMSD) of backbone atoms of PTE from the  

X-ray structure (1HYZ) for the substrate-bound state: paraoxon (black) and C4-HSL (red). 

(b) Root-mean-square deviation (RMSD) of backbone atoms of the loop 7-2/H254R 

variant for the substrate-bound state: paraoxon (black) and C4-HSL (red). Values are 

averaged for the two monomers. 
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It has been previously shown that OPH conformational changes are mostly limited to loop residues 

in the entrance of the active site. Atom-positional root-mean-square fluctuations (RMSF) were 

calculated for backbone atoms in the WT, WT-paraoxon, and WT-C4-HSL trajectories aiming to 

compare the regions whose dynamics differs among these systems. Two regions comprising residues 

229–239 and 263–275 exhibit rather distinct atom-positional fluctuation amplitudes for WT-C4-HSL 

with respect to the WT and WT- paraoxon simulations (Figure 8a).  

Figure 8. Atom-positional root-mean-square fluctuations (RMSF) of backbone atoms 

averaged per residue (amino acid 220 to 280) (a) for PTE (1HYZ) substrate free (black), 

substrate-bound (1HYZ- paraoxon (red) and 1HYZ-C4-HSL (green); (b) for loop7-2/H254 

R variant substrate (black), substrate-bound (loop7-2/H254 R - paraoxon (red) and  

loo7-2/H254 R-C4-HSL). Values are averaged for the two OPH monomers and over 30 ns 

of simulations. 

 

Residues 258-275 have been designated as loop 7 by Jackson and coworkers [38], and residues  

234–239, which correspond to a preceding helix/loop motif will therefore be designated as loop 6, 

which contains Asp232. The large atomic fluctuations observed in the C4-HSL bound ensemble are 

due to the displacement of these residues toward the active site, nearly closing its cleft. These findings 

are further confirmed by comparison of the RMSF calculated over the entire 30 ns simulations for loop 

7-2/H254R-paraoxon, loop 7-2/H254R-C4-HSL, and loop 7-2/H254R (Figure 8b). The RMSF analysis 

shows that the large atomic fluctuations in the loop 7-2/H254R-paraoxon simulations over the 30 ns of 

simulations increased significantly after the loops have closed over the active-site cleft. Such RMSF 

increase in these of simulations can lead to the displacement of loops 6 and 7 over the active site. It 

should also be noticed that the conformational rearrangement of loops 6 and 7 does not alter its 

secondary structure content (data not shown). These two regions are part of a loop/short-helix/loop 

motif located near the active site. The apparent reason for their increased flexibility is the exposure to 
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the solvent in the MD simulations. These results indicate that, upon paraoxon binding, WT PTE 

undergoes a structural transition involving loops 6 and 7 located at the entrance of the active site, 

which allows for tighter fitting of the paraoxon substrate into the enzyme’s active site volume. While 

in the loop 7-2/H254R variant, the active pocket volume is almost two fold than that of the WT PTE. 

Thence the larger substrate, C4-HSL, can be easily released from the active site since it binds with 

significant conformational rearrangement at the simulated time scale.  

Radius of gyration (Rg) is the name of several related measures of the size of an object, a surface, 

or an ensemble of points. It is calculated as the root mean square distance of the objects’ parts from 

either its center of gravity or a given axis. Rg of the protein is represented by the volume and shape of 

protein. Figure 8a indicates the Rg for the WT PTE (red) and loop 7-2/H254R variant (black). The 

mean Rg for the WT PTE was 1.85 nm, while for the loop 7-2/H254R variant was 1.87 nm (Figure 9a). 

Figure 9b,c and d showed that Rgx, Rgy, and Rgz direction, respectively, changes for the WT and loop 

7-2/H254R variant., athough the Rgx, Rgy, and Rgz were different for the variant and the WT. The 

mean Rg for the variant is higher than that of the WT. The season may lay in the conformational 

rearrangement for loop 6 and loop 7 in the variant.  

Figure 9. Radius of gyration (Rg) for the WT and loop 7-2/H254R variant. (a) WT PTE 

(red), loop 7-2/H254R (black); (b) Rgx WT PTE (red), loop 7-2/H254R (black); (c) Rgy 

WT PTE (red), loop 7-2/H254R (black); (d) Rgz WT PTE (red), loop 7-2/H254R (black).  
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Time-dependent solvent-accessible surface area (SASA) has also been calculated for the ensemble 

of structures from the simulations (Figure 10a). After a period of 30 ns, the WT enzyme is smaller than 

that of loop 7-2/H254R variant, as well as the hydrophic area (Figure 10b) and hydrophic area (Figure 10c). 

Hence, C4-HSL with larger aliphatic chain can be easily released from the active site with any 

significant conformational rearrangement in the variant.  

Figure 10. (a) Solvent accessible surface area. PTE (red), loop 7-2/H254R (black); (b) 

hydrophobic area. PTE (red), loop 7-2/H254R (black); (c) hydrophobic area. PTE (red), 

loop 7-2/H254R (black).  

 

It was known that Phe132 and Leu271 function as a proposed entrance gate. In the loop 7-2/H254R 

variant, Glu263 and Phe132 acted as the guard entrance channel. Leu271 is a hydrophobic residue, 

while Glu263 is a negative residue. Figure 10 shows the distance change between Phe132, Leu271 and 

Glu263 and Phe132 during 30 ns MD simulations. From Figure 11 it can be seen that the distance 

between Phe132 and Leu271 (black) varied considerably, while the distance between Glu263 and 

Phe132 in variant reached at 2.0 nm (red) during 30 ns simulation. The stable entrance gate distance is 
useful to substrates to slide in. However, it is more significant impact on C4-HSL with a large aliphatic 

chain than paraoxon. 
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Figure 11. The distance between the Cα of L271 and F132 in the WT enzyme (black). The 

distance between the Cα of E263 and F132 in the loop 7-2/H254R (red). 

 

3. Experimental  

3.1. Computational Methodology 

3.1.1. Protein Preparation 

High-resolution crystallographic structures of PTE from Brevundimonas diminuta was used as 

initial coordinates in the MD simulations (PDB ID 1HZY) [8]. The variant enzyme was built with 

Swiss model online [27]. The model was of high quality, with an above average QMEAN Z score for a 

protein of its size (0.74, Table 1), and further checked with Procheck [28], Verify_3D [29,30] and 

Errat [31]. CASTp [32] was used to identify all the cavities associated with the model and the template 

as well as to measure the volume they contained. Protonation states were assigned accordingly to pKa 

calculations with the program propKa version 3.0 [34]. The homodimers were represented identically 

concerning the protonation state of residues as well as the presence or absence of the substrate.  

The substrate, paraoxon and C4-HSL, were downloaded from the ChemSpider data base and then 

optimized at the B3LYP 6-31+G* level using the Gaussian 09 software [39,40]. Two substrates were 

docked in PTE and the variant type with Autodock 4.2 [41]. In the AutoDock4.2 docking process, a 

conformational search was performed using the Solis and Wets local search method and the 

Lamarckian genetic algorithm (LGA) was applied to deal with enzyme–substrate interactions. 

Autodock calculated enzyme-ligand interaction energies over a grid; the grid size was set to 24 × 24 × 

24 Å and the grid space was the default value of 0.375 Å. The scoring function used in the energy 

calculations consists of electrostatic, Lennard-Jones, hydrogen bond, salvation, and torsional entropy 

terms. In the current version, the protein is treated as rigid while the ligand is allowed torsional flexibility.  



Molecules 2013, 18 15514 

 

3.1.2. Molecular Dynamics Simulation 

All simulations were carried out using the GROMOS force field force parameter set 53A6 [42,43]. 

The active site of OPH contains two zinc ions bridged by a hydroxide anion and a carbamylated lysine. 

The systems were placed in a cubic box, treated for periodic boundary conditions, and solvated with 

explicit simple point charge (SPC) model water molecules [44]. The systems were neutralized with 

Na+ counterions where necessary. Simulations were carried out in the NPT ensemble (In the 

isothermal–isobaric ensemble, moles (N), pressure (P) and temperature (T) are conserved.), and a time 

step of 1 fs was used to integrate the equations of motion based on the Leap-Frog algorithm [45]. The 

temperature of the solute and solvent were separately coupled to the velocity rescale thermostat at 

298.15 K with a relaxation time of 0.1 ps. The bond lengths and angles were constrained by using the 

P-LINCS algorithm [46], and the geometry of the water molecules was constrained using the SETTLE 

algorithm [47]. A twin-range cutoff of 1.0 and 1.2 nm was used for Van der Waals (VDW) interactions, 

and long-range electrostatic interactions were treated by the particle mesh Ewald method [48]. The 

systems were initially minimized through 20,000 iterations of the steepest descent algorithm. Solvent 

molecules were relaxed during 400 ps of simulation at 298.15 K with positional restraints applied to 

the heavy atoms of the protein. The full system was equilibrated for 1 ns followed by the production 

phase of 30 ns. Configurations of the system were recorded as trajectory files at every 1.0 ps. The 

software package GROMACS v.4.05 and implemented algorithms were used for all simulations and 

property analyses [49]. Zn2+ is the apparent native metal, although substantial activity is observed after 

substitution of the binuclear metal center by Co2+, Cd2+, Mn2+, or Ni2+[50]. Two metal ions per active 

site are required for full catalytic activity, and kinetic constants kcat and kcat/km are dependent upon the 

identity of the specific metal cations within the active site. 

4. Conclusions 

Several long-scale molecular dynamics (MD) simulations were performed for PTE and the variant 

unbound and bound to two hydrolyzed substrates with very distinct catalytic efficiencies: paraoxon and 

C4-HSL. It has been found that: (i) there is a decrease of conformational flexibility of PTE upon 

substrate binding; (ii) the calculated pKa for His254 in the WT PTE and Arg254 in the variant is in the 

range of 6.0-10.4 units offering support to a predominantly protonated state for this residue during the 

enzymatic catalysis (iii) a dynamical hydrogen-bond network involving residues Asp301, His254, 

Asp232, Asp233, Arg275, and Asp235 may function as a pathway to shuttle protons away from the 

active site and (iv) molecular dynamics simulations indicate that the displacement of loops 6 and 7 

over the active site in loop 7-2/H254R variant is useful to N-acyl-L-homoserine l a c t o n e  (C4-HSL) 

with a large aliphatic chain to site in the channels easily. Our results will be helpful to further 
understand substrate binding in PTE.  
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