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A B S T R A C T   

Stem cells exhibit pluripotency and self-renewal abilities. Adipose-derived mesenchymal stem 
cells can potentially be used to reconstruct various tissues. They possess significant versatility and 
alleviate various aging-related diseases. Unfortunately, aging leads to senescence, apoptosis, and 
a decline in regenerative capacity in adipose-derived mesenchymal stem cells. These changes 
necessitate a strategy to mitigate the effects of aging on stem cells. Ohwia caudata (O. caudata) has 
therapeutic effects against several illnesses. However, studies on whether O. caudata has thera-
peutic effects against aging are lacking. In this study, we aimed to identify potential therapeutic 
anti-aging effects in the crude aqueous extract of O. caudata on adipose-derived mesenchymal 
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stem cells. Using 0.1 μM doxorubicin, we induced aging in human adipose-derived mesenchymal 
stem cells (hADMSCs) and evaluated whether various concentrations of O. caudata aqueous 
extract exhibit anti-aging effects on them. The O. caudata extract exhibited significant antioxidant 
effects on hADMSCs without any toxicity. Furthermore, after treatment with the O. caudata 
aqueous extract, the levels of mitochondrial superoxide, DNA double-strand breaks, and telomere 
shortening were reduced in the hADMSCs subjected to doxorubicin-induced aging. The extract 
also suppressed doxorubicin-induced aging by upregulating klotho and downregulating p21 in 
hADMSCs. These findings indicated that the O. caudata extract exhibited anti-aging properties 
that modulated hADMSC homeostasis. Therefore, it could be a potential candidate for restoring 
the self-renewal ability and multipotency of aging hADMSCs.   

1. Introduction 

Stem cells are multipotent and capable of self-renewal. Stem cells in tissues typically undergo growth and regeneration under 
normal physiological or stress conditions [1]. Mesenchymal stem cells are adult stem cells that can be easily isolated from the tissues of 
animals and humans. They have self-renewal and multipotent properties with few ethical controversies [2]. Adipose-derived 
mesenchymal stem cells have been identified as adult stem cells and the primary source of precursor cells in postnatal tissues. 
Adipose-derived mesenchymal stem cells have the potential to be utilized in the reconstruction of various tissues, such as cartilage, 
bone, muscle, myocardium, nerve, liver, kidney, and pancreas. Furthermore, young stem cells have better regeneration and differ-
entiation capabilities than aged stem cells [3–6]. In combination with other therapeutics, adipose-derived mesenchymal stem cells can 
alleviate several diseases more effectively than other strategies [7–10]. Hence, the potential effects of adipose-derived mesenchymal 
stem cells are considerably diverse. 

Aging is an irreversible dynamic process in all animals; it involves cell senescence, apoptosis, and the loss of regenerative capability 
in mesenchymal stem cells [11]. In aged mesenchymal stem cells, reactive oxygen species and DNA damage accumulate. Aging ex-
acerbates the damage to proteins and mitochondrial dysfunction in mesenchymal stem cells. All these changes contribute to stem cell 
loss and dysfunction during aging [11]. Given that adipose-derived mesenchymal stem cells regulate continuous cell renewal in tissues, 
and the loss of their normal function may be the primary cause of aging, delaying aging in these cells could be a promising avenue for 
anti-aging research. 

Traditional Chinese herbal medicines have been used therapeutically in Asian countries for thousands of years. Various naturally 
occurring compounds in traditional Chinese herbal medicines have multiple targets, which contribute to their therapeutic effects of 
strong and diverse [12,13]. Some traditional Chinese herbal medicines exhibit pharmacological effects against aging and aging-related 
disorders. For instance, Huangqi (Astragalus membranaceus), which can limit oxidative stress and inflammation, can reduce neuro-
degeneration and tumor growth; the saponins of this plant are reported to have anti-aging effects [14]. Ginseng (Panax ginseng), 
traditionally used to extend lifespan, reduces oxidative stress, inflammation, and tumor growth. It can also alleviate aging-related 
damage to the skin, nervous system, and cardiovascular system [15]. Lingzhi (Ganoderma lucidum) can reduce the effects of aging 
by ameliorating oxidative stress and DNA damage [16,17]. These findings indicate that traditional Chinese herbal medicines have the 
potential efficacy to alleviate aging. Ohwia caudata (O. caudata), formerly known as Desmodium caudatum, belongs to the Leguminosae 
family and is widely found in East African countries. Recently, several studies have revealed that O. caudata displays a wide variety of 
biological effects against oxidative stress, inflammation, respiratory viruses, Alzheimer’s disease, fever, and tumor growth [18–23]. 
Although O. caudata has therapeutic effects against several illnesses, research on the therapeutic effects of the aqueous extract of 
O. caudata is lacking. 

Doxorubicin is a cytotoxic chemotherapeutic agent. However, it has also been shown to induce cellular senescence in both cancer 
and normal cells, acting as a promoter of aging in in vitro and in vivo studies [24]. In in vitro studies, low concentrations of doxorubicin 
have been found to induce aging in various cell types, including cardiomyocytes [25], human cardiac progenitor cells [26], vascular 
smooth muscle cells, human chondrocytes [27], fibroblasts [28], and several different types of human stem cells [29,30]. Similarly, in 
in vivo studies, doxorubicin has been validated to elevate senescence in C57BL/6 mice, result in brain aging in Fischer 344 rats and 
induce cellular senescence in murine ovaries [24,31,32]. Therefore, in the present study, doxorubicin was used as an aging inducer to 
induce stem cell senescence. To establish a foundation for investigating the beneficial effects of O. caudata against aging and its po-
tential to enhance the well-being of elderly individuals, we examined the anti-aging properties of O. caudata aqueous extracts on 
human adipose-derived mesenchymal stem cells (hADMSCs). After inducing aging with doxorubicin, hADMSCs were treated with the 
aqueous extract of O. caudata to evaluate the anti-aging effects of the extract and elucidate the potential anti-aging mechanisms. 

2. Materials and methods 

2.1. Chemical reagents 

Unless explicitly specified otherwise, all chemicals used in this study were of the highest analytical grade, meticulously sourced 
from reputable suppliers such as Sigma-Aldrich (St. Louis, MO, USA) and Merck (Darmstadt, Germany). O. caudata was cultivated in 
Hualien, Taiwan, and the freshly harvested leaves were gathered in June. The mature and healthy leaves of O. caudata were later 
transported to a Chinese herbal medicine establishment located in Hualien, Taiwan, where they underwent sun drying. Doxorubicin 
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hydrochloride (44583) was purchased from Sigma-Aldrich. 

2.2. Preparation of the aqueous extract from O. caudata 

Approximately 50 g of O. caudata dry leaves were washed to remove dust and then left to dry. The leaves were ground into a powder 
with a blender. The powder was mixed with 500 ml of MilliQ water, and the mixture was boiled until the water volume reduced to 50 
ml. Subsequently, the crude extract underwent centrifugation at 10,000 rpm for 15 min at 4 ◦C. Following this, the resultant aqueous 
extract was filtered to eliminate any lingering debris. The aqueous extract obtained was then stored at − 20 ◦C for future use. The clear 
aqueous extract of O. caudata was quantified and found to be 50 mg/ml. It was then stored at − 20 ◦C for future use. 

2.3. Culture of mesenchymal stem cells derived from human adipose tissue 

The StemPro™ human adipose-derived mesenchymal stem cell line (R7788115) was obtained from Thermo Fisher (Waltham, MA, 
USA). The human adipose-derived mesenchymal stem cells (hADMSCs) were cultured in MesenPRO RS™ Basal Medium supplemented 
with MesenPRO RS™ Growth Supplement (12,746,012, ThermoFisher) in a controlled incubator with a humidified atmosphere 
containing 5 % CO2 at 37 ◦C. Sub-culturing was performed when the cell culture reached 70 % confluency, and cells at passage 8 were 
used for the experimental procedures. 

2.4. MTT cell viability assay 

Cell proliferation was quantified using the MTT assay [33]. The hADMSCs (passage 8) were seeded in 96-well plates and exposed to 
various concentrations of O. caudata aqueous extract (12.5–800 μg/ml) for 24–72 h. Then, the culture medium was replaced with 100 
μl of MTT (0.5 mg/ml) and incubated at 37 ◦C for 4 h. Subsequently, the excess medium was removed by suction, and the resulting 
purple formazan was dissolved in 100 μl of dimethyl sulfoxide with gentle shaking in the dark for 15 min. The absorbance was 
measured at 590 nm using a spectrophotometer [34,35]. 

2.5. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay 

The DPPH Antioxidant Assay Kit (Colorimetric) (ab289847, Abcam, Cambridge, UK) was utilized to measure the antioxidant ac-
tivities of O. caudata aqueous extract. The procedure was executed in accordance with the guidelines provided by the manufacturer. 
Several concentrations of O. caudata aqueous extract (10, 50, 100, 200, and 400 μg/ml) were tested. The change in color was measured 
at 517 nm using a spectrophotometer. The radical scavenging activity was determined using the formula: ((A_control – A_treatment)/ 
A_control) × 100 %. 

2.6. Mitochondrial superoxide assay 

A mitochondrial superoxide assay kit (fluorometric) (ab219943, Abcam) was used to measure mitochondrial superoxide levels in 
hADMSCs. Following 24 h of doxorubicin stimulation and subsequent treatment with the aqueous extract of O. caudata for another 24 
h, all cells were stained with MitoSOX red according to the manufacturer’s instructions. This was followed by a 5-min incubation with 
4′,6-diamidino-2-phenylindole (DAPI) to stain the cell nucleus. Mitochondrial superoxide production was measured using images 
captured with an OLYMPUS® BX53 microscope equipped with an image analysis system (Olympus® Corporation, Tokyo, Japan). 

2.7. Immunofluorescence staining 

The treated cells were washed with PBS, fixed with 4 % paraformaldehyde for 30 min at 25 ◦C, and then permeabilized with 0.1 % 
Triton X-100 for 30 min at 4 ◦C. All samples were blocked using 1 % horse serum in PBS for 60 min at 25 ◦C, followed by incubation 
with the primary antibodies against γ-H2AX (AP1267, Abclonal, Woburn, MA, USA), klotho (A12028, Abclonal), or p21 (sc-6246, 
Santa Cruz Biotechnology, Santa Cruz, CA, USA) for 12 h at 4 ◦C. The cells were then washed and incubated for 60 min at 25 ◦C with the 
secondary antibodies: Alexa Fluor® 594 goat anti-rabbit IgG (A11012, Invitrogen, Waltham, MA, USA), Alexa Fluor® 488 goat anti- 
rabbit IgG (A11008), or Alexa Fluor® 594 goat anti-mouse IgG (A11032). The cells were then washed with PBS and stained with DAPI 
for 10 min. Photographs were taken using an OLYMPUS® BX53 microscope equipped with an image analysis system. 

2.8. Measurement of telomere length using quantitative PCR 

Telomere length analysis was performed using quantitative PCR according to a previously published protocol [36]. The Gene-
Direx® Genomic DNA Isolation Kit (NA026-0100, GeneDireX, Inc., Taoyuan, Taiwan) was used to isolate genomic DNA. Telomere 
length was assessed by calculating the ratio of telomere repeat copies to copies of a single-copy gene. The primer sequences for 
telomeres were 5′-GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT-3′ and 5′-CGGTTTGTTTGGGTTTGGGTTTGGGTTTG 
GGTTTGGGTT-3′. The primer sequences for the human β-globin, a single-copy gene, were 5′-CACCAACTTCATCCACGTTCACC-3′ and 
5′-GCTTCTGACACAACTGTGTTCACTAGC-3′. A two-step PCR cycling protocol was used for the PCR amplification of telomeric se-
quences. The settings were 95 ◦C for 15s and 56 ◦C for 60s, repeated for 40 cycles. Another two-step PCR cycling protocol was used for 
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PCR amplification of the human β-globin gene. The settings were 95 ◦C for 15s and 58 ◦C for 60s, repeated for 40 cycles. Melt curve 
analysis was performed at the end of 40 cycles of PCR to ensure the absence of primer dimers. 

2.9. Statistical analysis 

The data are expressed as the mean ± standard deviation obtained from three separate experiments. Statistical analysis was 
conducted using GraphPad Prism 9 statistical software (San Diego, CA, USA). To assess the statistical significance of multiple ex-
periments, a one-way analysis of variance followed by Tukey’s test was employed [37]. Statistical significance was defined as a p-value 
less than 0.05. 

Fig. 1. O. caudata aqueous extract is non-toxic in hADMSCs after 24 and 48 h of exposure and exhibits considerable antioxidant activity via the 
DPPH radical scavenging assay (A) Results of the MTT cell viability assay after treating hADMSCs with various concentrations of O. caudata aqueous 
extract (12.5–800 μg/ml) for 24 h. Cell viability in the control group was set at 100 %. Error bars represent the standard deviation. (B) Results of the 
MTT cell viability assay after treating hADMSCs with various concentrations of O. caudata aqueous extract (12.5–800 μg/ml) for 48 h. Cell viability 
in the control group was set at 100 %. (C) Results of the MTT cell viability assay after treating hADMSCs with various concentrations of O. caudata 
aqueous extract (3.125–200 μg/ml) for 72 h. Cell viability in the control group was set as 100 %. No notable toxicity was detected in hADMSCs 
following exposure to the O. caudata aqueous extract for 24 and 48 h. However, a reduction in cell viability was noted in hADSCs after 72 h of 
stimulation. (D) Assessment of the in vitro antioxidant activity of O. caudata aqueous extract using the DPPH radical scavenging assay. The aqueous 
extract of O. caudata exhibited promising free radical scavenging activity. The experiment was repeated three times. OCAE: treatment with 
O. caudata aqueous extract. CTRL: untreated control group. 
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3. Results 

3.1. The aqueous extract of O. caudata demonstrates significant antioxidant effects and shows no cytotoxicity in hADMSCs 

First, we used the MTT assay to confirm the non-toxicity of the aqueous extract of O. caudata towards hADMSCs. After treating 
hADMSCs with various concentrations of O. caudata aqueous extract for 24, 48, and 72 h, the MTT cell viability assay revealed no 
significant cytotoxic effects within each group after 24-h and 48-h treatments (12.5–800 μg/ml; Fig. 1A–B). However, a reduction in 
cell viability was noted in hADSCs after 72 h of treatment, exceeding 100 μg/ml (Fig. 1C). These findings indicate that there was no 
significant negative impact on hADSCs occurred when treated with O. caudata aqueous extract between 24 and 48 h. Consequently, the 
24-h treatment duration was selected for subsequent experiments. 

To evaluate the antioxidant properties of the O. caudata aqueous extract, we conducted the DPPH radical scavenging assay. The 
aqueous extract of O. caudata exhibited promising free radical-scavenging effects. The antioxidant effects of the extract were dose- 
dependent (10–400 μg/ml; Fig. 1D). Together, these results demonstrate that the aqueous extract of O. caudata is not toxic to 
hADMSC after 24 and 48 h of treatment and it has remarkable antioxidant properties. 

3.2. Treatment with O. caudata aqueous extract reduces mitochondrial superoxide levels during doxorubicin-induced aging in hADMSCs 

As the aqueous extract of O. caudata exhibited antioxidant properties, we aimed to investigate whether superoxide levels in 
hADMSCs decrease after treatment with the O. caudata aqueous extract. The hADMSCs were incubated for 24 h with 0.1 μM doxo-
rubicin to induce aging, followed by subsequent treatment with varying concentrations of the aqueous extract from O. caudata (50, 
100, or 200 μg/ml) for another 24 h. The mitochondrial superoxide assay was used to measure mitochondrial superoxide levels in 
hADMSCs. We noted that doxorubicin significantly increased the levels of cellular mitochondrial superoxide (red color), but the 

Fig. 2. Mitochondrial superoxide levels are increased by doxorubicin-induced aging are reduced by treatment with O. caudata aqueous extract. The 
doxorubicin-exposed hADMSCs were treated with various concentrations of the O. caudata aqueous extract (50, 100, and 200 μg/ml) and subse-
quently evaluated for mitochondrial superoxide generation using MitoSOX Red and fluorescence microscopy. Treatment with the aqueous extract 
reduced the cellular levels of mitochondrial superoxide radicals in a dose-dependent manner. CTRL: untreated control group. OCAE: Treatment with 
O. caudata aqueous extract. DOX: Doxorubicin. Scale bar: 50 μm ###p < 0.001 compared to the untreated control group. ***p < 0.001 compared 
with that in the doxorubicin-induced aging hADMSC group. (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 
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addition of the O. caudata aqueous extract diminished the rise in mitochondrial superoxide levels (Fig. 2). The reduction in mito-
chondrial superoxide levels seemed to depend on the dose. These findings indicate that the aqueous extract from O. caudata attenuates 
the rise in mitochondrial superoxide levels induced by doxorubicin. 

3.3. Administration of the aqueous extract from O. caudata reduces the incidence of DNA double-strand breaks and alleviates the extent of 
telomere shortening induced by doxorubicin in hADMSCs 

To further investigate the protective effects of the O. caudata aqueous extract against doxorubicin-induced aging in hADMSCs, we 
utilized the γH2AX antibody to identify DNA double-strand breaks through immunofluorescence. Following the same hADMSC culture 
conditions mentioned in the previous section, doxorubicin-induced γH2AX nuclear foci (red color) were clearly detected. The aqueous 
extract of O. caudata protected against the emergence of DNA double-strand breaks in hADMSCs in a dose-dependent manner (Fig. 3A). 

During aging, telomere shortening results in senescence and apoptosis [38]. To investigate whether the O. caudata aqueous extract 
protects against telomere shortening, we assessed telomere length using quantitative PCR. In this study, the relative telomere length 
was evaluated based on the ratio of telomeric repeat copy number to that of the human β-globin gene, which serves as a single-copy 
gene (T/S ratio). On average, doxorubicin treatment lowered the T/S ratios in hADMSCs relative to those in the control group. 
However, the ratio increased after treatment with a high-dose aqueous extract of O. caudata (Fig. 3B). These results illustrate that the 
aqueous extract of O. caudata could reduce the number of doxorubicin-induced DNA double-strand breaks and the degree of telomere 
shortening in hADMSCs. 

3.4. The aqueous extract of O. caudata suppresses doxorubicin-induced aging in hADMSCs 

Klotho is an anti-aging enzyme. A reduction in its expression can induce the expression of p21 (CDKN1A), an aging marker in cells 
[39]. Immunofluorescence staining was used to detect the expression levels of klotho (green color) and p21 (red color) in hADMSCs. 
Under the same hADMSC culture conditions as mentioned in previous sections, doxorubicin induced a reduction in the levels of klotho 
in the hADMSCs, while levels of p21 increased in the nuclei of hADMSCs. By contrast, the aqueous extract of O. caudata successfully 
reversed the decline in klotho levels during doxorubicin-induced aging and reduced p21 levels in the nuclei of doxorubicin-challenged 
hADMSCs (Fig. 4). These molecular changes induced by the aqueous extract were also found to be dose-dependent. These findings 
suggest that the aqueous extract of O. caudata could suppress doxorubicin-induced aging in hADMSCs. 

4. Discussion 

Life expectancy has increased worldwide. Nowadays, most people are expected to live into their sixties and beyond. The global 
aging population is increasing, and the number of people aged 80 years and above is expected to reach approximately 400 million by 
2050. Aging has contributed to a worldwide rise in morbidity and disability rates associated with aging. The most effective way to 
lower disease burden and control costs is to delay the aging process by extending the duration of healthy periods in an individual’s 
lifetime before the onset of aging-related conditions. The most critical factor in increasing healthy lifespans is to alleviate the effects of 
aging [40]. Aging is a complex process in which homeostasis within the body is disrupted by endogenous and environmental pressures, 

Fig. 3. The aqueous extract of O. caudata reduces the extent of DNA double-strand breaks and telomere shortening induced by doxorubicin in 
hADMSCs. (A) Effects of the O. caudata aqueous extract on DNA double-strand damage were assessed using γ-H2AX staining. DNA double-strand 
breaks (red; marked with yellow arrows) were observed during doxorubicin-induced aging in hADMSCs; however, treatment with O. caudata 
aqueous extract reduced the number of DNA double-strand breaks caused by doxorubicin in a dose-dependent manner. Scale bar: 50 μm. (B) 
Telomere length was analysed using qPCR. Average relative telomere length was represented by the T/S ratios in doxorubicin-induced senescent 
hADMSCs before and after treatment with O. caudata aqueous extract. Error bars represent the standard deviation. #p < 0.05 compared with that in 
the untreated control group. *p < 0.05 compared with that in the doxorubicin-induced aging hADMSC group. T: telomere. S: human β-globin. CTRL: 
untreated control group. OCAE: treatment with O. caudata aqueous extract. DOX: doxorubicin. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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resulting in morbidity, mortality, and the gradual degeneration of tissues and organs [41]. Adipose-derived mesenchymal stem cells 
can aid in the reconstruction of various tissues, including cartilage, bone, muscle, myocardium, nerve, liver, kidney, and pancreas. 
Younger stem cells have better regeneration and differentiation capabilities than mature cells and are potential targets for slowing the 
aging process [3–6]. However, stem cells can undergo senescence, which reduces their functional capacities. In this study, we 
investigated the potential anti-aging effects of O. caudata aqueous extract on hADMSCs. The study induced senescence in hADMSCs 
using doxorubicin and examined the effect of different concentrations of O. caudata aqueous extract on mitigating these senescence 
effects. The results showed that the aqueous extract of O. caudata exhibited significant antioxidant effects. Furthermore, treatment 
with the extract resulted in a decrease in mitochondrial superoxide levels, DNA double-strand breaks, and telomere shortening in 
doxorubicin-induced aging hADMSCs. Notably, the aqueous extract of O. caudata demonstrated its ability to suppress 
doxorubicin-induced aging by upregulating the expression of klotho and downregulating p21 in hADMSCs. These results suggest that 
the aqueous extract of O. caudata has anti-aging properties by maintaining the homeostasis of hADMSCs. 

The phenomenon of oxidative stress has been widely acknowledged and established as a primary factor contributing significantly to 
the complex process of aging [42]. In the current study, we demonstrated that the aqueous extract of O. caudata showed promising free 
radical-scavenging activity in a dose-dependent manner. Additionally, considering the pivotal role of mitochondrial dysfunction in 
aging regulation, a previous study demonstrated the protective effects of the O. caudata aqueous extract against doxorubicin-induced 

Fig. 4. The aqueous extract of O. caudata suppresses doxorubicin-induced aging in hADMSCs. After doxorubicin treatment, the hADMSCs were 
further treated with varying concentrations (50, 100 and 200 μg/ml) of O. caudata aqueous extract for 24 h. The cells were stained with anti-klotho 
(green) and anti-p21 (red) antibodies. CTRL: untreated control group. OCAE: treatment with O. caudata aqueous extract. DOX: doxorubicin. Scale 
bar: 50 μm. Error bars represent the standard deviation. ###p < 0.001 compared with that in the untreated control group. *p < 0.05, **p < 0.01 
and ***p < 0.001 compared with that in the doxorubicin-induced aging hADMSC group. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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mitochondrial dysfunction in Wharton’s jelly-derived mesenchymal stem cells. Doxorubicin leads to mitochondrial impairment, re-
duces stemness, and induces apoptosis in these cells. However, the O. caudata aqueous extract mitigates these effects by promoting 
Tid1 and Tom20 expression, reducing reactive oxygen species production, and maintaining mitochondrial membrane potential in 
Wharton’s jelly-derived mesenchymal stem cells [43]. Similarly, in the current study, after inducing cellular aging with doxorubicin, 
the levels of mitochondrial superoxide increased in hADMSCs. However, this increase was successfully countered by treatment with 
the aqueous extract of O. caudata. This result implies that the anti-aging effect of O. caudata could be attributed to its ability to maintain 
mitochondrial function. 

DNA damage is another vital factor contributing to aging by interfering with transcription or replication, leading to the incorrect 
activation of mechanisms that alter normal cell physiology. This phenomenon leads to metabolic dysregulation, mitochondrial 
dysfunction, impaired autophagy, and cellular senescence. Eventually, apoptosis occurs, depleting important cell populations, such as 
neurons and stem cells [44]. DNA double-strand breaks can trigger a severe loss of genomic stability and are recognized as one of the 
most lethal forms of DNA damage. A rapid cellular response to the induction of DNA double-strand breaks includes the immediate 
phosphorylation of the histone variant H2AX at the Ser-139 residue in mammals. The existence of phosphorylated H2AX, referred to as 
γH2AX, has become a notably sensitive and specific molecular indicator in cells for monitoring genomic instability within the nuclei 
[45]. Nuclear γH2AX can be visualized as foci through immunofluorescence staining using phospho-specific antibodies [46]. Previous 
studies have confirmed that doxorubicin successfully induces γH2AX nuclear foci [47,48]. Present observations were consistent with 
these findings, as we also detected increasing levels of γH2AX in the nuclei of hADMSCs after doxorubicin-mediated induction of aging. 
However, treatment with the aqueous extract of O. caudata reversed this increase. In addition, the antioxidant activity and protective 
effect of the extract on DNA were dose-dependent. Thus, the aqueous extract of O. caudata could reduce oxidative stress and DNA 
damage, two important factors responsible for cellular aging, to maintain the normal functionality of hADSCs. 

The shortening of telomeres is another biomarker of cellular aging. Telomeres are non-coding, repetitive short DNA sequences (5′- 
TTAGGG-3′) located at the ends of all chromosomes in most eukaryotic cells. These sequences play an essential role in preventing the 
loss of genetic information. After birth, the telomeric sequences deplete by 50–200 base pairs with each round of DNA replication and 
cell division. When telomere length shortens to a critical limit, cells begin to undergo senescence, apoptosis, and organismal aging [38, 
49]. In the current study, we used the method published by Joglekar et al. [36] in 2020 to assess the relative telomere length in 
hADMSCs. Telomere length was markedly shortened during doxorubicin-induced aging of hADMSCs. However, the high-dose aqueous 
extract of O. caudata restricted the shortening of telomeres in these hADMSCs. This finding demonstrated the anti-aging potential of the 
aqueous extract of O. caudata. 

To elucidate the molecular mechanisms underlying the anti-aging effects of O. caudata, we investigated the expression of klotho 
and p21. The enzyme klotho was identified as a potential age-suppressing protein. Its deficiency in mice causes premature aging, 
multiple organ failures, and shortened lifespan, mirroring events of premature aging in humans. Moreover, a defect in klotho activity 
leads to stem cell senescence and depletion [50]. Additionally, p21, a cyclin-dependent kinase inhibitor, plays an important role in 
regulating the functions of various senescent stem cells. The expression of p21 increases during the late passage of multipotent stromal 
cells, reducing their proliferative capacity. Suppression of p21 through RNA interference in human bone marrow-derived multipotent 
stromal cells leads to an accelerated proliferation rate and enhances the expression of stem cell markers and osteogenic potential [51]. 
Furthermore, the expression of p21 in bone marrow mesenchymal stem cells of aged rhesus monkeys increases compared to that in 
cells of younger rhesus monkeys [52]. Hence, downregulation of klotho and upregulation of p21 lead to stem cell senescence and 
aging. Our immunofluorescence staining showed elevated klotho expression and reduced p21 expression following the induction of 
aging by doxorubicin in hADMSCs. The effect was reversed by administering the aqueous extract of O. caudata. Taken together, these 
results indicate that the aqueous extract of O. caudata has anti-aging effects, making it a promising candidate for maintaining the 
self-renewal capacity and multipotency of aging hADMSCs. 

Although the possible anti-aging effects of O. caudata on stem cells were investigated in this study, several limitations need to be 
considered. Firstly, a decrease in cell viability was observed in hADSCs after 72 h of treatment. This highlights the importance of 
careful dose selection for clinical trials due to potential side effects. It is worth noting that O. caudata is a traditional Chinese medicine, 
and the existing literature does not mention its toxicity in the human body. Hence, it is also important to consider that in vitro 
experimental techniques may affect cell viability in hADSCs during long-term treatment. Secondly, evaluating cell viability and aging 
effects under O. caudata and doxorubicin treatments is crucial. Without such assessment, the observed beneficial effects in this study 
might solely stem from the protective activity of O. caudata against cytotoxicity rather than manifesting true anti-aging properties in 
doxorubicin-challenged hADSCs. Thirdly, investigating the delay or arrest in cell cycle progression and the expression of other genes 
associated with the aging process, such as β-galactosidase, p16INK4a, and p53 [53–56], would enhance the comprehensiveness of the 
results in the current study. Lastly, an in vivo study will be essential to substantiate the in vitro findings. Therefore, further in-
vestigations are warranted to delve into the detailed anti-aging effects of O. caudata on stem cells in subsequent in vivo studies. 

In conclusion, we have demonstrated the anti-aging benefits of O. caudata aqueous extracts in aging hADMSCs. The aqueous extract 
of O. caudata was not toxic to hADMSCs after 24 and 48 h of treatment and it also exhibited significant levels of antioxidant activity. 
The levels of mitochondrial superoxide, DNA double-strand breaks, and telomere shortening induced by doxorubicin during aging 
were reduced following treatment with the aqueous extract. The aqueous extract further suppressed doxorubicin-induced aging by 
upregulating klotho and downregulating p21. These findings suggest that the aqueous extract of O. caudata has anti-aging effects and 
could help preserve the self-renewal ability and multipotency of aging hADMSCs. This study primarily emphasized the therapeutic 
application of the crude aqueous extract of O. caudata and provided novel evidence to justify further explorations of its health benefits 
against aging. Finally, due to its classification as a traditional Chinese medicine, the aqueous extract of O. caudata can be consumed in 
liquid form, enabling direct ingestion and physiological impact. Future advancements in the preparation of the O. caudata aqueous 
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extract are anticipated to improve its accessibility, turning it into a convenient formulation similar to herbal tea for daily consumption 
by the elderly. The efficacy of O. caudata is expected to have a direct impact on the human body, thus helping to mitigate the aging 
process. 
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