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Objective. *e purpose of the present study is to screen the hub genes associated with sepsis, comprehensively understand the
occurrence and progress mechanism of sepsis, and provide new targets for clinical diagnosis and treatment of sepsis.Methods.*e
microarray data of GSE9692 and GSE95233 were downloaded from the Gene Expression Omnibus (GEO) database. *e dataset
GSE9692 contained 29 children with sepsis and 16 healthy children, while the dataset GSE95233 included 102 septic subjects and
22 healthy volunteers. Differentially expressed genes (DEGs) were screened by GEO2R online analysis. *e DAVID database was
applied to conduct functional enrichment analysis of the DEGs. *e STRING database was adopted to acquire protein-protein
interaction (PPI) networks. Results. We identified 286 DEGs (217 upregulated DEGs and 69 downregulated DEGs) in the dataset
GSE9692 and 357 DEGs (236 upregulated DEGs and 121 downregulated DEGs) in the dataset GSE95233. After the intersection of
DEGs of the two datasets, a total of 98 co-DEGs were obtained. DEGs associated with sepsis were involved in inflammatory
responses such as T cell activation, leukocyte cell-cell adhesion, leukocyte-mediated immunity, cytokine production, immune
effector process, lymphocyte-mediated immunity, defense response to fungus, and lymphocyte-mediated immunity. Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that sepsis was connected to bacterial and
viral infections.*rough PPI network analysis, we screened the most important hub genes, including ITK, CD247, MMP9, CD3D,
MMP8, KLRK1, and GZMK. Conclusions. In conclusion, the present study revealed an unbalanced immune response at the
transcriptome level of sepsis and identified genes for potential biomarkers of sepsis, such as ITK, CD247, MMP9, CD3D, MMP8,
KLRK1, and GZMK.

1. Introduction

Sepsis is a systemic inflammatory reaction mainly caused by
pathogen infection, which is often characterized by high
fever, leukocytosis, and headache [1]. Sepsis can lead to
multiple organ dysfunction syndrome (MODS) and circu-
latory failure in critical condition, which is a common acute
and severe disease in clinic. *e incidence rate and mortality
rate of sepsis are very high. 30 million people worldwide are
infected with sepsis every year, in which 8 million people are
dead [2]. However, the number of morbidity and mortality

has been underestimated in countries with backward de-
velopment and poor economy. *erefore, sepsis has caused
serious physical injury and economic pressure to human
beings.

*e basic reason for the poor treatment effect of sepsis is
that the pathogenesis of sepsis is not clear, and there are few
indicators for clinical diagnosis and prognosis of sepsis. In
order to reduce the mortality of patients and improve the
quality of life of patients with sepsis, relevant research has
been widely carried out, but little progress has been made.
With the development and application of gene chip
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technology, thousands of differential genes have been found.
Screening the genes that play a key role in disease among
many different genes has become a key research goal.
Bioinformatics analysis based on gene expression profile
may screen hub genes and regulatory pathways, which plays
an important role in early diagnosis of sepsis and estab-
lishment of early warning mechanism.

In the research of life science, bioinformatics uses
computer technology as a tool to store, retrieve, analyze, and
visualize biological information. It has been widely applied
to identify hub genes of diseases at the molecular level. Many
bioinformatics studies on other diseases have been carried
out, such as acute kidney injury [3], Alzheimer’s disease [4],
and pulmonary arterial hypertension [5], and important
progress has been made, and disease-related differentially
expressed genes have been obtained.

*e purpose of the present study was to explore the hub
genes related to sepsis, construct protein interaction net-
work, and find out key molecular targets. We downloaded
two microarray datasets including GSE9692 and GSE95233
to screen the differentially expressed genes (DEGs) related to
sepsis. Subsequently, the online tool DAVID was used for
Gene Ontology (GO) analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis
to explore the molecular functions and pathways related to
sepsis, and finally protein-protein interaction (PPI) network
analyses were conducted to elucidate the molecular mech-
anism of sepsis.

2. Material and Methods

2.1. Data Sources. *e two datasets (GSE9692 and GSE95233)
were selected and downloaded from the Gene Expression
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) for the
present study. Firstly, we used sepsis as the keyword for re-
trieval, and then, we selected Homo sapiens as the species in-
formation. Datasets containing more than 25 patients were
selected. Patients with sepsis were divided into the “patient”
group, while healthy people were divided into the “control”
group. *e platform used for both expression profiling arrays
was GPL570 (HG-U133_Plus_2) Affymetrix Human Genome
U133 Plus 2.0 Array. *e dataset GSE9692 contained 29
children with sepsis septic shock and 16 healthy children, while
the dataset GSE95233 included 102 septic subjects and 22
healthy volunteers. Ethical approval was not required for this
study because we used public data for bioinformatics analysis.

2.2. Identification of DEGs. *e DEGs were identified using
the online tool GEO2R.*e screening criteria for DEGs were
adjusted P value <0.05 and |log fold change (LogFC) >2.0.
Volcano plots were generated by Bioconductor (http://
bioconductor.org/biocLite.R). *e top ten and last ten
DEGs sorted according to LogFC value were used for the
heat map.

2.3. Functional and Pathway Enrichment Analyses. GO
analysis was applied to conduct functional enrichment
analysis, while KEGG analysis was adopted to cluster the

possible pathways of these genes involving in. *e DEGs
screened in the previous step were used for GO analyses,
KEGG pathway enrichment analyses, and PPI network
analysis. *e online tool DAVID (https://david.ncifcrf.gov/
tools.jsp) was used for GO and KEGG analyses, and data
visualization was completed by the R software.

2.4. PPI Network Construction and Hub Gene Identifcation.
Search Tool for the Retrieval of Interacting Genes (STRING,
https://string-db.org/) was applied to analyze protein in-
teractions which were encoded by the filtered DEGs. *e
Cytoscape software was applied to show interaction results
with a minimum combined score of 0.4. *e plug-in
component Molecular Complex Detection (MCODE) of
Cytoscape was used to screen out the hub genes in the PPI
networks.

3. Results

3.1. Identification of DEGs. *e datasets GSE9692 and
GSE95233 were selected and downloaded from GEO and were
analyzed by GEO2R online tool. *en, the volcano plots of
DEGs were generated, as shown in Figure 1. Total of 286 DEGs
in GSE9692 were found in patients when compared with the
controls, including 217 upregulated DEGs and 69 down-
regulated DEGs (Figure 1(a)), while there were 357 DEGs in
GSE95233 (236 upregulated DEGs and 121 downregulated
DEGs, Figure 1(b)). *e heatmap plots of the top 10 upre-
gulated genes and the top 10 downregulated genes were shown
in Figures 2(a) and 2(b).

3.2. GO Annotation Analyses of DEGs. In order to screen out
hub genes related to sepsis, David online analysis was applied to
annotate the gene function. GO annotation analysis of GSE9692
indicated the differential genes participated in inflammatory
responses, including regulation of immune effector process,
regulation of leukocyte-mediated immunity, regulation
of lymphocyte-mediated immunity, positive regulation of cy-
tokine production, immune response-regulating signaling
pathway, regulation of leukocyte-mediated cytotoxicity, and
immune response-regulating cell surface receptor signaling
pathway (Figure 3(a)). GO analysis of GSE95233 suggested
DEGs involved in biological functions, such as Tcell activation,
leukocyte cell-cell adhesion, positive regulation of leukocyte
activation, positive regulation of leukocyte cell-cell adhesion,
and leukocyte-mediated immunity (Figure 3(b)). A total of 98
codifferentially expressed genes (co-DEGs) were obtained after
the intersection of DEGs in the two datasets. GO analysis
showed these 98 co-DEGs involved in biological functions, such
as leukocyte-mediated immunity, regulation of cytokine pro-
duction, regulation of immune effector process, regulation
of lymphocyte-mediated immunity, defense response to fungus,
and lymphocyte-mediated immunity (Figure 3(c)).

3.3. KEGG Pathway Enrichment Analyses of DEGs. By an-
alyzing the signal pathway of DEGs, we can understand the
significantly changed metabolic pathway in the state of
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disease, which is important for exploring the pathogenesis of
disease. KEGG pathway analysis was conducted to identify
the signal pathways of DEGs. KEGG pathway analysis
suggested that the DEGs of GSE9692 associated with sepsis
were related to different infections such as Staphylococcus
aureus infection, malaria, leishmaniasis, legionellosis, in-
fluenza A, inflammatory bowel disease (IBD), amoebiasis,
and immune response-related pathway (Figure 4(a)). KEGG
pathway analysis of GSE95233 suggested that the DEGs were
related to different infections such as tuberculosis, toxo-
plasmosis, Staphylococcus aureus infection, leishmaniasis,
influenza A, IBD, HTLV-l infection, Epstein–Barr virus
infection, and immune system diseases such as rheumatoid
arthritis, primary immunodeficiency, and autoimmune
thyroid disease (Figure 4(b)). KEGG pathway analysis
showed that the intersecting DEGs were related to different
infections such as Staphylococcus aureus infection, malaria,
leishmaniasis, IBD, and amoebiasis (Figure 4(c)).

3.4. PPI Network and Hub Genes. In order to better un-
derstand the molecular mechanism of sepsis, we uploaded
DEGs to STRING (https://string-db.org/) for PPI analysis,
and then, visualized the importance of the relationship
between proteins using the Cytoscape software. We sub-
mitted 200 genes of GSE9692, 241 genes of GSE95233, and
98 co-DEGs to STRING for PPI analysis, respectively, and
identified some hub genes, such as IL-2-inducible tyrosine
kinase (ITK), CD247, matrix metallopeptidase 9 (MMP9),
CD3D, matrix metallopeptidase 8 (MMP8), killer cell lectin-
like receptor subfamily K (KLRK1), and granzyme K
(GZMK) (Figure 5).

4. Discussion

With the advent of the era of big data, bioinformatics is
widely used in the research of various diseases, including
sepsis. Although the survival rate of sepsis patients is in-
creasing, the mortality rate is still 30–40% [2]. At present,
the treatment of sepsis mainly includes anti-infection, fluid
resuscitation, multiorgan function maintenance, and other
comprehensive treatments [6, 7]. However, even with
advanced support technologies such as extracorporeal
membrane oxygenation (ECMO), the prognosis of sepsis is
still poor [8]. High throughput microarray technology
provides us with the possibility to understand the mo-
lecular mechanism of sepsis.

In this study, we performed bioinformatics analysis on
two sepsis microarray datasets (GSE9692 and GSE95233) to
screen a series of differentially expressed genes related to
sepsis. We further analyzed the selected DEGs’ signal
pathway enrichment and gene annotation, and the results
showed that DEGs associated with sepsis involved in in-
flammatory responses such as T cell activation, leukocyte
cell-cell adhesion, leukocyte-mediated immunity, regulation
of cytokine production, regulation of immune effector
process, regulation of lymphocyte-mediated immunity,
defense response to fungus, and lymphocyte-mediated im-
munity. KEGG pathway enrichment analysis showed that
sepsis was related to bacterial and viral infections. Current
research suggests that sepsis is a competition between
pathogens and host immune system. *e balance between
proinflammatory system and anti-inflammatory system
determines the disease trend of patients. Functional failure
of T cell, B cell, DCs, and KCs usually occur in patients died
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Figure 1: Volcano plots of differentially expressed genes (DEGs) in GSE9692 and GSE95233. (a, b) *e volcano plots of DEGs in GSE9692
and GSE95233, respectively.
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of sepsis. Monocyte macrophage system is the inherent
immune system of human body and plays an important role
in the occurrence and development of sepsis [9].

Subsequently, the differentially expressed genes were
analyzed by PPI to better understand the molecular
mechanism of sepsis. *rough PPI network analysis, we
screened the most important hub genes, including ITK,
CD247, MMP9, CD3D, MMP8, KLRK1, and GZMK.

ITK is a member of the TEC kinase family and the most
important Tec kinase in T cells. Many studies have shown
that ITK plays a critical role in the development and dif-
ferentiation of T cells, promotes *2, *9, and *17 re-
sponses, and then inhibits the expression of
proinflammatory cytokines. Studies have shown that ITK is a
key regulator of T lymphocytes and plays a critical role in the

pathogenesis of autoimmune diseases [10, 11]. Inhibition of
ITK by inhibitors has a certain beneficial effect on asthma,
inflammatory bowel disease, and rheumatoid arthritis [12].
Studies have shown that ITK regulated thermal homeostasis
in sepsis through affecting mast cells [13].

CD247 is located in band 2 of region 24 of the long arm
of chromosome 1 and belongs to the CD3Z/FCERIG family,
with a length of 88 kb. CD247 is a main factor leading to
linking antigen recognition and intracellular signal trans-
duction of T lymphocytes. *e coding product of CD247
gene is CD3/T-cell receptor complex (CD3/TCR complex),
which is a complex formed by the noncovalent binding of
Tcell antigen receptor and CD3 molecule [14]. It is the main
unit of T cell recognition antigen and signal transduction.
Interestingly, previous studies have shown that CD3D
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Figure 2: *e heatmap plots of the top 10 upregulated genes and the top 10 downregulated genes. (a) GSE9692. (b) GSE95233.
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Figure 3: Gene Ontology (GO) analyses of DEGs. (a) GO analysis of DEGs of GSE9692. (b) GO analysis of DEGs of GSE95233. (c) GO
analysis of co-DEGs of GSE9692 and GSE95233.
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Figure 4: Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DEGs. (a) KEGG analysis of DEGs of GSE9692. (b) KEGG
analysis of DEGs of GSE95233. (c) KEGG analysis of co-DEGs of GSE9692 and GSE95233.
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encodes the δ subunit of transmembrane CD3 antigen
complex [15]. *e main function of TCR is to recognize and
bind the MHC antigen peptide complex, while CD3 further
transfers the signal recognized by TCR into T lymphocytes
to induce T lymphocyte activation, and the TCR/CD3
membrane expression level determines the initiation of
T lymphocyte activation. Studies have shown that the gene
CD247 is also involved in other autoimmune diseases, such
as systemic lupus erythematosus [16, 17], rheumatoid ar-
thritis [18], and systemic sclerosis [19], which shows that
CD247 is closely related to the occurrence of autoimmune
diseases. *e expression of CD247 can affect the develop-
ment of T cells and lead to abnormal activation of
T lymphocytes. *e low expression of CD247 can cause
damage to the immune system and affect lymphocyte
proliferation and cytokine production. *e expression of
CD247 is gradually downregulated during the development
from sepsis to septic shock [20]. Jiang et al. found that

CD247 was the hub gene of sepsis through bioinformatics
analysis [21].

Studies have shown that MMP9 is associated with in-
flammation and inhibits platelet aggregation [22]. Previous
studies have proved that MMP9 is upregulated in sepsis
patients compared with healthy people, and MMP9 ex-
pression can be used as a prognostic biomarker of sepsis. In
addition, MMP9 has high accuracy in the diagnosis of sepsis,
and the result of ROC curve analyses showed the area under
the curve of MMP9 was 0.967, indicating that MMP9 plays
an important role in the pathogenesis of sepsis.

Viral or bacterial infection can lead to the induction of
KLRK1 ligands on cells to activate the immune system to
recognize and eliminate them [23]. Studies have reported
that CD3D is actually involved in the activation of
T lymphocyte immune-related pathways, and the lack of
CD3D may lead to the damage of immunity [24]. GZMK is
mainly expressed in T lymphocytes and can also promote the

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 5: *e protein-protein interaction (PPI) networks based on the screened differentially expressed genes (DEGs). (a, b, c) *e PPI
networks based on screened DEGs of GSE9692. (d, e, f ) *e PPI networks based on screened DEGs of GSE9692. (g, h, i) *e PPI networks
based on screened co-DEGs of GSE9692 and GSE95233.
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release of proinflammatory cytokines, TNF-α, IL-1, IL-6,
and MCP-1 [25]. Almansa et al. evaluated gene expression
profiles in patients with sepsis and found the extent of organ
failure and mortality in sepsis was associated with MMP8,
CD3D, and KLRK1 [26].

In conclusion, the present study revealed an unbalanced
immune response at the transcriptome level of sepsis and
identified genes for potential biomarkers of sepsis, such as
ITK, CD247, MMP9, CD3D, MMP8, KLRK1, and GZMK.
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