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Abstract: Pneumonia is a contagious disease that causes ulcers of the lungs, and is one of the main
reasons for death among children and the elderly in the world. Several deep learning models for
detecting pneumonia from chest X-ray images have been proposed. One of the extreme challenges
has been to find an appropriate and efficient model that meets all performance metrics. Proposing
efficient and powerful deep learning models for detecting and classifying pneumonia is the main
purpose of this work. In this paper, four different models are developed by changing the used deep
learning method; two pre-trained models, ResNet152V2 and MobileNetV2, a Convolutional Neural
Network (CNN), and a Long Short-Term Memory (LSTM). The proposed models are implemented
and evaluated using Python and compared with recent similar research. The results demonstrate
that our proposed deep learning framework improves accuracy, precision, F1-score, recall, and Area
Under the Curve (AUC) by 99.22%, 99.43%, 99.44%, 99.44%, and 99.77%, respectively. As clearly
illustrated from the results, the ResNet152V2 model outperforms other recently proposed works.
Moreover, the other proposed models—MobileNetV2, CNN, and LSTM-CNN—achieved results with
more than 91% in accuracy, recall, F1-score, precision, and AUC, and exceed the recently introduced
models in the literature.
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1. Introduction

Pneumonia affects the lungs and causes about 18% of all deaths in children under five years
old. Additionally, about two billion people worldwide suffer from pneumonia every year, and death
can occur if action is not taken. Early diagnosis of pneumonia is a vital matter [1,2]. Therefore,
rapid diagnosis by an expert radiologist using chest X-rays is required to avoid misdiagnosis.
Chest X-rays are the most common and cheapest way to detect pneumonia [3,4]. Likewise, there is
a shortage of radiologist experts, especially in low-resource countries and in rural regions, causing
long waits for diagnoses, which increases the death rate. Because of the nature of chest X-ray image
analysis, pneumonia diagnoses by X-ray images are often unclear and can be confused with other
diseases that have similar features, such as opacity, cavity, and pleural effusions. Thus, chest X-rays
cannot be as easily used for detecting diseases [5]. Accordingly, many computer-aided diagnosis
(CAD) systems and computer algorithm diagnostic tools have been proposed by researchers for
X-ray image analysis; these proposed systems help radiologists discover various types of chest X-ray
pneumonia immediately after acquisition. Recently, various biomedical problems, such as skin cancer
detection, brain tumor detection, and breast cancer detection are using solutions based on Artificial
Intelligence (AI) approaches [6–9] as handcrafted techniques, deep learning, and machine learning
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techniques. As a matter of fact, deep learning is a subsection of AI and machine learning that utilizes
multi-layered artificial neural networks to provide the latest technology in many topics, such as speech
recognition, language translation, and others. There is a difference between traditional machine
learning techniques and deep learning in that the latter can automatically learn representations
from data, such as videos, images, or text, without entering manually coded rules or direct human
intervention. Their architectures are highly flexible, and thus can learn immediately from the data and
raise their predictive accuracy by providing it with more data [10]. The main objective of this work
was to develop a deep learning framework to automatically diagnose pneumonia using chest X-ray
images and to classify the result as normal cases or pneumonia cases, which will help in quickly and
easily diagnosing the disease.

The rest of this paper is organized as follows. Section 2 illustrates reviews on recent related works.
In Section 3, the background of deep learning algorithms is presented. Our proposed Deep-Pneumonia
framework is demonstrated in Section 4. Section 5 presents the proposed four CNN architectures.
The methodology and the experimental results obtained from our proposed models are discussed in
Sections 6 and 7, respectively. Finally, conclusions and future work are presented in Section 8.

2. Related Works

Several methods have been introduced in the literature to help in detecting pneumonia using
chest X-ray images. Some of these methods use handcrafted feature extraction techniques along with a
machine learning algorithm as a classification technique, whereas others use deep learning techniques
for feature extraction and classification [11]. These methods have changed the parameters of deep
layered CNNs for pneumonia detection that can be used to obtain high accuracy in disease detection.
The authors in [12] used logistic regression as a baseline model for pneumonia detection using X-rays.
The Area Under the Curve (AUC) of logistic regression does not produce a good result. They used a
121-layer dense convolutional network (DenseNet) to achieve a better result. An Adam optimizer was
used to train the network. The AUC in the model was 0.609 in pneumonia detection, which is a little
better than logistic regression (AUC 0.60), and they clarified that the X-ray images with pneumonia are
present in only 1% of the dataset.

The researchers in [13] built a model that diagnoses pneumonia with high accuracy . The ChexNet
contains a 121-layer CNN that analyses the chest X-ray image and determines the likelihood of
pneumonia by classifying the image bilaterally (presence or absence) and locating it via a thermal map.
They used a dataset (ChestX-ray14) provided by Wang et al. [14]. Due to the difficulty of diagnosing
pneumonia, the results of the model (ChexNet) were compared with four radiologists based on F1. A
F1 score of 0.435 was obtained for the ChexNet model, and this exceeds that of the average radiologist
(0.387). The researchers in [13] faced difficulties—the front pictures were not clear, and access to the
patient’s file was not allowed.

The RSNA dataset provided by Kaggle was used in [15], and consists of 26,684 chest X-rays,
6000 of which were from patients with pneumonia, and 20,000 of which were from patients without
pneumonia. The image file type was changed to PNG and resized to reduce runtime. A sequential CNN
model with RGB images was introduced. They used maximum pooling to achieve the highest pixel
from an area of interest, and then flattened the result. Their data were split into Model 1, Model 2a, and
Model 2b, and they then used the same introduced models with various training data. These models
varied in their required outputs: Model 1 was used to classify the data as pneumonia or without
pneumonia, Model 2a was used to classify the data as normal or opaque, and Model 2b used the image
classified by Model 2a as an input and re-classified as opacity or pneumonia. Model 1 achieved an
accuracy of 78.5%, Model 2a, 68.5%, and Model 2b, 69.9%.

Similarly, the authors in [16] used the RSNA dataset provided by Kaggle to implement two
architectures: mask-RCNN and a residual network. It was used to create computer-aided detection
to detect pneumonia. In the residual network, they used residual mapping to solve the overfitting.
After each convolution and activation, they used batch normalization. They then merged binary
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cross-entropy for the loss function and the Intersection over Union (IoU). To decrease the amount of
parameters, a pooling block was used. The Mask Regional CNN was used to localize objects using
a bounding box. It was composed of two stages: Region Proposal Network (RPN) and RoI-align.
They used the bottom-up and up-extraction path using the Feature Pyramid Network (FPN) to extract
the features. The residual network had a confidence level greater than 0.7 and an accuracy of 85.60%,
and Mask-RCNN had a confidence level of 98% and an accuracy of 78.06%.

In Li et al.’s work [17], an algorithm consisting of three parts for pneumonia detection was
proposed: CXR image preprocessing, lung Region of Interest (ROI) segmentation with transfer learning,
and an automatic detection model for pneumonia based on a CNN. In medical image segmentation
tasks, the U-net model was shown. This model was used to segment ROIs from CXR images, achieving
97.7% and 97.1% segmentation accuracy with respect to the Montgomery and JavaScript Runtime (JSRT)
datasets, respectively. SENet design was used to improve the full CNN architecture. The introduced
detection models used were RetinaNet and Mask R-CNN. The CXR image dataset was obtained from
the RSNA pneumonia detection challenge. There were 8964 pneumonia-labeled CXR images, and the
remaining 20,025 were non-pneumonia CXR images. Three thousand CXR images were used as test
sets in the competition. The accuracy of Mask R-CNN was 0.183, and that of RetinaNet was 0.225.

RetinaNet and Mask R-CNN models were also used in [18]. Since the FPN produces multi-scale
feature maps with greater quality information than the default, the FPN base was used as the backbone
of both models. They used a publicly available RSNA Pneumonia Detection Challenge dataset that
consists of 26,684 unique chest X-rays. There were three classes of labels: normal, which was 29%
of all images, no lung opacity/not normal, 40%, and lung opacity, 31%. The images were split into
training (25,684) and testing (1000) images in the first stage of the competition. During the second stage,
the training was 2684, and the testing was 3000. In their experiments, the training images were divided
into two parts: actual training, 90%, and validation, 10%. The final model and the RetinaNet and Mask
R-CNN models were implemented in a Keras framework. The results for RetinaNet, Mask R-CNN,
and the combined model measured in terms of mean average precision at Stage 1 was, for RetinaNet,
0.192, for Mask R-CNN, 0.169, and for the combined model, 0.199. At Stage 2, RetinaNet was 0.202,
Mask R-CNN was 0.165, and the combined model was 0.204.

In [19], the authors presented two CNN architectures—one with a dropout layer and another
without a dropout layer. Both CNNs consisted of a convolution layer, a maximum pooling layer,
and a classification layer. A series of convolution and maximum pooling layers acted as a feature
extractor that was divided into two parts. The first part consists of two convolution layers with
32–32 units, each along with a max-pooling layer of size 3 × 3 and a Rectified Linear Unit (ReLU)
activator. The second part had two convolution layers with 64 and 128 units, respectively, along with a
maximum pooling layer of size 2× 2 and an ReLU activator. ReLU is a popular activation function that
was generally used in neural networks, especially in CNNs. The ReLU layer introduced nonlinearity
into the model. The results of the testing accuracy for the four modules were 90.68%, 89.3%, 79.8%,
and 74.9%.

For classifying normal and pneumonia patients using chest X-ray images, four common,
CNN-based, deep learning techniques were trained and tested in [1]. These algorithms were
DenseNet201, ResNet18, SqueezeNet, and AlexNet. The results showed that DenseNet201 outperforms
the other three. The accuracy, precision, and recall values of classifying pneumonia and normal images,
viral and bacterial pneumonia images, and only normal images were (98%, 97%, and 99%), (95%, 95%,
and 96%), and (93.3%, 93.7%, and 93.2%), respectively. The literature models and their results are
summarized in Table 1.

Other researchers have used performance metrics, as in [12], where only Area Under the Curve
(AUC) was used, in [13], where only F1-score was used, and in [19], where only the accuracy metric
was used. Moreover, in [15–18], accuracy and other metrics were used. However, the author in [1] is
the only one that has used all performance metrics, as in our model. Additionally, our models exceed
the others in accuracy and all other performance metrics.
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Table 1. Summary of recent work used in detecting pneumonia using a convolutional neural
network (CNN).

Research Author Technique Accuracy Recall F1-Score Precision AUC

R1
Antin B.
et al. [12]

CNN+Adam
(DenseNet121) – – – – 60.9%

R2
Rajpurkar P.

et al. [13] CNN (DensNet121) – – 43.5% – –

R3
Donthi A.
et al. [15] CNN 78.9% 90.7% – – 71.7%

R4
Almubarok A.

et al. [16]
(deep ResNet), mask

RCNN +Adam + FPN 85.60% 51.52% – – –

R5 Li B. et al. [17]
CNN (RetinaNet,

Mask R-CNN) 26.2% 83.5% – 61.1% –

R6
Sirazitdinov I.

et al. [18]

CNN (RetinaNet,
Mask R-CNN)

+ FPN principle
– 79.3% 77.5% 75.8% –

R7
Sharma H.
et al. [19] CNN (4 models) 90.68% – – – –

R8
Rahman T.

et al. [1]

AlexNet, ResNet18,
DenseNet201,
SqueezeNet

98% 99% 98.1% 97% 98%

AUC = Area Under the Curve.

3. Background of Deep Learning Algorithms

3.1. Convolutional Neural Networks (CNNs)

In recent years, the use of deep learning in clinical diagnosis and medical images has
increased rapidly; specifically, CNNs can be considered a special type of multi-layer neural network
that was built to directly identify visual patterns in pixel images with minimal preprocessing.
CNNs have many benefits, such as an ability to extract more significant features from images
rather than handcrafted features [20]. Researchers have proposed different CNN-based deep
networks for achieving image classification [21,22], image segmentation [23], object detection,
and localization in computer vision [24–26]. Besides solving natural computer vision problems, CNNs
have also been very successful and efficient in solving medical problems, such as breast cancer
detection [27], brain tumor segmentation [28], diagnosing Alzheimer’s disease, and classifications of
skin lesions [29,30]. In addition, detailed reviews about deep learning in medical image analysis have
been presented [31,32]. Various CNN models, such as ResNet, AlexNet, LeNet, VGGNet, and Inception
were developed as pre-trained models on millions of images and can be used for image classification
using transfer learning. These models have disadvantages—a very large architecture, millions of
trainable parameters that require substantial computing power, and high time consumption [26].
Moreover, when the used dataset size is small, these models may overfit the training data, resulting in
poor classification accuracy.

3.2. Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) are the other type of deep learning technique and are mainly
used for prediction purposes. They feed the output from the previous step and use it as an input for
the current step. In this case, the networks themselves have repetitive loops. These loops, which are
in the hidden neurons, allow for the storing of previous input information for a while so that the
system can predict future outputs. Its most important feature is the hidden state, which remembers
information about the sequence. They are also powerful tools for obtaining healthier modeling and
prediction performance. The problem is that, when the network contains a large number of deep
layers, they become untrained, which is called the vanishing gradient problem [33].
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3.3. Long Short-Term Memory (LSTM)

One of the most famous types of RNN is the Long Short-Term Memory (LSTM) technique,
which can be used mainly for large neural networks. The main benefit of the LSTM is that it can
model both short- and long-term memory and can address the disappearance of the vanishing gradient
problem that appears in RNNs by training on long strings and keeping them in memory [33]. These are
the main types of deep learning techniques. These motivated us to build a CNN and LSTM combination
architecture that helps to extract features and image classification, using the advantages of both types.

3.4. Pre-Trained Convolutional Neural Networks

There are two well-known pre-trained deep learning methods based on CNNs: ResNet152v2 and
MobileNetv2 [34]. These models have many applications, such as classification, feature extraction,
and prediction.

• ResNet152v2 Architecture

Residual Network (ResNet) is a CNN architecture with hundreds or thousands of convolutional
layers. Previous CNN structures decreased the efficacy of additional layers. ResNet contains a
huge number of layers, with strong performance [34]. The primary difference between ResNetV2
and the original (V1) is that V2 uses batch normalization before each weight layer. In the field of
image recognition and localization tasks, ResNet has strong performance that demonstrates the
importance of many visual recognition tasks.

• MobileNetV2 Architecture

The architecture of MobileNetV2 is based on an inverted residual structure where the shortcut
connections of the residual block are between the thin bottleneck layers. The intermediate
expansion layer of the MobileNetV2 uses lightweight depth-wise convolutions in order to filter
the features. In traditional residual models, expanded representations in the input are used [34].
MobileNetV2 consists of the primary full convolution layer through 32 filters, followed by 19
residual bottleneck layers.

4. The Deep-Pneumonia Framework

As seen in the literature, there have been many deep learning models introduced to diagnosis
pneumonia from chest X-ray images. These models introduce various values in performance metrics
to verify the model validation. One of the extreme challenges has been to find an appropriate and
efficient model that meets all performance metrics. The objectives of our study are (i) to propose a
deep learning framework for pneumonia classification with four different models, and (ii) to evaluate
the proposed models by comparing them with different recently introduced models. A deep learning
framework for pneumonia diagnosis was developed, as shown in Figure 1. Our model has mainly
two tiers. The first tier is responsible for image pre-processing, such as resizing, augmentation, data
splitting, and data normalization. Data normalization is used for re-scaling the image’s pixel value to
the interval [0,1]. The second tier works on feature extraction and image classification using different
types of deep learning models.

The first tier includes image pre-processing, such as resizing, augmentation, data splitting,
and normalization. The images are resized to 224 × 224 × 3. For increasing the number of training
images to produce efficient and reliable pneumonia diagnosis systems, data augmentation techniques
are used, such as rotate, flip, and skewing. The second tier starts by using the pre-processed image as
its input, with a size of 224 × 224 × 3, followed by the deep learning model for feature extraction and
image classification.
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Figure 1. The proposed deep learning framework for pneumonia diagnosis.

5. The Proposed Architectures

In this framework, four different types of supervised deep learning models are developed: CNN,
LSTM-CNN, Resenet152V2, and MobilenetV2.

5.1. CNN Model

Deep neural networks with convolutional neural networks (CNNs) are employed to identify the
pneumonia diagnosis of chest X-rays as a feature extraction and classification method. The proposed
CNN model is demonstrated in Figure 2. It consists of input, feature extraction, and classification layers.

Figure 2. Proposed CNN architecture.

The input layer has a 224 × 224 × 3 chest image. The feature extraction part consists of four
CNN blocks. Each one of these blocks has mainly a convolution layer, a batch normalization layer,
and a ReLU layer. It may have maximum pooling and a dropout layer, as shown in Figure 2. The
output of the feature extraction part is then passed to the flattened layer to change the data shape to
a one-dimensional data vector, which is the correctly used format for the classification dense layer.
The dense layer is the regular, deeply connected neural network layer. It is the most common and
frequently used layer, where every input is connected to every output [34]. Here, we use three dense
layers and four dropout layers. The final output is produced from a dense layer with sigmoid activation
function that classifies the output image to Pneumonia (represented in the figure by blue arrow) or
normal (represented by red arrow). The proposed CNN model architecture is listed in Table 2, and the
main function of the code is shown in Figure 3. The total number of model parameters is 38,320,049:
the trainable parameters amount to 38,319,889, and the non-trainable parameters only amount to 160.



Diagnostics 2020, 10, 649 7 of 16

Figure 3. The main function code of the CNN model.

Table 2. The proposed CNN model architecture.

Layer (Type) Output Shape Parameters

conv2d_37 (Conv2D) (None, 224, 224, 16) 448
activation_37 (Activation) (None, 224, 224, 16) 0

batch_normalization_19 (Batch) (None, 224, 224, 16) 64
conv2d_38 (Conv2D) (None, 224, 224, 32) 4640

activation_38 (Activation) (None, 224, 224, 32) 0
max_pooling2d_19 (MaxPooling2d) (None, 74, 74, 32) 0

dropout_37 (Dropout) (None, 74, 74, 32) 0
conv2d_39(Conv2D) (None, 72, 72, 64) 18,496

activation_39 (Activation) (None, 72, 72, 64) 0
batch_normalization_20 (Batch) (None, 72, 72, 64) 256

conv2d_40 (Conv2D) (None, 71, 71, 128) 32,896
max_pooling2d_20 (MaxPooling2d) (None, 24, 24, 128) 0

dropout_38 (Dropout) (None, 24, 24, 128) 0
flatten_10 (Flatten) (None, 73728) 0
dense_28 (Dense) (None, 512) 37,749,248

dropout_39 (Dropout) (None, 512) 0
dense_29 (Dense) (None, 1000) 513,000

dropout_40 (Dropout) (None, 1000) 0
dense_30 (Dense) (None, 1) 1001

activation_40 (Activation) (None, 1) 0

5.2. The LSTM-CNN Model

LSTM is one of the recurrent neural network (RNN) architectures. LSTM has the ability of an RNN
in modeling time series. A combination of LSTM and CNN was introduced in [35]. The LSTM-CNN
proposed model is shown in Figure 4. As Figure 4 illustrates, a batch normalized layer is used
before LSTM to prepare the input for LSTM. Time distribution is used with LSTM and the first
CNN layers to change the images into time series data that are suitable for the LSTM structure, and
this is followed by four CNN blocks, each of which basically has a convolutional layer and a batch
normalization layer, and some blocks also have pooling and dropout layers. This part is for the
feature extraction. The classification part consists of a flattened layer, two blocks of dense dropout
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layers, and a dense output layer with sigmoid activation function that classifies the output image
to Pneumonia (represented in the figure by blue arrow) or normal (represented by red arrow). The
proposed LSTM-CNN model architecture is demonstrated in Table 3, and the main function of the
LSTM-CNN code is shown in Figure 5. The total number of parameters is 3,825,917: the trainable
parameters amount to 3,825,655, and the non-trainable parameters only amount to 262.

Figure 4. Proposed LSTM-CNN architecture.

Figure 5. The main function code of the LSTM-CNN model.

Table 3. The proposed LSTM-CNN model architecture.

Layer (Type) Output Shape Parameters

batch_normalization_7 (Batch) (None, 224, 224, 3) 12
time_distribution_6 (TimeDistribution) (None, 224, 224, 64) 17,408
time_distribution_6 (TimeDistribution) (None, 224, 224, 64) 12,352

activation_9 (Activation) (None, 224, 224, 64) 0
batch_normalization_8 (Batch) (None, 224, 224, 64) 256

max_pooling2d_7 (MaxPooling2d) (None, 74, 74, 64) 0
conv2d_7 (Conv2D) (None, 74, 74, 32) 18,464

activation_10 (Activation) (None, 74, 74, 32) 0
max_pooling2d_8 (MaxPooling2d) (None, 24, 24, 32) 0

dropout_9 (Dropout) (None, 24, 24, 32) 0
conv2d_8(Conv2D) (None, 22, 22, 64) 18,496

activation_11 (Activation) (None, 22, 22, 64) 0
batch_normalization_9 (Batch) (None, 22, 22, 64) 256

conv2d_9 (Conv2D) (None, 21, 21, 128) 32,896
max_pooling2d_9 (MaxPooling2d) (None, 7, 7, 128) 0

dropout_10 (Dropout) (None, 7, 7, 128) 0
flatten_3 (Flatten) (None, 6272) 0
dense_7 (Dense) (None, 512) 3,211,776

dropout_11 (Dropout) (None, 512) 0
dense_8 (Dense) (None, 1000) 513,000

dropout_12 (Dropout) (None, 1000) 0
dense_9 (Dense) (None, 1) 1001

activation_12 (Activation) (None, 1) 0
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5.3. Pre-Trained Models

ResNet152V2 and MobileNetV2 are also used as feature extraction models, as shown in
Figures 6 and 7, respectively. These models can train the input based on their pre-trained initial
weights. This approach accelerates the training and coverage to high accuracy. Each model architecture
contains the original model followed by a reshape step, flatten step, first dense layer, a dropout layer,
second dense layer, and finally an activation function that classify the image to Pneumonia or normal
represented in the figure by blue and red arrows, respectively. Their architectures are illustrated in
Tables 4 and 5, respectively. The main functions of the ResNet152V2 and MobileNetV2 codes are shown
in Figure 8 and Figure 9, respectively. The total parameters of the ResNet152V2 amount to 84,022,273:
the trainable parameters amount to 83,878,529, and the non-trainable parameters amount to 143,744.
For the MobileNetV2, they amount to 34,371,649: 34,337,537 and 34,112 trainable and non-trainable
parameters, respectively.

Figure 6. ResNet152V2 architecture.

Figure 7. MobileNetV2 architecture.

Figure 8. The main function code of the ResNet152V2 model.
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Figure 9. The main function code of the MobileNetV2 model.

Table 4. The pre-trained ResNet152V2 model architecture.

Layer (Type) Output Shape Parameters

resnet152v2 (Model) (None, 4, 4, 2048) 58,331,648
reshape_2 (Reshape) (None, 4, 4, 2048) 0

flatten_2 (Flatten) (None, 100352) 0
dense_3 (Dense) (None, 256) 25,690,368

dropout_2 (Dropout) (None, 256) 0
dense_4 (Dense) (None, 1) 257

Table 5. The pre-trained MobileNetV2 model architecture.

Layer (Type) Output Shape Parameters

mobilenetv2_1.00_224 (Model) (None, 7, 7, 1280) 2,257,984
reshape_2 (Reshape) (None, 7, 7, 1280) 0

flatten_2 (Flatten) (None, 62720) 0
dense_3 (Dense) (None, 512) 32,113,152

dropout_2 (Dropout) (None, 512) 0
dense_4 (Dense) (None, 1) 513

6. Methodology

6.1. Dataset

In our work, a publicly available Pneumonia Detection dataset of chest X-rays in Kaggle [36]
was used, which consists of a total of 5856 images captured by a digital computed radiography (CR)
system. Approximately 1583 of them are normal, and 4273 indicate pneumonia (65% for bacterial
pneumonia and 35% for viral pneumonia). As shown in Figure 10, samples of chest X-ray images for
normal cases and pneumonia cases are shown with different characteristics, such as Deep Dream filter.
These images were augmented to increase the number of images for each classification—30,855 images:
8353 normal images and 22,502 pneumonia images. The patients’ ages in this dataset were divided
into four ranges: about 6.5% of the patients were <20 years old, 26.4% were between 20 and 40, 42.8%
were between 40 and 60, and 24.3% were >60. Regarding the patient’s gender in the dataset, 44% of the
images represent female cases, and 56% represent male cases [36]. The images in the dataset range
have resolutions ranging from 712 × 439 pixels to 2338 × 2025 pixels. Before inputting the images
into the models, we downscaled the images to 224 × 224. In our framework, the training images are
divided as follows: 70% for training and 30% for validation. The sample images were randomly split
into two parts (train and validation).
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Figure 10. Chest X-ray images: (a) Normal images with and without a deep dream filter; (b) pneumonia
images with and without a deep dream filter.

6.2. The Used Deep-Pneumonia Platform

Our models were run using the pro version of Google Colab [37], which has 200 GB for storage,
25 GB RAM, and a P100 Graphical Processing Unit (GPU) processor. To obtain the statistical results,
the pneumonia images were augmented using an Augmentor API in Keras [37] by image rotation,
skew, and shift, and resizing and normalization were applied. The resulting images were fed into
our deep learning models. The optimizer and fit functions were used to train and validate these
models, where each model ran around 500 epochs and each epoch has 8 steps with a batch size of 32.
The results were obtained by applying the equations for each performance metric [1] to the resulting
validation data outputs and the recorded results represented the maximum obtained validation values.
The complete code for our deep learning framework models was uploaded to the GitHub website
in [38]. The proposed framework steps are summarized in Figure 11.

Figure 11. The proposed Deep-Pneumonia framework steps.

The performance of the deep learning system was evaluated based on such matrices as Loss,
Accuracy, Precision, F1-score, Recall (Sensitivity), and Area Under the Curve (AUC) [1].

7. Experimental Results and Discussion

To study the performance of the pneumonia diagnosis with deep learning frameworks, the Python
programming language with the help of Keras [34] was used for framework implementation.
Google Colab [37] was used in the GPU runtime in the training and validation phases. ReLU and
sigmoid activation functions were used for the hidden layers and the output layer, respectively.
The number of epochs changed from 200 to 300 epochs based on the type of model, and the batch size
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was 32 for both the training and validation parts. The optimizer used for the pre-trained models is the
Stochastic gradient descent (SGD) optimizer while the Adamax optimizer is used for the CNN and
LSTM-CNN models. Finally, the learning rate (LR) and network parameters for all models are listed in
Table 6.

Table 6. Models’ training parameters.

Models Optimizer Learning Rate (LR) Total Number of Parameters

Pre-trained models ResNet152V2 SGD 0.0001 84,022,273
MobileNetV2 SGD 0.0001 34,371,649

Our proposed models CNN Adamax 0.00003 38,320,049
LSTM-CNN Adamax 0.00006 3,825,917

SGD = Stochastic gradient descent

Table 7 illustrates the validation metric values for the proposed models: ResNet152V2,
MobileNetV2, CNN, and LSTM-CNN. The accuracy, precision, F1-score, and recall were calculated.

Table 7. The performance validation of the proposed models.

Models Loss Accuracy Precision AUC F1-Score Recall

Pre-trained models ResNet152V2 0.0523 99.22% 99.44% 99.77% 99.44% 99.43%
MobileNetV2 0.1665 96.48% 95.68% 97.50% 97.52% 99.44%

Our proposed models CNN 0.3020 92.19% 95.57% 96.92% 93.79% 92.07%
LSTM-CNN 0.5771 91.80% 93.24% 95.49% 92.29% 92.62%

A comparison between the proposed completed work of this paper and the validation results of
the other recent works introduced based on the same chest X-ray dataset is illustrated in Table 8.
Research R1, R2, and R7 reported only one performance metric: AUC, F1-score, and accuracy,
respectively. Accuracy, recall, and AUC were measured in R3. Only accuracy and recall were calculated
in R4. The authors in R5 focused on accuracy, recall, and precision. R6 calculated recall, F1-score,
and precision. Only one piece of research, R8, reported all five validation metrics. As clearly shown in
Table 8, it is evident that our proposed ResNet152V2 model achieves the highest results for all used
performance metrics in comparison with these previous works—represented by the bold numbers
in the table. Additionally, all our proposed models exceed the recently introduced methods in the
literature.

Table 8. Comparison with related works.

Research Author Accuracy Recall F1-Score Precision AUC

R1 Antin B. et al. [12] – – – – 60.9%
R2 Rajpurkar P. et al. [13] – – 43.5% – –
R3 Donthi A. et al. [15] 78.9% 90.7% – – 71.1%
R4 Almubarok A. et al. [16] 85.60% 51.52% – – –
R5 Li B. et al. [17] 26.2% 83.5% – 61.1% –
R6 Sirazitdinoy I. et al. [18] – 79.3% 77.5% 75.8% –
R7 Sharma H. et al. [19] 90.68% – – – –
R8 Rahman T. et al. [1] 98% 99% 98.1% 97% 98%

The proposed
four models

ResNet152V2 99.22% 99.43% 99.44% 99.44% 99.77%
MobileNetV2 96.48% 99.44% 97.52% 95.68% 97.50%

CNN 92.19% 92.07% 93.79% 95.57% 96.92%
LSTM-CNN 91.80% 92.62% 92.29% 93.24% 95.49%

Bold number: ResNet152V2 model achieves the highest results for all used performance metrics in comparison with
these previous works.

The accuracy percentages of detecting pneumonia using CNN models in the recent works and the
models presented in this work are illustrated in Figure 12. It is clear that our ResNet152V2 model has
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the best accuracy value (99.22%) compared with the other research, the highest accuracy reported of
which is 98%. In Figure 13, our two proposed models, ResNet152V2 and MobileNetV2, achieve the
best recall values for pneumonia detection, with values of 99.44% and 99.43%, respectively, compared
with the 99% reported in R8.

Figure 12. Accuracy performance metric.

Figure 13. Recall performance metric.

Likewise, in Figures 14–16, the F1-score, precision, and AUC are presented, respectively. Each of
our proposed four models are compared against the previous, similar work. As clearly shown in the
figures, the ResNet152V2 model obtains 99.44%, 99.44%, and 99.77% in F1-score, precision, and AUC,
respectively. By comparing this with the 98.1%, 97%, and 98% values reported in the recent research,
we conclude that the proposed ResNet152V2 model is the highest performing model. In addition to
that, the other three proposed models achieve results with more than 90% in accuracy, recall, F1-score,
precision, and AUC, which is superior to those of the other recently introduced models.

Figure 14. F1-score performance metric.
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Figure 15. Precision performance metric.

Figure 16. Area Under the Curve (AUC) performance metric.

8. Conclusions and Future Work

In this paper, a deep learning framework for pneumonia classification with four different CNN
models was proposed. Two of them were pre-trained models, ResNet152V2 and MobileNetV2, and
the others were designed from scratch. We evaluated the proposed models by comparing them with
recent, similar research. The experiment performance of our proposed deep learning framework was
assessed based on accuracy, precision, F1-score, recall, and AUC, and our model showed values of
99.22%, 99.43%, 99.44%, 99.44%, and 99.77%, respectively. It is evident that our proposed ResNet152V2
model accomplished the highest results compared with the others. Moreover, the other three proposed
models, MobileNetV2, CNN, and LSTM-CNN, achieved results of more than 91% in accuracy, recall,
F1-score, precision, and AUC.

For future work, we plan to apply other CNNs and RNNs as bidirectional LSTM architectures
and pre-trained models for detecting pneumonia using chest X-ray images.
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