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Abstract

Pyridoxine-dependent epilepsy (PDE) was historically defined by a dramatic clinical response to 

a trial of pyridoxine and the re-emergence of seizures after withdrawal of pyridoxine. Research 

conducted over the last seven decades has revealed that the phenotype of PDE results from 

multiple genetic disorders, and the most common disorder, PDE-ALDH7A1, is caused by a 

deficiency of an enzyme involved in lysine metabolism. PDE-ALDH7A1 is characterized by more 

than epilepsy, as many patients have abnormalities of brain development, and most patients have 

intellectual and developmental disability. Treatment aimed at the underlying metabolic defect, 

in addition to pyridoxine supplementation, has improved clinical outcomes. Recently discovered 

biomarkers and genetic testing allow for the diagnosis of PDE-ALDH7A1 without the need of 

a pyridoxine trial and hold the promise for newborn screening. Despite these many advances, 

PDE-ALDH7A1 remains a clinical and biochemical conundrum. The increasing use of model 

systems and an international collaboration of clinician-scientists are among the reasons to be 

optimistic that these questions will be answered in the near future and that the clinical outcomes 

and quality of life will continue to improve for patients with PDE-ALDH7A1.
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Pyridoxine-Dependent Epilepsy (PDE): Essential Clinical Features and 

Historical Aspects

First reported by Hunt and colleagues in 1954,1 PDE is frequently described as the 

prototypical metabolic epileptic encephalopathy that is unresponsive to antiseizure drugs, 

but which is generally successfully treated with a vitamin or another cofactor. These 

patients commonly present with medication-resistant neonatal seizures that may lead to 

status epilepticus and that come under control only with the addition of pharmacologic 

doses of pyridoxine (vitamin B6) to their treatment regimen.2–4 Concomitant improvement 

in the electroencephalogram (EEG) may occur as well, particularly if the patient is 

experiencing ongoing clinical seizures and EEG monitoring is conducted at the time of 

pyridoxine administration (Figure 1).6 The long-term treatment of these patients requires 

daily supplementation of large (i.e., pharmacologic, not physiologic) doses of pyridoxine.2–

4 Hence, these individuals are dependent on the vitamin; they are not deficient. Indeed, 

clinical pyridoxine deficiency is rare, with an incidence of 0.23 cases/100 000 person-year in 

US military personal;7 significant deficiency is associated with irritability, abdominal pain, 

insomnia, weakness, and difficulty with ambulation.8 In childhood, the most often cited 

example was iatrogenic pyridoxine deficiency secondary to an error in the manufacturing 

of infant formula, which led to an epileptic encephalopathy quite similar to the neonatal 

presentation of PDE.9,10 Importantly, a pyridoxine deficiency may be induced by treatment 

with isoniazid, and pyridoxine is the antidote for isoniazid overdose.11

Prior to the discovery of the genetic etiologies of the now three established forms of PDE, 

the disorder could only be clinically proven by withdrawing the vitamin from a patient 

who had been successfully treated, in order to demonstrate that clinical seizures would 

reemerge, generally within a few days, and then be controlled once again by reintroducing 

the vitamin supplement.2–4 Now, as clinicians have become more familiar with PDE, 

many patients are treated proactively with pyridoxine, and the diagnosis of the disorder 

is demonstrated either through the detection of biomarkers and/or by genetic testing.3 In 

addition, with the availability of targeted genetic screening for epileptic encephalopathies, 

some patients with PDE are diagnosed prior to institution of pyridoxine treatment. An 

important distinction to mention is that some patients whose seizures were controlled 

after the addition of pyridoxine do not have a reappearance of clinical seizures after the 

withdrawal of the vitamin supplementation. These patients are deemed to be pyridoxine 

responsive,12 and it has therefore been suggested that the vitamin may have some intrinsic 

antiseizure effects. For example, the clinical efficacy of pyridoxine in treating seizures in 

patients with epilepsy due to mutations in KCNQ2 and in some patients with infantile 

spasms has been reported.13,14

The Three Established Forms of PDE

Since the initial description of PDE in 1954, additional clinical reports of patients with PDE 

have appeared, together with a rapidly increasing number of publications describing the 

natural history, imaging characteristics, neurophysiological features, phenotypic variations, 

genetic and biochemical features, and treatment recommendations. In a review of the 
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Medline database, between 1954 and 2022, 333 papers concerning PDE have been 

published, with 72% of the papers appearing since 2005. It is now established that there 

are at least three forms of PDE (Table 1). The first type of PDE to be molecularly 

characterized, in 2005, is associated with biallelic pathogenic variants in the PNPO gene, 

which encodes pyridox(am)ine 5′-phosphate oxidase (OMIM 610090).15 This condition is 

designated as PDE-PNPO, or PNPO deficiency, and an important feature of this disorder is 

that approximately 60% of affected patients require treatment with pyridoxal-5′-phosphate 

(PLP), the biologically active form of pyridoxine, rather than pyridoxine.16 A second form 

of PDE, due to biallelic pathogenic variants in PLPBP, which encodes PLP homeostasis 

protein (PLPHP), was discovered in 2016 (OMIM 617290).17 PLP binds to PLPHP, but little 

is known about the function of this protein.18 Sandwiched between the discovery of these 

two disorders was the 2006 demonstration of the biochemical and genetic etiology of the 

most thoroughly described and studied form of PDE. This pyridoxine-dependent metabolic 

epileptic encephalopathy is due to biallelic pathogenic variants in ALDH7A1, the gene that 

encodes the enzyme α-aminoadipic acid semialdehyde (α-AASA) dehydrogenase (OMIM 

266100).19 This condition is now designated as PDE-ALDH7A1.3 It should be stressed 

that while PDE-ALDH7A1 is the best studied form of PDE, the specific form of PDE that 

affected the first PDE patient described by Hunt and colleagues in 1954, along with many 

additional patients reported through the latter half of the 20th century, is not established. 

PDE-ALDH7A1 will be the topic of this review, which will focus on clinical, biochemical, 

and genetic features of the disease, with a particular emphasis on recent developments and 

ongoing research questions.

Clinical, Genetic, and Biochemical Aspects of PDE-ALDH7A1

Natural history

PDE-ALDH7A1 is inherited in an autosomal recessive manner and is a rare cause of 

epileptic encephalopathy. Over 200 affected individuals have been reported either in 

the literature or through rare disease patient registries,2,4,20–25 and the estimated birth 

incidence is 1:64,352.23 The classic neonatal presentation has been well-described in 

textbooks for several decades. These infants develop medication-resistant seizures within 

the first several days of life, with some mothers having reported unusual rhythmic 

fetal movements concerning for intrauterine fetal seizures. In some instances, affected 

newborns have signs suggestive of birth asphyxia, which can lead to a missed or delayed 

diagnosis.4,21,26–28 A variety of clinical seizure types have been described, including partial, 

generalized, atonic, myoclonic events, and epileptic spasms. In many instances, patients 

develop status epilepticus, which may be clinically obscured by the administration of 

multiple antiseizure medications, but seizures persist electrographically.2,4,21 Patients not 

yet treated with pyridoxine may have waxing and waning encephalopathy, and periods of 

recurrent seizure activity may be preceded or accompanied by unusual eye movements 

or facial grimacing.29 A variety of atypical presentations have been described, including 

onset outside of the neonatal period (up to three years of age and rarely presenting in 

adolescence or later20,21,30–32); seizures that initially respond to antiseizure medications 

but become intractable; seizures that initially do not respond to the initial administration 

of pyridoxine but are subsequently controlled with pyridoxine treatment; and patients 
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who have a prolonged seizure-free interval (up to five months) after a trial of pyridoxine 

discontinuation.2,4,21

The natural history of patients with PDE-ALDH7A1 is variable, both with respect to control 

of seizures and intellectual development. While the sine qua non of PDE is that the affected 

patient’s seizures only come under (often dramatic) control once pyridoxine is added, there 

are patients who, over time, may require one or more anti-seizure medications.2,4 This may 

occur in patients with either the classic neonatal presentation or atypical manifestations. 

Approximately 75% of patients have some degree of neurodevelopmental disability, ranging 

from mild to severe intellectual disability, autistic features, and other behavioral problems.2–

4 Verbal skills, particularly expressive language, tend to be more impaired. Patients with 

later-onset of seizures and those with a prompt early diagnosis and treatment tend to have 

a better prognosis, but this is not always the case.2,4,30,33 This variable natural history 

may also be due, in part, to associated brain dysgenesis, unknown genotype–phenotype 

correlations, and levels of one or more toxic metabolites.

Associated developmental features

Patients with PDE-ALDH7A1 may have congenital and/or progressive abnormalities of 

brain development. Thinning of the posterior corpus callosum, primarily the isthmus 

(Figure 2), is universal and can be quantitatively demonstrated via magnetic resonance 

imaging (MRI) geometric morphometry.34,35 In addition, mega cisterna magna and 

other posterior fossa abnormalities have been noted in approximately 20% of patients 

(Figure 2).34 Uncommonly, heterotopia and other forms of cortical dysplasia have been 

demonstrated with imaging and neuropathological studies.36–38 Obstructive hydrocephalus 

and progressive ventriculomegaly (hydrocephalus ex vacuo, presumably due to late 

diagnosis and/or poor seizure control) have been described.39 Other developmental 

abnormalities include congenital cataracts40 as well as variable pattern of facial 

dysmorphism that includes hypertelorism, depressed nasal bridge, epicanthal folds,41 

high hairline, pointed chin, full eyebrows, and broad nasal root (Gospe, unpublished 

observations).

Biochemical pathophysiology and genetics

PDE-ALDH7A1 is a metabolic encephalopathy due to an inborn error of lysine catabolism. 

Biallelic pathogenic variants in ALDH7A1 result in absence or dysfunction of α-AASA 

dehydrogenase (also known as antiquitin), the enzyme that oxidizes α-AASA to α-

aminoadipic acid.19 The underlying pathophysiology of PDE-ALDH7A1 is due to an 

accumulation of several intermediate metabolites in both the pipecolic acid and saccharopine 

branches of the lysine catabolic pathway, including pipecolic acid, α-AASA, and Δ1-

piperideine-6-carboxylate (Δ1-P6C) (Figure 3). Through a Knoevenagel condensation 

reaction, Δ1-P6C binds and effectively deactivates PLP, the cofactor that is required for 

the function of more than 160 enzymatic activities in human cells.42 Dysfunction of 

one or several PLP-dependent enzymes likely contributes to the epileptic encephalopathy 

experienced by these patients. In particular, dysfunction of glutamic acid decarboxylase, 

which converts excitatory glutamic acid to inhibitory gamma-aminobutyric acid (GABA), 

was first suggested in 1960 by Scriver,43 and reduced GABA synthesis has been 
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demonstrated in cultured fibroblasts from a PDE-ALDH7A1 patient.44 Reduced activity 

of this enzyme would result in an excitatory/inhibitory imbalance that could underly 

the epileptic encephalopathy. It is a stark coincidence that while these patients are not 

pyridoxine deficient, they have a secondary PLP deficiency, thereby requiring large daily 

supplements of pyridoxine.

Biomarkers

The diagnosis of PDE-ALDH7A1 is now facilitated through the detection of biomarkers 

in biological fluids and the confirmation of pathogenic variants through testing of the 

ALDH7A1 gene. Assays for α-AASA45 and pipecolic acid46 can be conducted on urine 

or blood, and if elevated in a patient with an epileptic encephalopathy would suggest a 

diagnosis of PDE-ALDH7A1.3 It must be stressed that these metabolites are not specific, 

as α-AASA can also be elevated in patients with molybdenum cofactor deficiency and 

isolated sulfite oxidase deficiency,47 and pipecolic acid can be elevated in patients with 

peroxisomal disorders.48 In addition, in older patients with PDE-ALDH7A1 treated with 

pyridoxine, pipecolic acid levels may normalize.49,50 Therefore, specific confirmation of 

PDE-ALDH7A1 requires an evaluation of the ALDH7A1 gene, generally via both sequence 

analysis, which will detect >95% of pathogenic variants, and deletion/duplication analysis 

that will detect <5% of pathogenic variants.23 Evaluation of ALDH7A1 can be done through 

specific gene testing, multigene panels, and comprehensive genomic testing. The common 

c.1279G>C (p.Glu427Gln) variant in exon 14 accounts for approximately 33% of the 

pathogenic variants. Importantly, homozygous c.1279G>C variants have been reported in 

both patients with classic neonatal-onset PDE-ALDH7A1 and late-onset disease.20–23

The identification of these biomarkers and the availability of genetic testing was critical 

to the understanding of PDE-ALDH7A1. As we have already discussed, there are multiple 

genetic causes of PDE that may present with a similar seizure phenotype, and each genetic 

cause has unique implications for treatment.51 Most notably, establishing PDE-ALDH7A1 
as a disorder of lysine catabolism had distinct treatment implications that will be discussed 

later. Despite the diagnostic implication of elevated pipecolic acid and α-AASA/Δ1-P6C, 

these biomarkers also had some limitations. Importantly, α-AASA/Δ1-P6C is relatively 

unstable at room temperature, which requires samples to be frozen prior to shipment to 

diagnostic laboratories.52–54 This may limit the availability of biochemical testing, and 

makes the possibility of extending these biomarkers to newborn screening impractical.

In 2019, the metabolite 6-oxo-pipecolate (6-oxo-2-piperidinecarboxylic acid) was identified 

in children and adolescents with PDE-ALDH7A1.55 Previous studies in Penicillium 
chrysogenum demonstrated that 6-oxo-pipecolate was a product of the lysine biosynthetic 

pathway.56,57 The main benefit of 6-oxo-pipecolate over existing biomarkers was the relative 

stability at room temperature.55 Shortly thereafter, a second novel biomarker was identified: 

2S,6S-/2S,6R-oxopropylpiperidine-2-carboxylic acid (2-OPP).58 Although the role of 2-OPP 

in lysine degradation is less clear, infrared ion spectroscopy suggests 2-OPP may result 

from the reaction between Δ1-P6C and acetoacetate.59 Similar to 6-oxo-pipecolate, 2-OPP 

is relatively stable at room temperature and may have implications for the underlying 

pathophysiology of disease58 (Figure 3).
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Potential for newborn screening

As discussed above, new biomarkers were initially investigated to pursue metabolite-based 

newborn screening. Although rare, it appears as though newborns with PDE-ALDH7A1 
have had fatal status epilepticus before treatment with pyridoxine could be initiated.21,37,38 

Additionally, treatment with both pyridoxine and lysine reduction therapies in the first 

six months of life has been associated with significant developmental improvements (see 

below).24 Therefore, the delay in diagnosis and treatment may be the most significant 

contributor to mortality and morbidity in this treatable disorder, and suggests that PDE-

ALDH7A1 may be an ideal candidate for newborn screening.60 Indeed, it was recently 

selected as a top priority for newborn screening by members of the US Pediatric Epilepsy 

Research Consortium.61

The first study focused on newborn screening measured α-AASA and Δ1-P6C in residual 

dried blood spots, although neither metabolite was detected in unrefrigerated samples.62 

Pipecolic acid has also been proposed as a primary biomarker for newborn screening of 

PDE-ALDH7A1.63 The lack of stability (α-AASA/Δ1-P6C) and concerns about sensitivity 

and specificity (pipecolic acid) make these biomarkers less than ideal. Both 6-oxo-pipecolate 

and 2-OPP are promising biomarkers for newborn screening and have been elevated in 

dried blood spots from affected patients.55,58 These pilot studies are encouraging, including 

one study documenting elevated 6-oxo-pipecolate in a 33-year-old residual dried blood 

spot (Woontner et al. in review), although larger studies are still needed before newborn 

screening of PDE-ALDH7A1 will be widely adopted.

Treatment of PDE-ALDH7A1

Initial recommendations for the diagnosis, treatment, and follow-up of patients with PDE-

ALDH7A1 were published in 2011,64 and treatment recommendations were updated after 

the first study using a lysine-restricted diet.65 In 2021 the first consensus guidelines for the 

diagnosis and management of PDE-ALDH7A1 were published by the International PDE 

Consortium (www.pdeonline.org).3 Recommendations were based on several individual 

factors such as the age of the patient and the severity of the phenotype. The authors 

were transparent about the relatively low level of available evidence, and many of the 

recommendations relied on expert consensus.

Pyridoxine supplementation

PDE is historically defined based on the resolution of seizures following treatment with 

pharmacologic doses of pyridoxine,1 and treatment with pyridoxine remains central to 

the treatment of the epilepsy that has defined this disorder. The importance of vitamin 

B6 supplementation is highlighted by the recurrence of seizures following pyridoxine 

withdrawal66–70 and case reports that describe patients who died before pyridoxine was 

administered.21,37,38 As noted above, patients with PDE-ALDH7A1 have a secondary 

deficiency of PLP most likely due to a Knoevenagel reaction between the accumulating 

Δ1-P6C and PLP.19 Treatment with pyridoxine, as opposed to PLP, is recommended 

for several reasons. There is an association between PLP supplementation and cirrhosis, 

including at doses usually required for successful treatment of seizures.71,72 It is also worth 
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considering that commercial pyridoxine preparations are relatively easy to obtain and stable, 

whereas PLP degrades quickly when exposed to light.73 The International PDE Consortium 

consensus guideline for pyridoxine supplementation by age is listed in Table 2. Note that 

these pharmacologic doses are substantially higher than the recommended dietary allowance 

(physiologic doses), which ranges from 0.1 mg for infants to 2 mg for lactating females.74 

While there is a risk of peripheral neuropathy when the dose of pyridoxine exceeds 500 

mg/day,33,75 the vast majority of patients with PDE-ALDH7A1 do not require such large 

doses for seizure control. Some patients may require one or more anti-seizure medications, 

in addition to the maximum recommended dose of pyridoxine, to achieve control of their 

seizures.

There have been many reports of presumed intrauterine fetal seizures in newborns 

subsequently diagnosed with PDE-ALDH7A1. As there is a 25% recurrence risk for a 

couple having another affected child, maternal pyridoxine supplementation during gestation 

has been proposed for these at-risk pregnancies, specifically to help control intrauterine 

seizures and improve developmental outcome.76 Ideally, plans should be made for the fetus 

to be delivered at an institution that is equipped to care for a newborn at risk of developing 

an epileptic encephalopathy, and the baby should receive pyridoxine supplementation until 

the results of confirmatory biochemical studies and/or gene testing have been obtained.

Lysine-reduction therapies

From the early description of the disorder, patients with PDE were described as having 

intellectual or developmental disability (IDD).1,77 More recent studies noted that there was 

no association between the time of seizure onset or severity and IDD, suggesting the poor 

developmental outcomes may be due to a separate disease mechanism.25,78 The discovery 

that PDE-ALDH7A1 was, in fact, an organic aciduria led to the current hypothesis that 

accumulating α-AASA (or related) metabolites are neurotoxic and contribute to the IDD 

phenotype.64 Current adjunct (to pyridoxine) therapies attempt to reduce the nutritional 

intake of lysine or reduce the transport of lysine and are collectively referred to as lysine-

reduction therapies (LRTs).

In a cross-sectional study of seven subjects, van Karnebeek et al. treated patients with 

PDE-ALDH7A1 with pyridoxine and a lysine-free medical formula and demonstrated a 

decrease in pipecolic acid, α-AASA, and Δ1-P6C.79 Shortly thereafter, a single patient 

was treated with pyridoxine and arginine, as the dibasic amino acids lysine, arginine, and 

ornithine are transported by the same cationic transporter in the intestine, the kidney, and 

the blood-brain barrier.80–82 Following daily arginine supplementation, the patient had a 

decrease in urine and cerebrospinal fluid (CSF) α-AASA and improved neuropsychiatric 

testing.83 In a pre–post design, patients who were initially treated with pyridoxine and 

lysine-restricted diet had arginine supplementation added to their treatment regimen (also 

referred to as triple therapy). These patients demonstrated a significant decrease in plasma 

α-AASA and Δ1-P6C.84

Although not the primary outcome measure in these studies, all of the reports noted 

improved development in those patients treated with a form of LRTs. A recent cohort study 

evaluated the association between treatment with LRTs and cognitive outcomes. Cohort 
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assignment was based on treatment at the time of developmental testing, and treatment 

with pyridoxine and LRT was associated with a nonsignificant increase on developmental 

testing compared to treatment with pyridoxine alone.24 Notably, treatment with pyridoxine 

and LRTs in the first six months of life was associated with a significant increase on 

developmental testing scores,24 which emphasizes both the efficacy of LRTs and the 

importance of early, if not newborn, diagnosis and treatment.

Proposed Future Research Questions

It has been almost 70 years since the initial description of a newborn in whom seizures 

ceased following a dose of pyridoxine.1 In 2003, three years before the discovery of 

the genetic basis of PDE-ALDH7A1, Peter Baxter published a review paper on PDE 

titled “Pyridoxine-dependent seizures: a clinical and biochemical conundrum” in which he 

discussed both some contradictory biochemical observations and, importantly, some initial 

biochemical clues that eventually help lead investigators to the discovery of altered function 

of α-AASA dehydrogenase in affected patients.85 While our understanding of the molecular 

mechanisms associated with PDE-ALDH7A1 has advanced significantly over the past two 

decades, several questions regarding underlying biochemistry, pathology, and phenotypic 

variability of the disorder remain, all of which are ripe for investigation.

Is there a biochemical signature for PDE-ALDH7A1?

Shortly after the initial description of PDE, it was suggested that the glutamic acid-GABA 

system was involved in the underlying pathophysiology of the disorder.43 It was known 

that glutamic acid decarboxylase was a vitamin B6-dependent enzyme,86 although prior to 

the identification of ALDH7A1 it was clear that glutamic acid decarboxylase was not the 

genetic etiology of PDE.87 Although it remains unclear, elevated CSF glutamate in patients 

with PDE-ALDH7A1 further suggests the role of the GABA synthetic pathway in this 

disorder.88 As noted above, PLP is a cofactor for many critical enzymes, and the impact of 

PDE-ALDH7A1 on these enzymes remains opaque. Of note, patients with PDE-ALDH7A1 
have been initially misdiagnosed as having nonketotic hyperglycinemia, as the glycine 

cleavage enzyme is also PLP dependent.89,90 These examples further emphasize the impact 

of the secondary vitamin B6 deficiency in PDE-ALDH7A1 and highlight the importance of 

evaluating the role of these secondary enzyme deficiencies in the early course of the disease.

What is the biochemical pathophysiology of PDE-ALDH7A1?

The hypothesis that α-AASA is a neurotoxic organic acid was based on relatively 

circumstantial evidence.64 Of course α-AASA is the primary substrate of the enzyme 

α-AASA dehydrogenase and, therefore, is the most proximal metabolite to the underlying 

defect. Although α-AASA is fairly reactive and may quickly be converted to its dehydration 

product Δ1-P6C,55 the role of Δ1-P6C and PLP deficiency has been better defined, although 

the chemical condensation product has only been identified in a single study.19 In a study 

of brain tissue extract from a patient with PDE-ALDH7A1, the metabolites 6-oxo-pipecolate 

(29 nmol/g), α-AASA (13.02 nmol/g), Δ1-P6C (8.14 nmol/g), and 2-OPP (5 nmol/g) 

were present,58 although the presence and relative quantification of these metabolites 

in brain tissue does support direct causality. It is conceivable that the improvement of 
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metabolomics platforms will continue to identify metabolic derangements in PDE,59,91–93 

and future studies need to address whether these metabolites are directly associated with 

disease pathophysiology or are simply diagnostic biomarkers. It remains possible that other 

mechanisms are involved in the natural history of this disease, such as mitochondrial 

impairment88 or oxidative stress.94

It is important to note that lysine is metabolized through two pathways (Figure 3) that were 

originally thought to have distinct roles, with the saccharopine pathway being predominant 

in the liver and the pipecolic acid pathway in the brain. The compartmentalized role of each 

enzyme was supported by high levels of saccharopine dehydrogenase in the liver, relative 

absence of saccharopine dehydrogenase in the brain, and low levels of L-pipecolic acid 

oxidase in the liver and predominance in the brain.95–97 Recent studies using wild-type 

mice and cultured human astrocytes suggest the saccharopine pathway may have a role 

in brain lysine metabolism and may even be the predominant lysine oxidation pathway in 

the brain,98,99 and a number of therapeutic strategies exclusively target the saccharopine 

pathway. Although these recent studies are compelling, the role of each pathway in critical 

cells is still unclear.

Is there a genotype–phenotype correlation for PDE-ALDH7A1?

As noted above, PDE-ALDH7A1 is caused by biallelic mutations in ALDH7A1.19 This 

discovery provided insight into the mechanism of disease and made genetic testing 

to diagnose the condition widely available.3 The genotypic spectrum has been well 

defined,22,23,100,101 and these studies have confirmed the presence of a relatively common 

mutation (p.Glu427Gln) and allowed for the estimation of disease frequency. Thus far, 

no genotype–phenotype correlation has been identified. It is possible that this is due to 

the difficulty in generating longitudinal phenotypic data in rare diseases. An alternative 

hypothesis is that the phenotype is driven by chronic accumulation of α-AASA or related 

metabolite. If this hypothesis is correct, the rate of α-AASA accumulation and subsequent 

rate of developmental regression would have a genotype–phenotype correlation. This may be 

overlooked due to a clinical bias where most patients are diagnosed or evaluated after the 

accumulation of α-AASA has reached a clinical threshold.

Why do some patients with PDE-ALDH7A1 require treatment with antiseizure medications?

Despite the often dramatic clinical and electrographic response to pyridoxine, many patients 

require the use of one or several antiseizure medications to control their epilepsy, and 

in some circumstances complete control is not achieved.2 There are several explanations 

for why epileptic seizures may not completely respond to pyridoxine and LRTs. For 

patients who went undiagnosed and untreated for months to years, brain injury from 

multiple episodes of status epilepticus together with ongoing metabolic neurotoxicity likely 

result in brain injury that can result in epileptogenic foci. Neuropathological studies of 

PDE-ALDH7A1 patients have demonstrated areas of cortical necrosis, gliosis, hippocampal 

sclerosis, and status marmoratus,36,37 and similar features have been noted on imaging 

studies.35,101 In addition, developmental brain dysgenesis, including cortical dysplasia and 

heterotopia, have also been demonstrated via neuropathological studies36,37 and magnetic 
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resonance imaging.35,101 Treatment of epilepsy emanating from these developmental lesions 

would likely require the use of one or multiple antiseizure medications.

How does α-AASA dehydrogenase dysfunction result in structural anomalies?

It is perplexing that reduced or absent activity of an enzyme that functions within the 

lysine catabolism pathway also leads to abnormal development of the central nervous 

system (partial agenesis of the corpus callosum, mega cisterna magma, cortical dysplasia, 

heterotopia), as well as less common phenotypic features such as congenital cataracts40 and 

facial dysmorphism.41 Prior to the discovery of the role of antiquitin in lysine catabolism, 

it was known that the enzyme functioned as an aldehyde dehydrogenase, and that plant 

antiquitins played a role in osmoregulation.102 Hyperosmotic stress can be cataractogenic, 

and it has been suggested that this may explain the development of cataracts in some 

individuals with PDE-ALDH7A1.40 As far as the development of heterotopia and other 

forms of cortical dysgenesis are concerned, antiquitin has been localized to radial glia 

and other nonneuronal cells,36 and dysfunction of this protein is likely responsible for 

these neurodevelopmental lesions. It is conceivable that antiquitin plays biological roles 

other than just serving as an aldehyde dehydrogenase. Indeed, it has been noted that 

specific single nucleotide polymorphisms in ALDH7A1 can modify the prognosis of 

certain oral cancers,103 while a genome-wide association study noted that ALDH7A1 was a 

susceptibility gene for osteoporosis.104 The concepts of moonlighting (where a site remote 

from the active site of the enzyme is recruited to serve a secondary function) and catalytic 

promiscuity (where the active site catalyzes an adventitious secondary reaction)105,106 

should be explored as potential explanations for why these structural anomalies are 

components of the PDE-ALDH7A1 phenotype.

Are there characteristic structural features of PDE-ALDH7A1?

Thinning of the posterior corpus callosum and abnormal development of the posterior 

fossa (Figure 2) are well described in PDE-ALDH7A1, and patients have been noted 

with dysmorphic facial features. Should these various structural changes be considered as 

characteristic components of the phenotype? Shape analysis of imaging studies in cohorts 

of PDE-ALDH7A1 patients have quantified the abnormal structure of the corpus callosum, 

demonstrating that the finding is present across the age spectrum and independent of the 

time of diagnosis and initiation of treatment.35 These changes may not always be obvious 

via a routine review of an MRI scan. As far as posterior fossa abnormalities are concerned, 

mega cisterna magna, when present, is an imaging finding that is quite evident to a clinician. 

But are there more subtle posterior fossa structural features that may only be detected 

via geometric morphometry? What about the facial dysmorphic features that have been 

described? These should not be out-of-hand discounted as part of the clinical phenotype, as 

various forms of facial dysmorphism are well known in other inborn errors of metabolism 

such as Zellweger spectrum disorder,107 hyperosmotic stress,108 and congenital disorder of 

glycosylation type Ia.109 Documentation of the facial features of PDE-ALDH7A1 patients 

via 3D photography will help determine if certain dysmorphic features are common.
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What components of the PDE-ALDH7A1 phenotype will newborn screening followed by 
early lysine-reduction therapy improve?

As noted above, advocates for newborn screening emphasize the risk of fatal status 

epilepticus prior to treatment with pyridoxine and the poor developmental outcome for late 

pyridoxine-treated patients as well as those treated with LRTs after 6 months of age.60 While 

some patients have had normal development despite delays in treatment with pyridoxine 

and without the addition of LRTs,24,110,111 there is an association between the onset of 

initial seizures and developmental outcomes, 24,30 although this association must be due to 

more than seizures alone. Affected patients who receive antenatal or immediate neonatal 

pyridoxine treatment often have no clinical evidence of seizures and may still have quite 

poor developmental outcomes.25,33,78 It is possible that other modifiers affect the cognitive 

phenotype of the disorder. Thus far, studies evaluating the impact of pyridoxine and LRT 

have focused on either surrogate biomarkers or developmental testing such as IQ. It is 

unlikely that the addition of LRT would modify the anatomical features noted on MRI 

such as thinning of the corpus callosum, mega cisterna magna, or cortical dysplasia.34–36 

Conversely, further studies should also focus on the impact (both positive and negative) of 

adjunct therapies on behavioral difficulties25 and general quality of life for patients with 

PDE-ALDH7A1 and their families.112

How will model systems help resolve some of these questions?

Several cellular and animal models have been used to answer these and other questions. 

Crowther and colleagues used a combination of human fibroblasts and astrocytes derived 

from human cortex to study the role of pipecolate and saccharopine pathways in lysine 

degradation.99 Using L-[α15N]-lysine and L-[ε15N]-lysine, the cellular models suggested 

the saccharopine pathway is the predominant pathway for human lysine degradation to 

amino adipic acid. A similar isotope tracer method was used to demonstrate saccharopine 

is the primary pathway for lysine metabolism in mouse liver, kidney, cerebral cortex, 

and cerebellum.98 Both zebrafish and mouse knockout models have been developed to 

further understand both disease pathophysiology and response to treatment. In zebrafish, the 

aldh7a1−/− fish demonstrate spontaneous seizures leading to death, a phenotype which can 

be rescued with pyridoxine.113,114 Of note, exposure to lysine exasperates this phenotype. 

A morpholino knockdown aldh7a1 zebrafish model resulted in both uveal coloboma and 

skeletal abnormalities, implicating ALDH7A1 in the development of structures other than 

the central nervous system.115 Conversely, the Aldh7a1−/− mouse does not have an epilepsy 

phenotype unless exposed to high dietary lysine.116 These models demonstrate that high 

dietary lysine is associated with both increased metabolic disturbances and worsening of the 

epilepsy phenotype. On their own, these results do not support the benefit of LRTs, although 

these cellular and animal models may be critical for the evaluation of current and future 

therapies.

Conclusion

It has been close to 70 years since the first description of pyridoxine dependency in an infant 

with antiseizure medication–resistant epilepsy. In the subsequent years, several genetic 

causes of PDE have been described where first-line treatment with pharmacologic doses of 
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pyridoxine or PLP typically provide dramatic improvement in the epileptic encephalopathy. 

PDE-ALDH7A1, the most reported and studied of these disorders, is primarily a disorder 

of lysine metabolism, and current therapeutic strategies are similar to those developed 

for other organic acidurias. Patients who are diagnosed in early infancy and promptly 

treated with the combination of pyridoxine and LRT have significantly improved clinical 

outcomes. Despite these advances, many questions remain about disease pathophysiology, 

phenotypic heterogeneity, and response to treatment. Current cellular and animal models 

hold promise to help further unravel many of these questions. Collaborative efforts, such 

as the International PDE Consortium (www.pdeonline.org), have aided our understanding 

of the natural history of the disease and the efficacy of various treatment regimens. Taken 

together, there is reason to be optimistic that the next few years will include more effective 

treatments leading to improved outcomes and quality of life for patients with PDE.
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Figure 1. 
Continuous monitoring with an ambulatory electroencephalographic recorder was performed 

in a three-month-old girl undergoing evaluation for pyridoxine-dependent epilepsy. 

(A) Clinical seizure, consisting of eye deviation to the right and asymmetric clonic 

movements of the extremities, was associated with widely distributed high-voltage 

electrographic seizure activity. (B) Five minutes after patient received 100 mg pyridoxine 

by intravenous infusion, electrographic seizure activity was markedly reduced. All clinical 

and electrographic seizure activity resolved within 7 min of administration of pyridoxine. 

(C) At 10 min after the administration of pyridoxine, electrographic activity was 

markedly depressed without evidence of epileptiform activity. The electroencephalogram 

remained depressed throughout the next 12 h, at which point the monitoring was 

discontinued. Compound heterozygous pathogenic variants in ALDH7A1 were subsequently 
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demonstrated. Horizontal calibration = 1 s; vertical calibration = 200 mv. Reproduced with 

permission of the publisher from Gospe.5
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Figure 2. 
T1-weighted sagittal magnetic resonance image of a 35-year-old man with PDE-ALDH7A1 
that demonstrates thinning of the isthmus of the corpus callosum and mega cisterna magna.
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Figure 3. 
Lysine is metabolized through two distinct pathways usually referred to as the pipecolate 

and saccharopine pathways, respectively, as these are the prominent metabolites. PDE-

ALDH7A1 is caused by the deficiency of α-aminoadipic semialdehyde dehydrogenase 

(AASADH). This results in the accumulation of multiple metabolites within the lysine 

metabolism pathway, including two biomarkers purposed for newborn screening: 6-oxo-

pipecolate and 2-OPP. Created with BioRender.com.
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Table 2.
Consensus guideline for pyridoxine supplementation for patients with PDE-ALDH7A1.

Age of patient Pyridoxine dose range Maximum daily dose (mg)

Newborns 100 mg/day 100

Infants 30 mg/kg/day 300

Children and adolescents 20 mg/kg/day Range 5–30 mg/kg/day 500

Adults 200–500 mg/day 500

Adapted from 2021 PDE Consortium consensus guidelines.3
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