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Abstract

Epigenetics is involved in sex differentiation of gonochoristic and hermaphroditic fish spe-

cies, whereby two genes dmrt1 (pro-male) and cyp19a1 (pro-female) are known to play

major roles. Barramundi, Lates calcarifer, is an important tropical aquaculture species that

undergo natural and permanent male to female sex change, a process for which the exact

underlying molecular mechanisms are still unknown. To elucidate whether DNA methylation

is involved in sex control of barramundi, a next-generation bisulfite amplicon sequencing

approach was used to target 146 CpG sites within proximal promoters and first exons of

seven sex-related genes (dmrt1, cyp19a1, amh, foxl2, nr5a2, sox8 and sox9) of 24 testis

and 18 ovaries of captive and wild adult barramundi. Moreover, comparative expression pro-

files of the key dmrt1 and cyp19a1 genes were further investigated using RT-qPCR and

Sanger sequencing approaches, whereas expression levels of remaining targeted genes

were based on available literature for the species. Results showed that cyp19a1 and amh

were more methylated in males, whereas dmrt1 and nr5a2 were more methylated in females

(P < 0.001), with no gender differences found for foxl2, sox8 or sox9 genes (P > 0.05). Sex-

biased promoter DNA methylation was inversely related to gene expression only for dmrt1

and nr5a2, and directly related to amh expression, whereas no differences in cyp19a1

expression were found between testes and ovaries. Notably, unique sex-specific alternative

splicing of dmrt1 and cyp19a1 were discovered, whereby males lacked the full-length aro-

matase coding cyp19a1 mRNA due to partial or total exon splicing, and females lacked the

dmrt1 exon containing the DM-domain sequence. This study advances the current knowl-

edge aiming to elucidate the genetic mechanisms within male and female gonads of this

large protandrous hermaphrodite by providing the first evidence of epigenetics and alterna-

tive splicing simultaneously affecting key genes (cyp19a1 and dmrt1) central to sex differen-

tiation pathways.
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Introduction

Teleosts display a variety of sex determination mechanisms incorporating biochemical steps

whose regulation depends on genetic switches, environmental factors, or occasionally on their

interaction [1, 2]. Such mechanisms are involved with gonadal differentiation itself, which in

fish occurs in various forms from gonochoristic species (individuals directly develop and pos-

sess either testes or ovaries throughout their lifetime), simultaneous hermaphrodites (individ-

uals possess both testes and ovaries), protogynous hermaphrodites (initial gonad development

of ovaries with subsequent sex-change to testes), or protandrous hermaphrodites (initial

gonad development of testes with subsequent sex-change to ovaries). In fact, teleost fish are

the only vertebrate group known to undergo natural sex change; however, the underlying

molecular mechanisms allowing such physiological and morphological changes that transform

one sex into the other still remains poorly understood [3, 4]. In a small number of gonochoris-

tic species, the master switches controlling primary sex determination have been identified

(e.g. amhy in Nile tilapia Oreochromis niloticus [5]). In sequential hermaphrodites, which lack

any form of sex-chromosomes [6], gonadal fate is labile throughout ontogeny and supposedly

determined by environmental and/or endocrine forces that can tip the balance towards one or

the other sex [7]. For hermaphrodites, it is possible that alternative molecular mechanisms,

such as epigenetic switches, may not only be activating a masculinising or feminising network

of several downstream sex-differentiating genes which orchestrate gonadal differentiation and

maintenance, but may also be suppressing the other antagonistic sex network [7].

Exposure to temperature changes during early larval stages can induce epigenetic modifica-

tions, such as DNA methylation [8–11]. This DNA methylation often affects gene expression,

sex differentiation and expected sex ratios of a number of fish species; even those species

where sex is primarily controlled by multiple genes (e.g. European seabass Dicentrarchus lab-
rax) [8, 12], or a single master gene (e.g. Nile tilapia) [13, 14]. The majority of work in plasticity

of sex determination show differential DNA methylation levels within the proximal promoter

and first exon of two major sex-related genes, cyp19a1 (cytochrome P450, family 19, subfamily

a, responsible for the aromatization of androgens into estrogens) and/or dmrt1 (doublesex and

mab3 related transcription factor 1, associated with male differentiation), although genome-

wide differentially methylated regions have been observed between teleost testes and ovaries

[14, 15]. For instance, in the gonochoristic Japanese flounder (Paralichtys olivaceus) DNA

methylation of dmrt1 and cyp19a1promoters were inversely correlated with dmrt1 and

cyp19a1 transcription in an opposing manner between male and female gonads [11]. However,

new evidence suggests that epigenetic mechanisms may also underlie sex determination and

differentiation in sequential hermaphrodite fish. For example, in the protogynous ricefield eel

(Monopterus albus), methylation of the cyp19a1promoter increases as individuals approach

sex change, with an associated decline in transcription rate at the time of ovarian to testicular

tissue change [16]. More recently, Wu et al. [17] demonstrated the inverse phenomenon in the

digonic, protandrous black porgy (Acanthopagrus schlegelii), a species with functional testis

and non-functional ovarian tissue in the first two reproductive seasons, which then sex change

to functional females in the third reproductive season. In the black porgy, the cyp19a1pro-

moter in ovarian tissue became progressively demethylated as the individuals develop into

functional females, corresponding to higher cyp19a1 transcriptional levels as the ovaries

became fully functional [17]. In a recent large-scale transcriptomic study on the hermaphro-

dite clownfish (Amphiprion bicinctus), Casas et al. [18] have shown that the genetic mechanism

underlying sex change in that species is strongly linked with the sex steroidogenic machinery,

whereby key sex determining genes, namely dmrt1, amh and sox8 operate as male-biased and

cyp19a1 and foxl2 operate as female-biased genes. Whether gonadal DNA methylation status

dmrt1 and cyp19a1 methylation and alternative splicing in barramundi
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of such sex genes is also associated with the alternative gonadal phenotypes of hermaphrodite

fishes, in synchronicity with cyp19a1 as demonstrated in the protogynous ricefield eel [19] and

in the bigonic protandrous black porgy [17], still remains unknown.

Barramundi, also known as Asian seabass (Lates calcarifer), is a large protandrous her-

maphrodite of commercial importance for fisheries and aquaculture in Southeast Asia and

Australia, with production increasingly globally [20]. In barramundi, testicular tissues develop

from an undifferentiated gonad during the second to sixth month of age, with spermatozoa

released in the efferent ducts as early as four months of age [21]. Males are fully mature at

about 3–4 years and sex change into female between 4–8 years of age [21], although this change

can occur as early as 2–3 years of age in captive situations [22]. Barramundi do not possess an

ovotestis gonad, with the ovarian lumen forming de novo through profound morphological

and histological changes in which testicular tissue degenerates within the solid lobes of the tes-

tes and ovarian tissue arises from ventral regions [22]. Such changes were also shown at the

molecular level by the sexually dimorphic expression of several sex related-genes, leading to

the suggestion that protandry in barramundi is likely to follow an inverse mechanism to that

in the zebrafish (Danio rerio) ovary-to-testis transformation [23]. Although the aforemen-

tioned relationships among fish age and size, gonadal morphology, gene expression levels in

adult barramundi have contributed to a general understanding of protandry in the species,

and the availability of a well characterized genome [24], putative epigenetic factors operating

within sex related-genes of barramundi male or female gonads are still unknown.

To investigate whether epigenetic mechanisms and transcription of the central sex genes

dmrt1 and cyp19a1 are involved in the maintenance of the different sexual phenotypes in the

protandrous barramundi, testicular and ovarian DNA methylation and expression levels from

both captive broodstock and wild adult were assessed using bisulfite amplicon next-generation

sequencing (BSAS), RT-qPCR and Sanger sequencing. In addition, the DNA methylation lev-

els of an additional five genes implicated in sex differentiation (sox8, sox9, foxl2, nr5a2 and

amh) within male and female gonads were also investigated and results obtained discussed

from data available in published gene expression datasets for the species [23].

Materials and methods

Ethics statement

This study was conducted in accordance with the Australian Code for the Care and Use of

Animals for Scientific Purposes (National Health and Medical Research Council, 2013), in

compliance with the Queensland Animal Care and Protection Act 2001 and James Cook Uni-

versity Animal Ethics Committee approval #A2014. Barramundi is not an endangered or pro-

tected species in Australia. Wild caught samples were purchased from commercial fishermen

as part of regular fishing activities and outside of protected areas, whereby no special permits

are needed.

Sample collection. The study was conducted on testes and ovaries of wild and captive L.

calcarifer adults. Fourteen wild barramundi (10 males and four females) were collected via gill

net in North Queensland (-17.221151˚ latitude; 145.984632˚ longitude), Australia. Nets were

checked regularly and once caught, fish were euthanized in an ice slurry and gonads were

immediately dissected. Of note, only four wild females out of 80 fish (~5% of total) were cap-

tured over six fishing expeditions and no transitional wild or captive broodstock fish were

found throughout the study. Samples from captive adult barramundi (14 males and 14

females) were collected at the James Cook University/Mainstream Aquaculture Pty Ltd barra-

mundi hatchery facility through cannulation biopsy of the gonads (BD Intramedic, Becton

Dickinson) on anesthetized (AQUI-S New Zealand Ltd) broodstock during routine checking

dmrt1 and cyp19a1 methylation and alternative splicing in barramundi
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of fish sex and reproductive condition. Samples were preserved in RNAlater solution

(Ambion), held at 4 ˚C overnight and then stored at -20 ˚C until DNA and RNA extraction.

All 42 gonadal samples (24 testes and 18 ovaries) were subjected to BSAS, five to 10 samples of

each gonadal type were subject to RT-qPCR and three testes and three ovaries of wild fish were

subjected to confirmatory histological examination.

Sex genes targeted for DNA methylation and gene expression

A suite of seven key genes of known sex differentiation and reproductive function in fish and

vertebrates, dmrt1, cyp19a1, foxl2, nr5a2, amh, sox8 and sox9 previously characterised in barra-

mundi [25] were targeted for the comparative assessment between the epigenetic profiles in L.

calcarifer testes and ovaries. Putative transcription factor binding sites (TFBS) for the promoter

regions were predicted using MatInspector software [26]. Differential DNA methylation pat-

terns in a total of 146 CpG sites were assessed through BSAS [27]. BSAS allows the simulta-

neous processing of numerous different amplicons from hundreds of individually barcoded

samples through small benchtop next-generation sequencers. Primers for bisulfite amplicon

sequencing (Table 1) were designed around proximal promoter regions and first exons using

MethPrimer [28]. Primer pairs were tested to produce single amplicons when bisulfite con-

verted DNA was used and yield no amplification product when (unconverted) genomic DNA

was used as template.

Genomic DNA was extracted from testicular and ovarian tissue (~3 mm3) using a CTAB-

chloroform method and quality and quantity checked on a 0.8% agarose gel and Nanodrop

(Thermofisher), respectively. DNA (2 μg) was bisulfite converted using an EZ DNA Methyla-

tion™ Kit (Zymo Research) and targeted gene amplification was performed with 1 μl of PCR

buffer, 0.2 μl of 50 mM MgCl2, 0.3 μl of 10 mM dNTPs, 0.2 μl of forward and reverse primers,

0.04 μl of Platinum Taq DNA polymerase (Thermofisher), 7.26 μl of water, 0.8 μl of template

in 10 μl PCR reactions using a C1000 (Biorad) thermocycler (95 ˚C for 2 min, 44 cycles of 95

˚C for 30 s, 58 ˚C for 35 s, 72 ˚C for 40 s, 72 ˚C for 10 min). PCR amplicons (2 μl) were checked

on a 1.5% agarose gel and the concentration estimated against the Easy Ladder I 250 bp band

(Bioline) using ImageJ [30] For each sample, equimolar quantities of PCR products were

pooled into small and large amplicons (320 bp cut-off), cleaned with SeraMag Beads (GE

Healthcare) following the manufacturer’s protocol. A second round of PCR (reduced to 20

cycles) was then performed to index samples for sequencing with the Nextera XT Index Kit

(Illumina) (2.5 μl of 10x PCR buffer, 0.75 μl of MgCl2, 0.5 μl of 10 mM dNTPs, 2.5 μl of each

N7XX and S5XX indexing primers, 0.1 μl of Platinum Taq DNA polymerase, 14.15 μl of water,

2 μl of PCR template). Indexed samples were cleaned, gel checked and pooled as above for

next-generation sequencing (Illumina MiSeq, V3 kit, 300 bp paired-end). Raw reads were

quality trimmed (base pair< 95% call accuracy trimmed from end) and filtered (any

read< 100 bp removed 100 bp) prior to being mapped to a 4,717 bp in-silico bisulfite con-

verted reference sequence containing the 11 targeted regions interspaced by 100 Ns in Gen-

eious (Biomatters) using Bowtie2 [31]. The methylation status within each CpG motif was

then calculated by the percentage of unconverted cytosine using Geneious (Biomatters) SNP/

variant finder. Kruskal-Wallis analyses were used to assess differential methylation status of

each CpG site among testes and ovaries of wild and captive barramundi as homoscedasticity

was violated precluding a parametric approach. Differences were considered significant at

P< 0.05.

To assess the expression levels among individuals of each sex, a complementary RT-qPCR

approach targeting cypa19a1 and dmrt1 was also performed. Intron-spanning primers for L.

calcarifer cyp19a1were designed with PerlPrimer v1.1.2.1 [32], whereas primers for dmrt1 and

dmrt1 and cyp19a1 methylation and alternative splicing in barramundi
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ubq (internal reference gene) were derived from Ravi et al. [23] and De Santis et al. [29],

respectively (Table 1). Cyp19a1 and dmrt1 RT-qPCR primers generated amplicon products for

both male and female gonads. Here, gonadal samples were subject to RNA extraction using a

NucleoSpin RNA XS Kit (Macherey-Nagel) and residual genomic DNA removed with a Turbo

DNA-free Kit (Ambion). RNA quality and quantity where checked on a Nanodrop (Thermo-

scientific) and agarose gels, and a subsample further checked on a Qsep100 Analyzer (Preci-

sion Biosystems). First strand cDNA was synthesized from 2 μg of RNA using a 1:1 combina-

tion of oligo(dT) and random hexamers primers using Tetro cDNA Synthesis Kit (Bioline)

and then 1:5 diluted with UltraPure DNase/RNase-Free Distilled Water (Invitrogen). RT-

qPCR was carried out in triplicate 15 μl reactions (7.5 μl of 2x SsoFast EvaGreen Supermix

(Biorad), 0.6 μl of forward and reverse primers (10 mM), 1.3 μl of water, 5 μl of cDNA) in a

Table 1. Lates calcarifer sex-related genes and primer sequences investigated for bisulfite amplicon next-generation sequencing (BSAS) and gene expression.

Gene (amplicon number) Accession Primer name Primer sequence (5’—3’) 1

dmrt1 (1) KR232516.1 D1-BS-P-F1Seq FO–GTTGATTAGGATTTGTGTTTTAAAGT

(BSAS) D1-BS-P-R1Seq RO–TAAAACCTATTATTTCATATAAACATATTT

dmrt1 (2) D1-BS-P-F2Seq FO–AAATTAAGTGTAGTAGAGTGATGTTAT

(BSAS) D1-BS-CDS-R1Seq RO–AAACACTAACAATCCCTCCAATTAC

dmrt1 DMRT1-F GTGACTCTGACTGGCCCAGAG

(RT-qPCR, Ravi et al. [23]) DMRT1-R CAGCAGGTCGGACGTTCC

dmrt1 DMRT1_Male_F TGTCTTTTTACTCTCCCTGC

(male-specific RT-PCR) DMRT1_Male_R TGGTATTGCTGATAGTTGTAG

cyp19a1 KR492506.1 CYP19-BS-F.Seq FO–TGGTTGTTTATAAAGGGGAAGTTT

(BSAS) CYP19-BS-R.Seq RO–CCAACAACAAACAAACAAATAACATA

cyp19a1 CYP19a_qPCR_F3 CACTGTTGTAGGTGAGAGACA

(RT-qPCR) CYP19a_qPCR_R3 CTGTAGCCGTCTATGATGTCA

cyp19a1 CYP19a_Female_F GGTTGTTGTAAATCCTCATCCC

(female-specific RT-PCR) CYP19a_Female_R1 TCTTATCTGTGTGACTCCAGG

ubq XM_018704769 Lc_ubq_F ACGCACACTGTCTGACTAC

(RT-qPCR, De Santis et al. [29]) Lc_ubq_R TGTCGCAGTTGTATTTCTGG

foxl2 (1) KR492507.1 F2-BS-P-F1.Seq FO–AAAGGGTTGGGTTTATTGATTTATAA

(BSAS) F2-BS-P-R1.Seq RO–ATCCAAATACCAACAAACAAAACTT

foxl2 (2) F2-BS-CDS-F1.Seq FO–AGTTTGTGAGGATATGTTTGAGAAG

(BSAS) F2-BS-CDS-R1.Seq RO–CCATACTCTACACCCTAAAATAAAAATTAT

nr5a2 (1) KR492512.1 sf1-BS-F1.Seq FO–TTTTGTGTGTTTTTATTTGTTTGTG

(BSAS) sf1-BS-R1.Seq RO–TTCTTTCTCAATTCTTTTAAACTTTTAAAT

nr5a2 (2) sf1-BS-F2.Seq FO–GGAAAAGAGATTGTTTAGTATAGTAATAGA

(BSAS) sf1-BS-R2.Seq RO–TAAAAACACTAACCTTACAACTCTC

Amh KR492510.1 amh-F.Seq FO–TGGTGTGTGTTTGAATTAGAAAATT

(BSAS) amh-R.Seq RO–CCATAAAAAACATAAAAAACCACAC

sox8 (1) KR492511.1 S8-BS-P�-F2.Seq FO–TAAATAGGGAAGTAGAAGGGAAATAA

(BSAS) S8-BS-R.Seq RO–AAATCCAATTTCTTACCCAAACC

sox8 (2) S8-BS-CDS-F1.Seq FO–GTTTGGGTAAGAAATTGGATTT

(BSAS) S8-BS-R2.Seq RO–TAACTACTCTATTATTTTCATTTAATACAA

sox9 KR492508.1 S9-BS-F2.Seq FO–ATTTAGTTTTGTTAGTTAAGTTGTG

(BSAS) S9-BS-R2.Seq RO–TACAAACAAAAAACTTTTCTTCTTC

1 FO (5’ TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG) and RO (5’ GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG) are Illumina’s forward overhang (FO) and

reverse overhang (RO) adapter sequences added to locus-specific primer sequences.

https://doi.org/10.1371/journal.pone.0204182.t001
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RotorGene thermocycler (Qiagen) using the following conditions: 95 ˚C for 30 s, 40 cycles of

95 ˚C for 5s and 58 ˚C (dmrt1 and cyp19a1) or 61 ˚C (ubq) for 15 s, followed by a melt curve

analysis (65 ˚C to 95 ˚C in 0.5 ˚C increments) for quality control. RT-qPCR efficiencies for

each gene were validated using standard curves from five point serially diluted (1:10) cDNA

samples (0.98~1.06, R2 > 0.99). In addition, a subset of RT-qPCR products for each gene was

size checked on a 1.5% agarose gel and confirmed through Sanger sequencing (Australian

Genomic Research Facility). Dmrt1 and cyp19a1 expression were normalized against that of

ubq by the 2-ΔCt method of Livak and Schmittgen [19]. Data was log-transformed to conform

to normality and equality of variances (Kolmogorov-Smirnov and Levene tests, respectively,

P> 0.05) and t-tests used to compare the relative expression of each targeted gene between tes-

tes and ovaries using the SPSS Statistics 23 software package (IBM). Results were significant at

P< 0.05. For the remaining nr5a2, amh, foxl2, sox9 genes, comparative expression levels

between L. calcarifer testes and ovaries were based on previously published RT-qPCR data

[23].

In addition, two end-point RT-PCR assays (i.e. on gonadal cDNA) to target L. calcarifer
sex-specific splicing variants of dmrt1 and cyp19a1were designed. The male-specific assay tar-

geted the dmrt1 DM domain were found to be expressed in testes only, whereas the female-

specific assay targeted the 3’-end of cyp19a1a exon1, found to be expressed in ovaries. PCR

reactions (5 μl of 2x Type-it PCR Buffer (Qiagen), 0.2 μl of forward and reverse primers (10

mM, Table 1), 3.6 μl of water, 1 μl of cDNA template), were carried out in a C1000 Thermal

Cycler (Bio-Rad) using the following cycling conditions: 95 ˚C for 5 min, 8 cycles of 95 ˚C for

30 s, 57 ˚C for 90 s and 72 ˚C for 30 s, then 17 cycles of 95 ˚C for 30 s, 55 ˚C for 90 s and 72 ˚C

for 30 s, then a final step of 60 ˚C for 30 min. PCR amplification was checked by visualisation

on a 1.5% TBE agarose gel containing GelGreen (Biotium Inc.), where 2 μl of PCR products

were loaded and electrophoresed for 25 min at 80 V and 400 mA.

Histology

To validate sex status of wild fish, testis and ovaries were cut into 1 cm long pieces and fixed in

10% neutral buffer formalin for 24 h, then subjected to standard histology procedures. The

paraffin embedded preparations were sectioned serially at a 5 μm thickness, mounted on slides

and stained with hematoxylin—eosin (H&E) and examined with Olympus microscope and

cellSens Digital Camera System (Olympus, Japan).

Results

Gonads of adult L. calcarifer sampled in this study were assessed to confirm sex and matura-

tion stage. In captive broodstock, motile spermatozoa in testes (n = 14) and vitellogenic

oocytes (ø = 150–450 μm) in ovaries (n = 14) obtained through cannulation biopsies indicated

that individuals were in late maturation stages. In wild caught fish, three gonads of each sex

were analyzed through histology. Spermatozoa were present within the lumen of the seminif-

erous tubules of the barramundi testes, whereas in female barramundi, eggs were present in

pre-vitellogenic and vitellogenic stages. Overall, adult individuals were in late gonadal matura-

tion (Fig 1).

DNA methylation levels between captive and wild males and females

A total of ~3.5 million clean reads from 42 L. calcarifer adults were mapped against the in-silico
bisulfite converted reference sequence of dmrt1, cyp19a1, sox8, sox9, foxl2, nr5a2 and amh,

yielding a mean coverage of ~7,000 reads per amplicon (Table 2).

dmrt1 and cyp19a1 methylation and alternative splicing in barramundi
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Four out of the seven genes investigated in this study presented distinctive sex specific

DNA methylation patterns (Table 3). Barramundi dmrt1 and nr5a2 had higher levels of meth-

ylation in ovaries than in testes (P<0.05), where the greatest differences were observed within

5’-UTR and first exons, rather than in distal promoters (Fig 2a). Most notably, nr5a2, which

encodes the liver receptor homolog 1 (LRH1) protein, showed the most distinctive differences

for epigenetic markers between sexes, with a methylation average difference of 46.2% and up

to 58.9% in CpGs +75 and +90. In addition, dmrt1 and nr5a2 genes presented a highly variable

methylation pattern across individual CpG sites (Fig 2a). Although average ovarian dmrt1
methylation was only 10.1% greater than that of testes for the 17 CpG sites investigated, two

CpG sites located in the proximal promoter differed by greater than 20% (-350 bp and -122

bp). These CpG sites corresponded to putative transcription factor binding sites E2F and SP1

Fig 1. Macro and H&E histology photographs of testis (a) and (b) and ovaries (c) and (d) of representative wild-caught adult Lates calcarifer individuals used in

the study, showing the significant morphological and cellular transformations which have to occur during the natural male-to-female sex change.

https://doi.org/10.1371/journal.pone.0204182.g001

Table 2. Number and weight of adult Lates calcarifer individuals and number of clean reads from bisulfite ampli-

con next-generation sequencing mapped against the seven sex-related genes sequences.

Group n Fish weight range; mean ± S.D. (Kg) Clean reads mapped

Male Broodstock 14 5.46 ~ 8.19; 6.92 ± 1.11 1,111,247

Male Wild 10 2.35 ~ 8.99; 5.39 ± 2.54 1,068,190

Female Broodstock 14 7.34 ~ 12.50; 9.97 ± 1.33 1,137,133

Female Wild 4 9.29 ~ 16.68; 12.93 ± 3.12 179,848

https://doi.org/10.1371/journal.pone.0204182.t002
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Table 3. Differential methylation patterns (mean percentage ± S.D.) within sex related genes targeted by bisulfite amplicon next-generation sequencing among

Lates calcarifer adults of captive and wild origin. Different letters denote significant differences among groups (P< 0.01).

Gene

(amplicon #)

Amplicon size

(position from TSS)

# CpG

Per amplicon

Testes (%) Ovaries (%) Overall (%)

Captive Wild Captive Wild

dmrt1 (1) 270 bp (-575, -305) 5 41.2 ± 17.1 a 67.8 ± 20.2 ab 58.6 ± 14.6 ab 71.0 ± 12.3 b 59.6 ± 19.1

dmrt1 (2) 428 bp (-255, +173) 17 6.8 ± 6.9 a 6.5 ± 7.3 a 17.0 ± 9.5 b 16.3 ± 10.4 b 11.6 ± 9.8

nr5a2 (1) 302 bp (-450, -148) 10 10.2 ± 1.3 a 10.7 ± 1.4 ac 16.2 ± 4.8 bc 20.6 ± 4.4 b 14.4 ± 5.4

nr5a2 (2) 194 bp (-79, +115) 8 12.9 ± 2.2 a 13.4 ± 1.1 a 59.3 ± 12.4 b 59.3 ± 12.9 b 36.2 ± 24.9

cyp19a1 267 bp (-107, +160) 8 92.5 ± 2.0 a 88.0 ± 8.2 a 44.1 ± 8.7 b 54.0 ± 8.9 b 69.6 ± 22.4

Amh 341 bp (-258, +83) 6 94.0 ± 1.4 a 76.6 ± 3.0 b 59.5 ± 2.2 c 46.0 ± 2.7 d 69.0 ± 18.5

foxl2 (1) 255 bp (-282, -27) 9 3.7 ± 0.7 a 6.9 ± 0.6 b 5.8 ± 0.8 bc 4.0 ± 0.7 ac 5.1 ± 1.5

foxl2 (2) 308 bp (+374, +682) 18 6.4 ± 0.9 a 8.61 ± 0.9 b 7.55 ± 1.1 ac 8.5 ± 1.0 bc 7.8 ± 1.3

sox8 (1) 368 bp(-195, +173) 26 1.5 ± 1.2 2.0 ± 1.0 2.3 ± 1.3 2.4 ± 2.6 2.0 ± 1.7

sox8 (2) 353 bp (+151, +504) 20 7.1 ± 1.2 a 10.0 ± 1.7 b 9.1 ± 1.5 b 10.5 ± 2.5 b 9.2 ± 2.2

sox9 344 bp (-130, +214) 19 0.8 ± 0.8 1.1 ± 0.9 1.1 ± 0.7 1.3 ± 0.7 1.1 ± 0.8

https://doi.org/10.1371/journal.pone.0204182.t003

Fig 2. DNA methylation profiles (mean % ± S.D.) of barramundi Lates calcarifer sex-related genes within testes (n = 10) and ovaries (n = 4) of wild caught

individuals and testes (n = 14) and ovaries (n = 14) of captive broodstock, as obtained by bisulfite amplicon next-generation sequencing. (a) female-biased

methylated genes dmrt1 and nr5a2; (b) male-biased methylated genes cyp19a1 and amh. Within each CpG site, different letters denote significant differences between

groups (P< 0.05).

https://doi.org/10.1371/journal.pone.0204182.g002
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(Fig 2a). CpG methylation levels were consistent among individuals of the same sex, regardless

of their origin and sampling procedure (i.e. dissection on wild animals vs. cannulation biopsy

on captive broodstock). In contrast, cyp19a1 (average of 41.2%, up to 46.8% in CpG -83) and

amh (average of 32.7%, up to 37.3% in CpG +24) were more methylated in testes than in

ovaries (Fig 2b), where similar methylation levels were observed among distinct CpG sites,

although variable levels of methylation were evident depending on the origin of fish (captive

vs. wild). Although a number of putative transcription factor binding sites were identified

within the 1,400 bp region upstream of cyp19a1CDS (e.g. 20 Sox/testis determining and

related HMG box factors, five forkhead domain factors, five estrogen related receptors, two

cAMP, one DMRT3, one DMRT5, one SF1 and one LHR), the nearest putative TFBS to a

cyp19a1CpG site investigated in this study was at least 41 bp away (a cAMP upstream of CpG

-83). Of note, L. calcarifer cyp19a1has a very low CpG density in its promoter, possessing only

7 CpG sites in the 1,400 bp region upstream of its start codon (i.e. one CpG per 200 bp). Of

all genes investigated in this study, amh was the only gene where significant differences in

methylation levels were observed among the four groups (captive male > wild male > captive

female> wild female) (Table 3; Fig 2b). Lastly, foxl2, sox8 and sox9 were mostly hypomethy-

lated (<10% methylation) in both testicular and ovarian tissues, with overall lowest levels

detected in captive males (Table 3, S1 Fig).

Dmrt1 and cyp19a1 expression levels and sex-specific alternative splicing

Results from RT-qPCR revealed that dmrt1 expression was on average 1.9 times higher in

the testis than in ovaries, whereas no sex-specific differences were found for cyp19a1 (Fig 3).

Further investigation using a publicly available [33] L. calcarifer RNASeq library of one

testes and one ovary (NCBI SRA accessions SRX867251 and SRX867252), whereby raw reads

were mapped back to L. calcarifer dmrt1 and cyp19a1 genes (NCBI Ref. KR232516.1 and

KR492506.1, respectively) suggested that both dmrt1 and cyp19a1were alternatively spliced

in a sex-specific manner. Molecular cloning and Sanger sequencing of dmrt1 and cyp19a1,

using cDNA from gonads of adult fish, confirmed shotgun transcriptome findings in that

Fig 3. Expression levels of dmrt1 and cyp19a1 from testes and ovaries of barramundi Lates calcarifer (n = 5–10 per sex/gene). � denotes

significant differences between gender (P< 0.01).

https://doi.org/10.1371/journal.pone.0204182.g003
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barramundi ovaries lacked the previously known dmrt1 exon 1 (hereafter named as dmrt1
exon 1a), which harbours the DM domain. This led to the discovery of an alternative untrans-

lated dmrt1 exon 1 (59 bp, named dmrt1 exon 1b) located 3,357 bp upstream of the dmrt1 start

codon. Dmrt1 exon 1a was transcribed only in testis, while the second variant, dmrt1b, was

transcribed in both ovary and testes (Fig 4a). In an opposite fashion to dmrt1 in females, barra-

mundi testes lacked the full-length gonadal aromatase cyp19a1mRNA, making instead use of

two distinct shorter exons 1 and 2 within the existing CDS (protein coding sequence). In testes,

cyp19a1 exon 1 was shortened from 196 bp to 163 bp, exon 2 was also shortened from 151 bp

to 101 bp (i.e. partial intronization of full-length cyp19a1 exons 1 and 2), and exon 3 was oca-

sionally spliced out (not observed in ovarian samples) (Fig 4b). Both alternatively spliced

forms were submitted to Genbank (dmrt1b accession number MH784536, and cyp19A1 short

variant accession number MH784537).

To confirm barramundi dmrt1 and cyp19a1 sex-specific alternative splicing, two sex-specific

tests on cDNA of gonads of this protandrous hermaphrodite were developed and validated.

Firstly, a male-specific RT-PCR assay targeting the L. calcarifer dmrt1 DM domain was devel-

oped, whereby a forward primer positioned immediately upstream of dmrt1 start codon (i.e.

between -24 bp and -3 bp away from dmrt1 exon 1a) amplified a 575 bp product only in testes,

but not in ovarian tissue (Fig 5a). Secondly, a female-specific RT-PCR assay targeting ovarian

specific L. calcarifer cyp19a1, based on a reverse primer positioned at the 3’-end of cyp19a1
exon 1a (i.e. between +163 bp and +183 bp), amplified a 207 bp product only in ovaries, but

not in testes (Fig 5b). It should be noted that cyp19a1 anomalous shorter variants were not

Fig 4. Promoter DNA methylation and mRNA alternative splice variants of (a) dmrt1 and (b) cyp19a1 in gonads of the protandrous hermaphrodite barramundi

Lates calcarifer.

https://doi.org/10.1371/journal.pone.0204182.g004
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exclusive to testis mRNA. Although all nine expected cyp19a1 exons (NCBI Ref. KR492506)

coding for gonadal aromatase were exclusively found in ovarian samples, multiple alternative

spliced transcript variants, frequently presenting exonization of L. calcarifer cyp19a1 gene

intronic sequences (most frequently containing introns 3 and 2) were also present in mRNA

within gonads of both sexes.

Relationship between DNA methylation, expression levels and CpG density

of sex genes between males and females

As assessed by RT-qPCR targeting transcripts expressed in both sexes of L. calcarifer adults,

no clear patterns in the relationship between DNA methylation and gene expression levels

between testes and ovaries were identified for the sex genes investigated in this study. Whereas

an inverse relationship between methylation and expression levels was identified for dmrt1
(10.1% lower methylation and 1.9-fold higher expression in testes vs. ovaries), it was not found

for cyp19a1 (41.2% higher methylation in testes vs. ovaries, and no difference in expression

between sexes) (Table 4). Complementing our current analyses with recently published RT-

qPCR data expression levels of sex genes in L. calcarifer of Asian origin, cyp19a1was previously

found 5.5 times more expressed in testes than in ovaries [23] (Table 4). For the remaining

genes, an inverse relationship between methylation and expression levels was identified for

nr5a2 (24.9% lower methylation and 15.2-fold higher expression in testes vs. ovaries), however,

a strong direct relationship between amh methylation and expression was also observed

(32.6% higher methylation and 19.7-fold higher expression in testes vs. ovaries). Within the

hypomethylated genes foxl2, sox9 and sox8 no differences in DNA methylation levels were

observed between sexes (P> 0.05). In terms of gene expression level, sox9 was observed to be

51.8-fold more expression in testes vs. ovaries, whereas no differences had been reported for

foxl2 (sox8 expression has not been assessed) (Table 4).

Fig 5. Agarose gel electrophoresis of RT-PCR assays (on cDNA) targeting dmrt1 male-specific DM domain (a) and cyp19a1a female-specific exon

1a (b) in ovaries (top rows, n = 5) and testis (bottom rows, n = 5), with no amplification in gonads of the opposite sex and negative controls (NC).

Expected amplicon sizes of 575 bp for dmrt1 and 207 bp for cyp19a1aL. calcarifer sex-specific tests.

https://doi.org/10.1371/journal.pone.0204182.g005
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Within the 11 amplicons which targeted 146 CpG sites spanning across 3,430 bp of proxi-

mal promoters and first exons of seven sex related genes of 24 males and 18 females, an inverse

exponential relationship between CpG density and differential methylation levels was observed

(Fig 6). Genes which harbored higher CpG densities (also known as CpG Islands) were hypo-

methylated (foxl2, sox8 and sox9) in both sexes. Contrarily, genes harboring CpG sites in low

density (~ 4 CpGs per 100 bp or less) had not only higher overall methylation levels but had

also greater differences between testis and ovaries (Fig 6).

Table 4. Overall differences in DNA methylation levels across 146 CpG sites and expression levels of seven sex-related genes between testes and ovaries of Lates cal-
carifer (�P< 0.05, ��P< 0.01, n.s. = no significant differences P> 0.05).

Gene Methylation differences (absolute %) Fold change in gene expression(1) Fold change in gene expression(2)

Testes vs. Ovaries

dmrt1 -10.1�� 7.8�� 1.9�

cyp19a1 41.2�� 5.5�� 2.5 (n.s.)
nr5a2 -24.9�� 15.2�� -

amh 32.6�� 19.7�� -

foxl2 -0.2 (n.s.) 4.9 (n.s.) -

sox9 -0.3 (n.s.) 51.8�� -

sox8 -0.9 (n.s.) - -

(1) Ravi et al. [23]
(2) current study.

https://doi.org/10.1371/journal.pone.0204182.t004

Fig 6. Relationship between DNA methylation and CpG density within proximal promoter and first exon of sex-related genes from testes and

ovaries of Lates calcarifer. DNA sequences within amplicons in dashed boxes contain atypically high CpG densities known as CpG islands.

https://doi.org/10.1371/journal.pone.0204182.g006
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Discussion

As assessed by a high-resolution 5-methylcytosine BSAS approach, testes (n = 24) and ovaries

(n = 18) of adult L. calcarifer exhibited significant differences in DNA methylation patterns

within the proximal promoter and first exons in dmrt1, cyp19a1, amh and nr5a2. Moreover,

such methylation patterns were consistently similar within and between sexes, independent of

fish origin (farmed broodstock or wild fish) and sampling technique (cannulation of sedated

animals or destructive biopsies). This study also revealed two concurrent sex-specific alterna-

tive splicing forms within dmrt1 and cyp19a1 (gonadal aromatase) genes, genes largely recog-

nized as the two opposing central players in sex determining pathways in hermaphrodites [7,

16, 17], but also in gonochoristic species [1–4, 34]. The DM-domain from dmrt1 mRNA was

completely spliced out in female gonads and contrarily, aromatase exons 1 and 2 were partially

spliced out from male gonads, as validated through two novel sex-specific RT-PCR assays.

Transitional gonads were not found in 122 individuals sampled, likely due to the rapid transi-

tion phase reported from male-to-female [35, 36]. Whether promoter methylation of dmrt1
(and nr5a2) and demethylation of cyp19a1 (and amh) during barramundi sex inversion is a

progressive phenomenon like it has previously been reported for the protogynous ricefield

eel [16] and for the protandrous black porgy [17], still remains to be elucidated. Nevertheless,

this report contributes to the recent body of work aiming to elucidate the genetic mechanisms

regulating key reproductive genes involved within the gonads of the large protandrous her-

maphrodite barramundi [23, 33] and for the first time provides evidence for epigenetics and

alternative splicing affecting genes central to sex differentiation pathways in this important

aquaculture species.

Recent research has provided strong links between DNA methylation, gene expression and

sex determination in fishes [9], with a particular focus to cyp19a1. For a number of species,

such as the European seabass [8], black porgy [17], Nile tilapia [15] Japanese flounder [37],

ricefield eel [16] and zebrafish [10], higher methylation levels within the testes cyp19a1pro-

moter region have been correlated with lower gene expression levels and implied decreases in

aromatase production. For those species, hypermethylation of the testicular cyp19a1promoter

have been associated with gene silencing by regulating the binding of transcription factors

(such as SF-1, FOXL2 and CREB) and thereby attributed as a crucial mechanism for establish-

ing sexually dimorphic expression of gonadal aromatase and maintenance of the male gonadal

phenotype. However, a female-biased cyp19a1 transcription abundance was not the case in

barramundi, in agreement with a previous study [23]. As assessed by RT-qPCR targeting bar-

ramundi cyp19a1 transcripts expressed in both sexes, similar transcriptional levels between

males and females were found in this study, regardless of testicular hypermethylation (cyp19a1
promoter > 90% methylated in males). In a previous study on Singaporean L. calcarifer sam-

ples which used a different set of cyp19a1primers, aromatase was found to be up-regulated in

testis [23]. The present study elucidates that although transcription of the cyp19a1 gene in bar-

ramundi can still be detected in testes in levels similar to, or higher than those found in ovaries,

notably the full aromatase coding sequence is absent in the males due to exon splicing. In the

medaka (Oryzias latipes), XX mutants with premature stop codons in cyp19a1underwent

ovary degeneration, followed by testicular tissue formation [38]. Similarly, TALEN and/or

CRISPR/Cas9 mediated cyp19a1mutations have been shown to cause higher dmrt1 expression

and partial sex reversal in XX (genetically female) tilapia [39] and all-male offspring in zebra-

fish mutants [40]. It is important to note that gonadal cyp19a1 expression has not been found

ubiquitously ovarian-biased in teleosts (as reviewed by Guigen et al. [41]). For instance, in the

black porgy high cyp19a1 transcriptional abundance has been linked with testicular differenti-

ation, but not with early ovarian development [42]. In the Ectodine lineage of East African
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cichlids, similar cyp19a1 expression levels were found between testes and ovaries [43] and

in the half-smooth tongue-sole [44] cyp19a1has been found to be up-regulated in testis.

Although spliced isoforms of cyp19a1 are yet to be reported within male gonads of other tele-

osts, by using similar methodologies targeting short transcripts (a pre-requisite in RT-qPCR)

studies may potentially disregard a role for alternative aromatase isoforms.

Alternative splice variants of dmrt1 have been identified in other teleosts, such as the rice-

field eel [45] and zebrafish [46]. To date, only the catfishes Clarias gariepinus and C. batrachus
[47], and now barramundi, were reported to present a 5’ end splice variant lacking the DM

domain. Raghuveer and Senthilkumaran [47] have suggested that dmrt1 splice variants in cat-

fish may regulate the activity of the main isoform (dmrt1a). In contrast to catfish in which

none of the three dmrt1 variants were detected in ovaries, barramundi females only expressed

the DM-less variant. Recent studies have linked the alteration of dmrt1 coding sequences with

the interruption of male functionality. For instance, RNAi designed to specifically target the

dmrt1 DM-domain has been shown to suppress transcription and reduce germ cell numbers

in the testis and stimulate a male-to-female sex change in the protandrous black-porgy [48].

Sex-biased expression of spliced isoforms have also been observed in other important aquacul-

ture species, such as the European seabass (e.g. female-biased sb sox17 expression) [49] and

again in the protogynous rice field eel (e.g. male biased cyp17a1 expression) [50], suggesting

splicing mechanisms to play a role in fish sex determination. In the context of sex determina-

tion in fishes, the link between DNA methylation and alternative splicing was first evidenced

in the tongue-sole female-biased figla (factor in the germline alpha) gene, whereby hypomethy-

lated figla in testis recruits an alternative first exon devoid the functional helix-loop-helix DNA

binding domain (44). Whilst DNA methylation was originally thought to only affect transcrip-

tion, emerging evidence shows that the splicing of about 22% of alternative exons is regulated

by DNA methylation [51]. In the honeybee Apis mellifera, for example, splicing of the anaplas-

tic lymphoma kinase gene (alk, an important regulator of metabolism) is regulated by differen-

tial methylation and results in phenotypic plasticity of individuals sharing a common genotype

(queens and workers) in order to determine caste [52, 53].

Although the exact molecular regulatory systems inducing alternative splicing are yet to be

elucidated in barramundi, it is conceivable that differential DNA methylation levels within the

promoter and exonic regions in key sex controlling genes might regulate the recruitment of

particular exons in this species in a similar fashion to the figla gene in the tongue-sole [44],

allowing flexibility in whether active domains are included or not in the resultant transcribed

mRNA. In particular, DNA methylation levels of dmrt1 and cyp19a1 could regulate the pres-

ence or absence of functional transcripts, as observed by the loss of the dmrt1 DM-domain and

gain of the full-length cyp19a1CDS in females. However tempting it may seem to attribute the

non-existence of the full-length dmrt1 mRNA in females and cyp19a1mRNA in males to the

higher DNA methylation levels in the promoters and first exons of these genes, it is important

to note that DNA methylation-independent mechanisms regulating barramundi dmrt1 and

cyp19a1 splicing were not investigated in this study, as splicing variants are not always associ-

ated with DNA methylation in promoter regions (and vice versa). Therefore, future studies

looking into methylation status, expression levels and splicing patterns after gene knock-down

or inhibition of DNA methyltransferases in barramundi gonads would be required to confirm

this working hypothesis. For L. calcarifer dmrt1, the greatest differences in methylation levels

between sexes were located at CpGs –130 bp and -122 bp situated amidst putative SP1 and E2F

TFBS. This particular dmrt1 proximal promoter region is suggested here to be a key epigenetic

and regulatory transcriptional site for L. calcarifer dmrt1. SP1 TFBS located within -150 bp rel-

ative to the major transcriptional start site has been shown to be a regulator of dmrt1 expres-

sion in rat Sertoli cells [54], whereas E2F has been shown to be an efficient transcriptional
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activator of dmrt1 in human cell lines [55]. Further experiments aiming to better understand

the role of this particular region in the protandry of barramundi are warranted.

Amh is invariably up-regulated in juvenile and adults testes in comparison to ovaries (but

see Klüver et al. [56]) and for some teleosts amh variants were found to be the major sex deter-

mining gene, e.g. amhrII [57] and amhy [5, 58]. In zebrafish, amh has been shown to be an

important factor leading to the natural ovary transformation into juvenile testis [59] and a

decrease in expression levels to be an early sign of sex change in the protandrous black porgy

[60]. The direct association between amh male-biased expression and male-biased DNA meth-

ylation was previously reported in tongue sole by Shao et al. [44]. Similarly to the tongue-sole,

amh is also highly expressed in L. calcarifer testes [23], where amh was found to be hyper-

methylated (i.e. average testicular methylation of CpGs within amh promoter and first exon

was over 85%). Such contrast to expected inverse relationships between promoter methylation

and expression warrants further investigation, and the important amh gene would be a sound

candidate for future studies. New evidence from large scale epigenomic studies are now chal-

lenging the conventional assumption that the predominant function of DNA methylation is

to repress gene transcription, as this epigenetic modification also targets the bodies of active

genes [61]. In the tongue sole and tilapia, such large scale epigenomic studies focused on the

role of DNA methylation within sex determination pathways have shown that differential

methylation between male and female gonads was only positively correlated with expression

levels in about half of genes investigated [15, 44].

In addition to the seven genes investigated in this study, future comparative transcriptomics

research using a larger sample size may unravel differentially spliced genes between male and

female gonads and their association with promoter methylation. Targeting such genes will

allow for a better understanding of the relationship between DNA methylation, expression

and splicing in the context of sex differentiation in barramundi. Here, distinct associations

observed between DNA methylation and expression levels relative to CpG density within

proximal promoters suggests that the epigenetic regulation of transcriptional activity of sex

genes may also operate in a CpG density dependent context. Therefore, although the exact role

of DNA methylation upon transcriptional levels and phenotypes is still not entirely under-

stood, future studies may unveil the biological role of CpG-density context upon the epigenetic

regulation and its associated importance in sex determining pathways.

Supporting information

S1 Fig. Non-biased hypomethylated sex related-genes. (a) sox9 and (b) foxl2 (mean % ± S.

D.) of barramundi Lates calcarifer within testes (n = 10) and ovaries (n = 4) of wild caught

individuals and testes (n = 14) and ovaries (n = 14) of captive broodstock, as obtained by bisul-

fite amplicon next-generation sequencing.
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43. Böhne A, Heule C, Boileau N, Salzburger W. Expression and Sequence Evolution of Aromatase

cyp19a1 and Other Sexual Development Genes in East African Cichlid Fishes. Mole Biol Evol. 2013.

44. Shao C, Li Q, Chen S, Zhang P, Lian J, Hu Q, et al. Epigenetic modification and inheritance in sexual

reversal of fish. Genome Res. 2014.

45. Huang X, Guo Y, Shui Y, Gao S, Yu H, Cheng H, et al. Multiple Alternative Splicing and Differential

Expression of dmrt1 During Gonad Transformation of the Rice Field Eel. Biol Reprod. 2005; 73

(5):1017–24. https://doi.org/10.1095/biolreprod.105.041871 PMID: 16014815

46. Guo Y, Cheng H, Huang X, Gao S, Yu H, Zhou R. Gene structure, multiple alternative splicing, and

expression in gonads of zebrafish Dmrt1. Biochem Biophys Res Commun. 2005; 330(3):950–7. https://

doi.org/10.1016/j.bbrc.2005.03.066 PMID: 15809088

47. Raghuveer K, Senthilkumaran B. Identification of multiple dmrt1s in catfish: localization, dimorphic

expression pattern, changes during testicular cycle and after methyltestosterone treatment. J Mol Endo-

crinol. 2009; 42(5):437–48. https://doi.org/10.1677/JME-09-0011 PMID: 19293249

48. Wu G-C, Chiu P-C, Lin C-J, Lyu Y-S, Lan D-S, Chang C-F. Testicular dmrt1 Is Involved in the Sexual

Fate of the Ovotestis in the Protandrous Black Porgy. Biol Reprod. 2012; 86(2):41, 1–11. https://doi.org/

10.1095/biolreprod.111.095695 PMID: 22034528

49. Navarro-Martin L, Galay-Burgos M, Sweeney G, Piferrer F. Different sox17 transcripts during sex differ-

entiation in sea bass, Dicentrarchus labrax. Mol Cell Endocrinol. 2009; 299(2):240–51. Epub 2008/12/

17. https://doi.org/10.1016/j.mce.2008.11.013 PMID: 19071190

50. Yu H, Cheng H, Guo Y, Xia L, Zhou R. Alternative splicing and differential expression of P450c17

(CYP17) in gonads during sex transformation in the rice field eel. Biochem Biophys Res Commun.

2003; 307(1):165–71. PMID: 12849996

51. Lev Maor G, Yearim A, Ast G. The alternative role of DNA methylation in splicing regulation. Trends

Genet. 2015; 31(5):274–80. https://doi.org/10.1016/j.tig.2015.03.002 PMID: 25837375

52. Foret S, Kucharski R, Pellegrini M, Feng S, Jacobsen SE, Robinson GE, et al. DNA methylation dynam-

ics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proceedings of the

National Academy of Sciences. 2012; 109(13):4968–73.

53. Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R. The Honey Bee Epigenomes: Differ-

ential Methylation of Brain DNA in Queens and Workers. PLoS Biol. 2010; 8(11):e1000506. https://doi.

org/10.1371/journal.pbio.1000506 PMID: 21072239

54. Lei N, Heckert LL. Sp1 and Egr1 Regulate Transcription of the Dmrt1 Gene in Sertoli Cells. Biol Reprod.

2002; 66(3):675–84. PMID: 11870074

55. Müller H, Bracken AP, Vernell R, Moroni MC, Christians F, Grassilli E, et al. E2Fs regulate the expres-

sion of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev. 2001;

15(3):267–85. https://doi.org/10.1101/gad.864201 PMID: 11159908
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