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Ferroptosis is an iron-dependent form of cell death that is characterized by early lipid
peroxidation and different from other forms of regulated cell death in terms of its genetic
components, specific morphological features, and biochemical mechanisms. Different
initiation pathways of ferroptosis have been reported, including inhibition of system Xc

−,
inactivation of glutathione-dependent peroxidase 4, and reduced glutathione levels, all of
which ultimately promote the production of reactive oxygen species, particularly through
enhanced lipid peroxidation. Although ferroptosis was first described in cancer cells,
emerging evidence now links mechanisms of ferroptosis to many different diseases,
including cerebral ischemia and brain hemorrhage. For example, neonatal brain injury
is an important cause of developmental impairment and of permanent neurological
deficits, and several types of cell death, including iron-dependent pathways, have been
detected in the process of neonatal brain damage. Iron chelators and erythropoietin
have both shown neuroprotective effects against neonatal brain injury. Here, we have
summarized the potential relation between ferroptosis and neonatal brain injury, and
according therapeutic intervention strategies.

Keywords: hypoxic ischemic brain injury, intraventricular hemorrhage, cell death, iron toxicity, lipid peroxidation,
neonate, reactive oxygen species, lipid peroxidation

INTRODUCTION

Neonatal brain injury is an important cause of developmental impairment and of permanent
neurological deficits such as cerebral palsy in children. Among many etiological factors, hypoxic–
ischemic encephalopathy in term infants and intraventricular/periventricular hemorrhage in
preterm infants are the most common causes of neonatal brain damage (Bennet et al., 2012;
Shankaran et al., 2014). The progression of brain injury depends on the balance between persistent
injury and the repair response, which can be modulated by therapeutic intervention (Kaandorp
et al., 2012; Azzopardi et al., 2016; Song et al., 2016). Emerging evidence indicates that there is great
potential for improving the treatment of acute brain injury in these children as well as opportunities
for more effective regenerative treatment of these patients (Juul and Ferriero, 2014; O’Gorman
et al., 2015; Tagin et al., 2015). Today, cooling the body is the only established method of treating
newborns after asphyxia, but the protective effects are limited and only moderately injured children
benefit from this treatment (Azzopardi et al., 2014). It is imperative, therefore, that we continue our
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efforts to identify the mechanisms of injury and repair in the
developing brain and to identify new therapeutic strategies. An
improved understanding of the mechanisms of brain injury is
needed in order to develop strategies for the next generation of
treatments for brain injuries in both term and preterm infants.

Neuronal cell death after an insult takes several different
forms, but the underlying mechanisms of neuronal death share
common features and signaling pathways. However, the cell
death mechanisms in the developing brain have been shown to
be quite different compared to those in the adult brain (Zhu et al.,
2005; Wang et al., 2009). Neuronal cell death can be classified
into accidental and regulated forms. Accidental cell death is
induced by severe insults that cause immediate cellular demise,
usually necrosis, and these cells cannot be rescued (Galluzzi et al.,
2018). In contrast, regulated cell death has been differentiated
into many types defined by morphological and/or biochemical
features, including apoptosis, necroptosis, autophagy, pyroptosis,
eryptosis, and more recently also ferroptosis (Galluzzi et al.,
2018). Ferroptosis was first described in RAS mutant cancer cells
in 2012 and has been defined as an iron and lipid peroxidation-
dependent form of cell death that is genetically, biochemically,
morphologically, and mechanistically distinct from other types of
cell death (Dixon et al., 2012; Stockwell et al., 2017).

Studies elucidating the mechanisms of different ferroptosis
inducers have found that system Xc

− and glutathione-dependent
peroxidase 4 (GPX4) inhibition or depletion can trigger
ferroptosis through reduced glutathione (GSH) levels and
subsequent accumulation of reactive oxygen species (ROS),
especially through enhanced lipid peroxidation (Seiler et al., 2008;
Stockwell et al., 2017; Seibt et al., 2018). Ferroptosis has been
found not only in cancer cells, but also in dying neurons in
model systems of neurological disorders (Weiland et al., 2018;
Wu et al., 2018). Prior to the discovery of ferroptosis, the iron
chelator deferoxamine (DFO) had been shown to have great
potential in protecting brain cells from death (Lee et al., 2011;
Masaldan et al., 2018); however, the mechanism behind this
activity remained unknown, but recent studies on ferroptosis
might provide an explanation (Dixon et al., 2012; Xie Y. et al.,
2016; Morris et al., 2018). Programmed cell death is important
for normal development, and such activity is more pronounced
in neonates than in adults (Wang et al., 2009). Furthermore,
metabolic iron imbalance is common and antioxidant capacity
is low in neonates; and this suggests that ferroptosis might be
important in neonates under pathological conditions. However,
there are as yet no reports or reviews linking ferroptosis and
neonatal brain injury. Here, we summarize recent advances in
our understanding of ferroptosis, and we discuss the potential
relationship between ferroptosis and neonatal brain injury.

DEFINITION AND DISCOVERY OF
FERROPTOSIS

Ferroptosis is a non-apoptotic form of cell death that depends
on cellular iron and ROS (Dixon et al., 2012), and ferroptosis
inducers had been applied before the mechanisms of ferroptosis
were first proposed. Erastin, a synthetic compound, was

discovered in Dolma et al. (2003). They found that erastin
could cause non-apoptotic cell death in cells that expressed
an engineered mutant Ras protein, but not in their wild-
type counterparts. Later in 2008, they used high- throughput
screening of small-molecule libraries to identify two Ras-selective
lethal small molecules (RSL3 and RSL5) that induce non-
apoptotic and iron-dependent oxidative cell death, and they
found that the cell death could be inhibited by the iron chelator
desferrioxamine mesylate and by the antioxidant vitamin E
(Yang and Stockwell, 2008). The mode of cell death induced
by RSL3 was found to be non-apoptotic because these cells
showed no apoptotic hallmarks and because such cell death
still occurred in cells where the factors of the core apoptosis
machinery – i.e., caspases, BAX, and BAK – were suppressed
(Yang and Stockwell, 2008; Wolpaw et al., 2011; Dixon et al.,
2012). In 2012, Dr. Stockwell coined the term “ferroptosis” to
describe this newly discovered form of cell death (Dixon et al.,
2012). The morphological features of ferroptosis include an intact
cell membrane without ruptures or blebs, normal nucleus size,
and a lack of chromatin condensation, but with a shrinking
mitochondrial membrane that shows increased membrane
density and reduced or complete absence of mitochondrial cristae
as well as outer mitochondrial membrane rupture (Dixon et al.,
2012; Xie Y. et al., 2016; Doll and Conrad, 2017). Ferroptosis
inducers can be roughly divided in two classes, one is represented
by system Xc

− inhibitors such as erastin and sulfasalazine and
the other acts through GPX4 inhibition such as RSL3 (Stockwell
et al., 2017). Accompanied with the discovery of inhibitors of
ferroptosis, the veil of ferroptosis has gradually been lifted.

METABOLIC PATHWAYS AND
MOLECULAR MECHANISMS IN
FERROPTOSIS

Inhibition of System Xc
− Triggers

Ferroptosis
System Xc

− is a heterodimeric cystine/glutamate antiporter
composed of SLC7A11 (xCT) and SLC3A2, and it is responsible
for maintaining redox homeostasis by importing cystine into the
cell where it is further reduced to cysteine for synthesizing the
major antioxidant GSH. Cysteine is the rate-limiting factor in
cellular GSH biosynthesis because this amino acid is relatively
rare in food. It has been shown that the cysteine-glutathione
pathway is a pivotal upstream signaling regulator of ferroptosis
(Dixon et al., 2014). Impairment of the system Xc

−-dependent
antioxidant defense system results in oxidative injury and
cell death. The small molecule erastin has been shown to
inhibit system Xc

− activity and lead to the accumulation of
lipid ROS and thus to trigger ferroptosis (Dixon et al., 2012,
2014). Several other agents also induce ferroptosis through
inhibiting system Xc

−, such as glutamate, sulfasalazine and
sorafenib (Dixon et al., 2014) (Figure 1).

Glutamate is exchanged for cystine in a 1:1 ratio by system
Xc
−, thus excess glutamate acts as an equivalent of erastin and can

also induce ferroptosis, which perhaps provides new insight into
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FIGURE 1 | Hypothetical mechanisms of hypoxia ischemia and intracranial hemorrhage-induced ferroptosis in the immature brain. Following intracranial
hemorrhage, the lysed erythrocytes release Hb, which produces a degradation product, heme, that is then degraded by HO-1 into carbon monoxide CO, biliverdin,
and free iron. Excess Fe2+, the reactive form of iron, will cause membrane lipid damage and ferroptosis. The selective ferroptosis inhibitors Fer-1 and Lip-1 inhibit
lipid peroxidase activity and inhibit ferroptosis. Iron chelators such as DFO can reduce the level of unbound iron and inhibit the production of ROS and the
occurrence of ferroptosis. EPO reduces the level of unbound iron by promoting erythropoiesis. The inactive form of iron (Fe3+) is recognized by TF and delivered into
the cell by TfR1 and stored in endosomes, where Fe3+ is then converted into Fe2+ by STEAP3. Free iron (Fe2+) can be transported by DMT1 out of the endosome.
Some of the free iron is stored in ferritin, some is transported out of the cell by ferroportin, and some might cause lipid ROS. Free iron can be released from ferritin
degradation via the ferritinophagy pathway, which is mediated by NCOA4. These proteins work together to maintain the balance of iron as well as to control cell fate
to some content. Erastin impedes cystine transport by inhibiting system Xc−, while Nrf acts in an opposing role by upregulating system Xc− transcription. Once
inside the cell, cystine is reduced to cysteine, and the level of cysteine can be supplemented by the trans-sulfuration pathway. Subsequently, cysteine is used for the
biosynthesis of GSH. GPX4 uses two GSH molecules as electron donors to reduce phospholipid hydroperoxides (PL-OOH) to the corresponding alcohols leaving
GSSG (oxidized GSH) as a byproduct. ACSL4 is required for activation of PUFAs, especially arachidonic acid (AA) and adrenic acid (AdA) to AA-CoA and AdA acyl
co-A derivatives. These derivatives are esterified by LPCAT3 into AA-PE and AdA-PE, which then be catalyzed by the iron-containing enzyme lipoxygenase (LOX) to
generate fatty acid hydroperoxides. After hypoxia-ischemia insult, the acidulated environment will cause the accumulation of excess iron and glutamate.
Accumulated glutamate will inhibit system Xc−, which in turn will lead to insufficient levels of cellular cysteine and GSH production. As a result, GPX4 will be
inactivated and lead to lipid peroxidation and ferroptosis. RSL3 is a ferroptosis activator that binds to and inactivates GPX4. During hypoxia insult, HIF is stabilized by
PHDs and is translocated into the nucleus where it turns on transcription of EPO. EPO stimulates the activity of GPX4 and inhibits lipid peroxides and thus acts as an
inhibitor of ferroptosis. PHD inhibitors like DFO and AQ not only inhibit PHDs, but also inhibit ATF4, which is a ferroptosis activator. AA/AdA, arachidonic acid/adrenic
acid; ACSL4, acyl-CoA synthetase long chain family member 4; AIF, apoptosis inducing factor; AQ, adaptaquin; ATF4, activating transcription factor 4; CO, carbon
monoxide; DFO, deferoxamine; DMT1, Divalent metal transporter 1; EPO, Erythropoietin; Fer-1, ferrostatin-1; GPX4, glutathione peroxidase 4; GR, glutathione
reductase; GSSG, oxidized GSH; GSH, reduced glutathione; Hb, hemoglobin; HO-1, heme oxygenase 1; HIF, hypoxia-inducible factor; Lip-1, liproxstatin-1;
LPCAT3, lysophosphatidylcholine acyltransferase 3; PE: phosphatidylethanolamine; PHDs, prolyl-hydroxylases; PL-PUFA (PE), polyunsaturated-fatty-acid-containing
phospholipids; PL-PUFA(PE)-OOH, polyunsaturated-fatty-acid-containing- phospholipid hydroperoxides; PL-PUFA(PE)-OH; PUFA, polyunsaturated fatty acid; ROS,
reactive oxygen species; RSL3, RAS-selective lethal 3; STEAP3, 6-transmembrane epithelial antigen of the prostate 3; TF, transferrin; TfR1, transferrin receptor 1;
VDAC, Voltage-dependent anion-selective channel protein.

explaining the mechanism of glutamate toxicity in the nervous
system. Previous studies have shown that glutamate, at millimolar
concentrations, can also block Xc

− activity in fibroblasts and in
a neuronal cell line, thereby exerting pathways of oxidative cell
death that involve GSH depletion and lipid peroxidation (Tan
et al., 1999; Tobaben et al., 2011; Neitemeier et al., 2017). This

form of cell death in immortalized hippocampal neurons (HT22
cell line) was previously defined as oxytosis (Tan et al., 2001), and
more recent data demonstrated similarities between ferroptosis
and oxytosis at the level of Xc

− inhibition, GSH depletion, and
Gpx4 inhibition and in mitochondrial pathways of oxidative cell
death in neurons that involve activation of the pro-apoptotic BID
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and the mitochondrial release of apoptosis inducing factor (AIF)
(Neitemeier et al., 2017; Jelinek et al., 2018). The mitochondrial
mechanisms merged the previously separated pathways of
oxytosis and ferroptosis in neuronal cells, and this is supported
by data demonstrating the involvement of AIF in cell death
induced by genetic Gpx4 depletion (Seiler et al., 2008), and the
particular role of mitochondrial AIF translocation to the nucleus
of damaged neurons in models of neonatal hypoxia/ischemia
(Zhu et al., 2003) and in transient focal cerebral ischemia (Plesnila
et al., 2004; Culmsee et al., 2005). It is well established that
glutamate toxicity plays an important role in neuronal cell death
in neonatal brain injury (Zhu et al., 2010; Jantzie et al., 2015).
The neurotoxicity of glutamate in differentiated neurons and
brain tissue is dependent on excitotoxic (Tobaben et al., 2011)
disruption of the Ca2+ homeostasis and oxidative stress mediated
by oxidative iron species, and this can be inhibited by iron
chelators or ferroptosis-specific inhibitors, including 12/15 LOX
inhibition (Neitemeier et al., 2017). These findings demonstrate
the close relationship between glutamate toxicity, system Xc

−

inhibition, lipid peroxidation, and ferroptosis.
In addition to glutamate, recent studies have found other

biological molecules that regulate ferroptosis through system
Xc
−. A recent study reported that beclin1 promotes ferroptosis

by directly blocking system Xc− activity. Mechanistically, beclin1
is phosphorylated by AMP activated protein kinase at Ser
90/93/96 and then interacts with SLC7A11, a core component
of system Xc−, to prevent cysteine transport and glutathione
formation (Song et al., 2018). SLC7A11 is also a target of p533KR,
and p533KR transcriptionally downregulates SLC7A11 expression
and induces ferroptosis upon cysteine uptake limitation and
ROS induction (Jiang et al., 2015). Moreover, transcription
factor Nrf2 upregulates system Xc− in various cancers, and
this increases the redox-sensitivity of the cell and induces
ferroptosis (Sun X. et al., 2016).

Inactivation of GPX4 Induces Ferroptosis
Elucidating the mechanism of RSL3-mediated cell death provided
further major insight into the regulation of ferroptosis. Cell
death induced by erastin and RSL3 share common features of
ferroptosis, such as a dependence on iron and ROS; however,
RSL3 toxicity is dependent on either the voltage-dependent
anion-selective channel protein 2/3 (VDAC2/VDAC3) (Yagoda
et al., 2007) or system Xc

− indicating that it functions
through a different initiating mechanism (Yang et al., 2014).
Analysis of affinity-based chemoproteomics with LC-MS and
western blotting confirmed the interaction between GPX4 and
RSL3 (Yang et al., 2014), and further study found that RSL3
covalently interacts with the selenocysteine in the active site
of GPX4 to inhibit its enzymatic activity (Yang et al., 2016).
Knockdown of GPX4 by shRNA induces ferroptosis, while
overexpression of GPX4 renders cells resistant to RSL3 toxicity
(Yang et al., 2014), and this suggests that different initiating
mechanisms converge to a similar form of ferroptotic cell death.
GPX4, which uses GSH as an essential cofactor, catalyzes the
reduction of hydrogen peroxide and organic hydroperoxides,
especially lipid-hydroperoxides, to water and the corresponding
alcohols, respectively (Figure 1).

Role of ROS and Lipid Peroxidation in
Ferroptosis
Erastin induces ferroptosis by inhibiting system Xc

− and thus
inducing the accumulation of ROS, which have been shown
to be lipid ROS according to flow cytometry assays using the
fluorescent probes dichlorofluorescein (DCF), H2DCFDA, and
C11-BODIPY (Yagoda et al., 2007; Dixon et al., 2012). Further
support for the involvement of lipid ROS in ferroptosis comes
from a study showing that RSL3 induces ferroptosis by binding
to and inhibiting GPX4, thereby increasing lipid peroxidation as
measured by C11-BODIPY fluorescence (Yang et al., 2014).

Several lipophilic antioxidants have been identified as
strong suppressors of erastin-induced cell death, including
α-tocopherol, butylated hydroxytoluene, β-carotene, ferrostatin-
1 (Fer-1), and liproxstatin-1. Fer-1 and liproxstatin-1 are
regarded as specific ferroptosis suppressors because they suppress
the cell death induced by ferroptosis inducers (erastin, RSL3)
and fail to save cells from apoptosis or necroptosis induced
by staurosporine and H2O2, respectively (Dixon et al., 2012;
Yang et al., 2014).

Lipidomics analysis revealed that polyunsaturated fatty acids
(PUFAs) are the most susceptible lipids to peroxidation in the
course of ferroptosis compared to other classes of lipids (Yang
et al., 2016). A recent study identified acyl-CoA synthetase long-
chain family member 4 (ACSL4) as an essential component
of ferroptosis through a genome-wide CRISPR-based genetic
screen and a microarray analysis of ferroptosis-resistant cell lines.
ACSL4-enriched cellular membranes with long polyunsaturated
omega-6 fatty acids and GPX4−/ACSL4− double-knockout cells
show marked resistance to ferroptosis (Doll et al., 2017).
Mechanistically, ACSL4 is required for activation of PUFAs,
especially arachidonic acid (AA) and adrenic acid (AdA) to AA-
CoA and AdA acyl co-A derivatives (Hirschhorn and Stockwell,
2018). Next, lysophosphatidylcholine acyltransferase 3 (LPCAT3)
can esterify these derivatives into PE (phosphatidylethanolamine)
to form AA-PE and AdA-PE, which then be catalyzed by an iron-
containing enzyme lipoxygenase (LOX) to generate fatty acid
hydroperoxides in a stereospecific manner (Stockwell et al., 2017;
Hirschhorn and Stockwell, 2018) (Figure 1). Lipid peroxidation
seems play a role in the final stage of ferroptosis, and this is
evidenced by pronounced upregulation of aldo-keto reductase
family 1 member C family genes in cell lines that are resistant
to erastin-induced ferroptosis (Dixon et al., 2014; Stockwell et al.,
2017). The products of these genes can detoxify the end products
of oxidized PUFAs, such as 4-hydroxynonenal which are likely
produced by the oxidative lipid fragmentation processes that
occur during the execution of ferroptosis (Stockwell et al., 2017).

The Role of Iron in Ferroptosis
Although the exact role of iron in ferroptosis remains enigmatic,
there is considerable evidence that iron is a necessary component
in this form of oxidative cell death (Dixon et al., 2012; Li et al.,
2017). It has been shown that erastin induces ferroptosis through
the accumulation of ROS in the cytosol as measured by flow
cytometry using the fluorescent probe DCF when incubation
with exogenous sources of iron rather than other divalent
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transition metal ions (Cu2+, Mn2+, Ni2+, and Co2+), and this
process is suppressed by co-treatment with the iron chelator
DFO (Dixon et al., 2012). Therefore, the state of cellular free
iron seems to be important to ferroptosis induction. Consistently,
studies have demonstrated that proteins that control cellular
iron balance, such as transferrin, ferritin, ferroportin, and other
iron-containing proteins for iron uptake, storage, utilization,
and degradation participate in promoting ferroptosis. In fact,
treatment with recombinant iron-loaded rather than iron-free
transferrin promoted ferroptotic cell death (Gao et al., 2015).
Moreover, iron chelation, depletion of transferrin from serum,
and knockdown of TfR1 prevents erastin-induced ferroptosis.
Erastin-induced cell death can also be inhibited by Fer-1, a
specific ferroptosis inhibitor (Dixon et al., 2012), which also
blocks cell death triggered by either full amino acid starvation
or cystine starvation (Gao et al., 2015). Inhibition of ferritin
autophagy, referred to as ferritinophagy, through blockage of
autophagy or knockdown of cargo receptor NCOA4 (nuclear
receptor coactivator 4) which recruits ferritin to autophagosomes
for lysosomal degradation, abrogates the accumulation of labile
iron and ROS, and prevents ferroptosis (Santana-Codina and
Mancias, 2018) (Figure 1). In addition, iron response element
binding protein 2 was identified as an essential gene for the
induction of ferroptosis due to its role in the regulation of
iron metabolism and iron accumulation (Dixon et al., 2012).
Collectively, these results strengthen the view that iron is
necessary in initiating ferroptosis.

Although iron is necessary for ferroptosis, it remains unclear
how iron acts in ferroptosis. One hypothesis is that iron acts as
free iron and generates hydroxyl radicals or hydroperoxyl radicals
through the Fenton reaction, which is an important source of
ROS (Dixon and Stockwell, 2014). Another hypothesis is that
iron functions in ferroptosis as a cofactor of iron-containing
enzymes. As mentioned before, lipoxygenases are a family of
iron-containing enzymes that mediate PUFA oxidation and exert
a lethal effect under conditions of GSH depletion (Yang et al.,
2016). Other studies have found that other iron-containing
enzymes – the hypoxia-inducible factor prolyl hydroxylases
(HIF-PHDs) – are related to the process of ferroptosis
(Speer et al., 2013; Karuppagounder et al., 2016) (Figure 1).
Also, adaptaquin, a specific inhibitor of HIF-PHD enzymes,
reduced neuronal death and behavioral deficits after intracranial
hemorrhage (ICH) in a rodent model without affecting total iron
or zinc distribution in the brain (Karuppagounder et al., 2016).
The protection from oxidative death in vitro or from ICH in vivo
by adaptaquin was associated with suppression of the activity of
activating transcription factor 4 (ATF4) rather than activation of
a HIF-dependent pro-survival pathway.

Other Molecules Regulate Ferroptosis
Several other metabolic pathways and molecules regulate
ferroptosis sensitivity. As a limited building block of GSH, the
level of cysteine acts as the upstream signal of ferroptosis.
Cysteine starvation and inhibition of system Xc

−-induced
ferroptosis can be rescued by the trans-sulfuration pathway
(biosynthesis of cysteine from methionine) in some cells.

Cysteinyl-tRNA synthetase (CARS) was recently discovered to
be involved in this pathway, and knockdown of CARS increases
intracellular free cysteine and inhibits erastin-induced ferroptosis
(Hayano et al., 2016; Stockwell et al., 2017). However, cysteine
deficiency does not induce the generation of lipid peroxidation
and ferroptosis when there is a lack of glutamine or when there
is inhibition of glutaminolysis (Gao et al., 2015; Stockwell et al.,
2017). Glutamine is a major cellular energy source and can
provide elements for biosynthesizing amino acids, nucleic acids,
and lipids by generating intermediates through glutaminolysis.
Glutaminase 1 (GLS1) and glutaminase 2 (GLS2) both catalyze
glutamine into glutamate as the first reaction of glutaminolysis,
but only suppression of GLS2 prevents ferroptosis, which is
transcriptionally controlled by the P53 P47S variant (Jennis et al.,
2016). Mevalonate-derived antioxidant coenzyme Q10 (CoQ10),
which is derived from the mevalonate pathway, is a negative
regulator of ferroptosis by reducing the accumulation of lethal
lipid peroxidation induced by FIN56 (Shimada et al., 2016)
(Figure 1). Many other molecules and metabolic pathways need
to be explored.

NEONATAL BRAIN INJURY

Neonatal brain injury is a major public health issue and is a
leading cause of neonatal mortality and morbidity, especially
in preterm infants. Neonatal brain injury is not a single well-
defined entity, and many factors contribute to such injury, but the
most common etiologies are hypoxic–ischemic encephalopathy
in term infants and intraventricular/periventricular hemorrhage
in preterm infants (Gale et al., 2018). Brain injury evolves over
time and goes through different stages, and multiple mechanisms
contribute to this process, including energy depletion, excitatory
amino acids, mitochondrial impairment, generation of ROS, and
inflammation, all of which lead to different types of cell death
(Hagberg et al., 2014; Sun et al., 2017; Albertsson et al., 2018;
Davidson et al., 2018; Nazmi et al., 2018). Apoptosis and necrosis
have been identified as the two main mechanisms of cell death
in many different variants of brain injury (Li et al., 2010; Zhu
et al., 2010; Northington et al., 2011; Thornton et al., 2017), but
more and more studies have demonstrated that different forms
of cell death occur simultaneously or successively (Sun Y. et al.,
2016; Xie C. et al., 2016; Sun et al., 2017). After the discovery of
ferroptosis, recent studies have also demonstrated connections
between ferroptosis and neurological diseases (Tonnus and
Linkermann, 2016; Hambright et al., 2017; Zille et al., 2017).

Compared to the adult brain, the neonatal brain has a high
rate of oxygen consumption, high concentrations of unsaturated
fatty acids, and low concentrations of antioxidants, which make it
particularly sensitive to oxidative damage (Blomgren et al., 2003).
The PUFA content of the brain increases during gestation and
indicates that the preterm brain is even more sensitive to lipid
peroxidation than the term brain and that lipid peroxidation
might be a major factor in the white-matter damage seen in
preterm infants who suffer from brain injury (Millar et al.,
2017). Furthermore, the brain’s endogenous antioxidant defense
mechanisms show less activity in the immature brain compared
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to the mature brain (Lafemina et al., 2006). Altogether, this
suggests that the immature brain is more sensitive to oxidative
stress-induced cell death and brain injury. Because perinatal
hypoxia and ICH are two dominant causes of neonatal brain
injury, we focus on the potential contribution of ferroptosis on
asphyxia and ICH-induced neonatal brain injury.

Ferroptosis and Peripartum Asphyxia
Despite important progress in obstetric and neonatal care in
recent years, perinatal asphyxia is still one of the leading causes
of death and adverse developmental outcomes (Zhu et al., 2009;
Azzopardi et al., 2016; Liu et al., 2016). Perinatal hypoxic-
ischemic insult-induced cell death peaks at 24–48 h, but this
pathological process continues for weeks after injury (Geddes
et al., 2001; Fleiss and Gressens, 2012), and this long-lasting cell
death causes significant loss of brain volume as indicated by
cerebral MRI (Wideroe et al., 2011). Further studies that delayed
the chronic phase of cell death for several days after acute injury
reduced brain injury and tissue loss volume (Han et al., 2014;
Xie et al., 2014). Several types of cell death have been shown
to be involved in neonatal brain injury. Apoptosis, necrosis,
and autophagy are the three types of cell death that have been
commonly identified (Zhu et al., 2005; Li et al., 2010; Xie C. et al.,
2016), but with the identification of ferroptosis, new potential
mechanisms of cell death should be taken into consideration.

Excitotoxicity, oxidative stress, and inflammation play
important roles in the mechanism of neonatal hypoxic-ischemic
(HI) brain injury (Li et al., 2011; Bi et al., 2015). HI results in
depolarization of neurons and glial cells and the subsequent
release of excitatory amino acids such as glutamate into the
extracellular space. Elevated glutamate has been documented
in the cerebrospinal fluid of infants who have suffered severe
HI injury (Pu et al., 2008). Accumulated glutamate activates
the NMDA receptors that mediate normal brain development
and function by promoting the proliferation and migration
of neuronal precursors, synaptic development, and plasticity
(Rocha-Ferreira and Hristova, 2015), but excessive glutamate
is also a risk factor for triggering ferroptosis (Figure 1).
Studies have shown that GSH is reduced after hypoxia in the
neonatal periventricular white matter and in primary cultured
oligodendrocytes when exposed to hypoxia or to conditioned
medium from hypoxic microglial cells (Kaur et al., 2010).
Such glutamate toxicity-mediated Xc

− inhibition and GSH
depletion is also established in a model system of oxytosis
in immortalized hippocampal neurons, the HT22 cell line,
which is widely used to study mechanisms of oxidative cell
death involving enhanced lipid peroxidation. As mentioned
before, recent data demonstrated that glutamate-mediated Xc

−

inhibition in oxytosis resembles the major features of ferroptosis.
Thus, glutamate toxicity in vivo might also involve ferroptosis
mechanisms similar to those described for erastin and RSL3 in
cancer cells.

Iron is another dangerous factor during HI injuries. Iron
homeostasis in the brain involves the regulation of iron
movement between the blood and the brain, between the
intracellular and extracellular spaces in the brain, and between
different iron pools within such spaces (Ke and Qian, 2007;

Garton et al., 2016). This homeostasis is maintained by a series
of iron transport proteins (e.g., transferrin) and iron storage
proteins (e.g., ferritin). Under normal physiological conditions,
most of the brain iron is sequestered within storage proteins
because protein-bound iron is safe while free iron can generate
highly damaging reactive molecules, which can cause damage
to proteins and nucleotides and lipid peroxidation via Fenton
chemistry. During the actual HI event, protein-bound iron is
liberated from its binding proteins due to the low intracellular
pH. After HI, the rapid accumulation of iron is seen in damaged
neurons and in the periventricular white matter of neonatal rats
(Rathnasamy et al., 2011), and increased levels of iron-bound
proteins IRP1, IRP2, and TfR, and accumulated free iron are seen
in the serum and cerebrospinal fluid of human infants (Shouman
et al., 2008). Intracerebral injection of the lipid-soluble form of
transferrin (apotransferrin) attenuates white matter damage in a
neonatal rat model of cerebral HI, which suggests that overloaded
free iron can protect cells from oxidative stress (Guardia Clausi
et al., 2012). Indeed, after HI, production of free radicals is
activated, which then attack unsaturated fatty acids and lead to
the production of neurotoxic lipid peroxides (LPOs). Rodent
models have shown abundant formation of LPOs in the brain
after HI, and the serum levels of malondialdehyde, which is
an end-product of lipid peroxidation, increase in neonates after
HI (El Bana et al., 2016). Serum LPO concentrations increase
significantly in asphyxiated infants, and this correlates with
the clinical grading of hypoxic–ischemic encephalopathy and
mortality (Ramy et al., 2016). The level of LPO, as well as the
severity of cell damage, can be reduced by the iron chelator DFO
(Peeters-Scholte et al., 2003; Rathnasamy et al., 2011).

Ferroptosis has been reported in ischemic injuries in other
tissues in vivo and in vitro, and different iron chelators and
their analogs have shown great potential in preventing these
injuries. Treatment with DFO reduces the infarct size in hearts
suffering from ischemia/reperfusion stress (Gao et al., 2015)
and protects against acute renal failure and organ damage in a
model of severe kidney ischemia/reperfusion injury (Linkermann
et al., 2014). A study in a newborn mouse model found
that iron pretreatment aggravates periventricular cystic white-
matter lesions (Dommergues et al., 1998), and this has been
proposed to be related to iron overload-induced oxidative
stress (Gong et al., 2016). Erythropoietin (EPO) is thought
to have neuroprotective effects through multiple mechanisms,
including neurotrophic, anti-oxidant, anti-apoptotic, and anti-
inflammation activities and the promotion of neural stem cell
proliferation and differentiation (Wang et al., 2004; Juul and
Pet, 2015). Furthermore, EPO promotes erythropoiesis, which
increases iron utilization and potentially reduces free iron (Bany-
Mohammed et al., 1996). Preterm infants who received EPO
treatment had significantly reduced serum ferritin accompanied
by reduced serum lipid peroxidation (Akisu et al., 2001), and
our clinical studies have shown that EPO treatment reduces
neurological sequelae in both term and preterm infants (Zhu
et al., 2009; Song et al., 2016). During a hypoxic insult, HIF is
stabilized by PHDs and translocates into the nucleus where it
turns on transcription of EPO. Previous studies have shown that
EPO stimulates the activity of GPX4 and inhibits lipid peroxides
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and thus might act as an inhibitor of ferroptosis (Genc et al.,
2002) (Figure 1). The neuroprotective effect of EPO might be
related to reduced levels of unbound iron and oxidative stress and
thus to reduced levels of ferroptosis (Bailey et al., 2014).

Ferroptosis and Intracranial Hemorrhage
in Preterm Infants
Intracerebral hemorrhage is one of the most common
complications in preterm infants, and its rate of occurrence
increases with decreasing birth weight and decreasing gestational
age (Bolisetty et al., 2014). ICH occurs in 15% of very preterm
infants, and more than half of all infants with severe ICH
develop post-hemorrhagic ventricular dilation and around 30%
develop cerebral palsy (Bolisetty et al., 2014). Currently there
is no efficient therapy to protect infants from neurological
disability as a result of ICH. ICH-induced brain injury includes
both the primary injury, caused by the physical presence of
a hematoma, and secondary injury caused by the effect of
neurotoxic compounds released from the hematoma, including
free iron and cell-free hemoglobin, and iron accumulation
contributes to ventricular dilation (Chen et al., 2015; Xiong
et al., 2016; Garton et al., 2017). It has also been shown that iron
chelator treatment alleviates ventricular dilation after ICH, and
this confirms the important role of iron in the development and
progression of brain injury after ICH (Meng et al., 2015).

There is growing evidence that clot-derived factors such as
hemoglobin, iron, and fibrinogen have an important role in ICH-
induced secondary injury (Ley et al., 2016; Garton et al., 2017;
Petersen et al., 2018). Hemoglobin and iron-induced neuronal
toxicity have attracted much attention by neonatologists (Li
et al., 2017), and hemoglobin and its metabolites are cytotoxic
and are capable of inducing oxidative stress and inflammation
(Agyemang et al., 2017). Hemoglobin is degraded in the brain
by heme oxygenase into iron, carbon monoxide, and biliverdin,
and a large amount of iron is released from hemoglobin into
the extracellular space following hemorrhage (Savman et al.,
2001), and this can result in free radical production through
the Fenton reaction and ultimately cause oxidative damage to
DNA, proteins, and lipids (Figure 1). Non-protein-bound iron is
elevated in cerebrospinal fluid from preterm infants with post-
hemorrhagic ventricular dilatation (Savman et al., 2001). The
infusion of hemoglobin and its degradation products to rats
causes ventricular dilation and brain damage (Hua et al., 2003)
and leads to upregulation of heme oxygenase-1 and ferritin and
to increased iron deposition (Strahle et al., 2014). Treatment with
DFO, an iron chelator, has shown promise as a treatment for ICH
due to its beneficial effects in reducing iron-induced neuronal
death and inflammation (Hatakeyama et al., 2013; Strahle et al.,
2014; Karuppagounder et al., 2018).

Although studies have shown that necrosis, apoptosis, and
autophagy contribute to brain injury after ICH (Chen et al.,
2012; Lule et al., 2017; Li et al., 2018), more and more evidence
indicates that cell death occurs through other mechanisms
as well (Zille et al., 2017; Li et al., 2018). Iron toxicity and
glutamate accumulation, and thus ROS generation, also occur
after ICH, which supports the hypothesis that ferroptosis is

involved in these brain injuries (Dixon et al., 2014), and it has
been shown that experimental ICH exhibits many features of
ferroptotic and necroptotic cell death (Zille et al., 2017). In
addition, ultrastructural analysis of neuronal death after ICH
has shown the co-occurrence of ferroptosis, autophagy, and
necrosis (Li et al., 2018). Fer-1, a specific inhibitor of ferroptosis,
prevents neuronal death and reduces iron deposition induced
by hemoglobin in organotypic hippocampal slice cultures, and
it also improves neurological function in mice after ICH. Fer-1
also reduces lipid ROS production and attenuates the increased
expression level of PTGS2 and its gene product cyclooxygenase-
2 both ex vivo and in vivo (Li et al., 2017). All of these
adult animal model studies confirm that ferroptosis occurs in
both the collagenase-induced ICH model and in autologous
blood injection-induced cell death (Li et al., 2017; Zhang et al.,
2018). However, there is no report yet regarding ferroptosis
in neonatal intraventricular hemorrhage. An intervention study
using DFO in a neonatal rat germinal matrix hemorrhage model
showed neuroprotection in terms of both brain morphology
and behavior (Klebe et al., 2014), and this indicates that
ferroptosis might play an even more important role in the
secondary injury after neonatal ICH. This requires further
investigation to provide evidence for potentially clinically
translatable therapeutic strategies.

CONCLUDING REMARKS

As a novel form of regulated cell death, ferroptosis occurs in cells
when iron accumulation and lipid peroxidation are activated.
However, our understanding of ferroptosis is still at an early stage,
and no specific biomarkers have been found for the identification
of ferroptosis in vivo. Overall, ferroptosis is largely defined
through pharmacological activators and inhibitors. According to
pharmacological effects of pro- and anti-ferroptotic substances,
the mechanism of ferroptosis mainly includes iron toxicity, the
inactivation of GPX4 and system Xc

−, and ultimately lipid
peroxidation. Ferroptosis is involved in adult ischemic and
intraventricular hemorrhage-induced neuronal cell death, and
ferroptosis inhibition reduces neuronal death and behavioral
deficits. Even though there are so far no direct reports of
ferroptosis in neonatal brain injury, there is evidence to suggest
that ferroptosis should be more prone to occur in the neonatal
brain. To mimic PVL in vitro, cultured oligodendrocytes under
cystine-free conditions showed depleted GSH and cell death, and
this type of cell death could be blocked by ferroptosis-inhibiting
ferrostatins (Skouta et al., 2014). Considering the emerging
evidence, ferroptosis should be investigated further in models of
neonatal brain injury and should be considered as a potential
therapeutic target for the treatment of neonatal brain injury.
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