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Abstract

Background: Genome-wide methylation profiling has led to more comprehensive insights into gene regulation
mechanisms and potential therapeutic targets. Illumina Human Methylation BeadChip is one of the most
commonly used genome-wide methylation platforms. Similar to other microarray experiments, methylation data is
susceptible to various technical artifacts, particularly batch effects. To date, little attention has been given to issues
related to normalization and batch effect correction for this kind of data.

Methods: We evaluated three common normalization approaches and investigated their performance in batch
effect removal using three datasets with different degrees of batch effects generated from HumanMethylation27
platform: quantile normalization at average b value (QNb); two step quantile normalization at probe signals
implemented in “lumi” package of R (lumi); and quantile normalization of A and B signal separately (ABnorm).
Subsequent Empirical Bayes (EB) batch adjustment was also evaluated.

Results: Each normalization could remove a portion of batch effects and their effectiveness differed depending on
the severity of batch effects in a dataset. For the dataset with minor batch effects (Dataset 1), normalization alone
appeared adequate and “lumi” showed the best performance. However, all methods left substantial batch effects
intact in the datasets with obvious batch effects and further correction was necessary. Without any correction, 50
and 66 percent of CpGs were associated with batch effects in Dataset 2 and 3, respectively. After QNb, lumi or
ABnorm, the number of CpGs associated with batch effects were reduced to 24, 32, and 26 percent for Dataset 2;
and 37, 46, and 35 percent for Dataset 3, respectively. Additional EB correction effectively removed such remaining
non-biological effects. More importantly, the two-step procedure almost tripled the numbers of CpGs associated
with the outcome of interest for the two datasets.

Conclusion: Genome-wide methylation data from Infinium Methylation BeadChip can be susceptible to batch
effects with profound impacts on downstream analyses and conclusions. Normalization can reduce part but not all
batch effects. EB correction along with normalization is recommended for effective batch effect removal.

Background
DNA methylation, as one of the major epigenetic
mechanisms of DNA modification, plays a significant
role in gene expression regulation, organism develop-
ment, X chromosome inactivation, and genetic imprint-
ing in vertebrates [1]. Changes in methylation patterns
and levels have been shown to be associated with various
diseases such as cancers [2-6] and genetic disorders [7,8].

Coupled with gene expression microarrays, genome-wide
methylation profiling provides the ability to better under-
stand the delicate and complex mechanisms of gene
expression regulation and to search for therapeutic tar-
gets [3,4,9].
The Illumina HumanMethylation27 BeadChip is one

of the most commonly used genome-wide methylation
profiling platforms in the literature. Thousands of
TCGA (The Cancer Genome Atlas) samples have been
assayed using this platform. This bead chip measures
the methylation status of over 27,000 CpG sites in the
genome at single nucleotide resolution [10]. At each
CpG site, average b is obtained to represent the
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methylation level through two types of probe targeting
methylated and unmethylated cytosines (C for methy-
lated and T for unmethylated) respectively after bisulfite
treatment of a sample. Because the average b is the
measurement within a sample and the two probe signals
at a particular CpG are reported by the same dye, it is
generally believed normalization is not necessary. How-
ever, when a study has a number of samples, they need
to be allocated into different chips or processed in dif-
ferent times. Like other high throughput genomic data
[11], this inevitable logistics can cause various batch
effects as reported in the literature [2,9,12] and from
our experience with multiple datasets including methyla-
tion data from TCGA. Batch effects are the technical
artifacts that are not associated with the underlying biol-
ogy, but rather to unrelated factors, such as laboratory
conditions, experiment time, reagent lots and/or labora-
tory personnel differences. The impact of these factors
sometimes can be so profound that, without appropriate
correction, they may lead to inaccurate conclusions or a
significant reduction in the power for true biological sig-
nal detection. Since batch effects can affect different
probes in different ways, they often can not be corrected
through routine normalization methods and special
techniques are needed [2,11]. Several batch effect cor-
rection methods have been developed for gene expres-
sion microarray [13-17]; however, the appropriateness of
these methods for the methylation data has not been
evaluated. What makes more complex is the debate
whether or which normalization should be conducted
before batch effect correction. The practice of normali-
zation in the literature is highly variable, with some stu-
dies without mentioning any normalization [3,4,6,7,18],
and others with quantile or lowess normalization on
average b [2,9,12,19] or at probe signal intensities [8]. In
the recent release of R package “lumi” [20], more com-
plex signal channel adjustment and then normalization
on pooled two signals are proposed http://www.biocon-
ductor.org/packages/release/bioc/html/lumi.html. How-
ever, the appropriateness and performance of these
normalizations are little known.
In this study, we presented three Illumina Human

Methylation27 datasets with different degrees and pat-
terns of batch effects, and investigated the application of
quantile normalization on average b, signal intensities as
implemented in R package “lumi”, and separate methy-
lated and unmethylated signals. We demonstrated each
of these normalizations reduced technical artifacts yet
with some differences. None of these methods were able
to remove refractory batch effects and specialized batch
removal was required. The Empirical Bayes (EB) [17]
batch correction method was shown an effective way to
correct batch effects along with normalization.

Methods
Illumina methylation platform
Human Methylation27 BeadChip is an allele specific
assay with 27,578 CpG loci covering more than 14,000
genes [10]. Each chip (or array) can accommodate up to
12 samples. The assay detects the methylation status of
individual CpG by typing bisulfite-converted DNA.
Methylation protects cytosine (C) from conversion,
whereas unmethylated C is converted to T during the
bisulfite treatment. A pair of bead-bound probes is used
to quantify the amount of T or C through hybridization.
Signal intensities from the two bead types are obtained
from BeadArray Reader. The methylation status of a
CpG site is determined from the average b-value
(bounded between 0 and 1), which is the ratio of the
fluorescent signal of the methylated probe to the total
intensity by both probes.

Datasets
The three datasets evaluated in this study were selected
from three studies conducted previously at Mayo Clinic
and each was approved by the Mayo Clinic Institutional
Review Board (IRB). All were generated using the
Human Methylation27 bead chip in the Genotyping
Shared Resources (GSR) at Mayo Clinic.
Dataset 1
This dataset consisted of 84 blood samples from preg-
nant and non-pregnant women (either never pregnant
or over different time points during pregnancy), among
which 9 were technically replicated for quality control (a
total of 93 arrays). The study subjects between cases
and controls were age (25+/-1) and body mass index (26
+/-1) matched and the samples were randomly allocated
to 8 bead chips and processed at the same time. The
samples on one chip tended to form a separate cluster
from other samples in principal components analysis
but no such cluster was seen in unsupervised clustering,
suggesting some minor batch effects from this chip.
Four of the 9 technical replicates were located on this
chip. This dataset was used to assess the performance of
normalizations and EB batch correction by comparing
the 9 technical replicate pairs. For the two chips we
further investigated, Chip22 had 7 samples from preg-
nant and 5 from non-pregnant women; Chip26 had 5
samples from pregnant and 7 from non-pregnant
women.
Dataset 2
Twenty four blood samples, 14 from cases with a neuro-
logical disorder and 10 from controls, were randomly
allocated to two chips (6 cases and 6 controls on
Chip11 and 8 cases and 4 controls on Chip12). The case
and controls were age matched (+/- 5 years olds). All
samples were processed in the same way except that the
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two chips were hybridized one day apart. The study
included both male and female. To reduce the effects of
differential methylation between male and female on sex
chromosomes, CpGs on chromosome X and Y were
excluded for all analyses for this dataset, which left
26,486 CpGs.
Dataset 3
Two chips of 24 samples, 18 from prostate cancers and 6
from normal prostates (adjacent normal from some cancer
patients), were selected from a study where two big
batches of chips were purchased and hybridized roughly 6
months apart. One chip from one batch contained 8
tumors and 4 normal tissues and the other from another
batch had 10 tumors and 2 normal samples.

Data pre-processing and initial quality assessment
Illumina’s BeadStudio (version 3.1.3) with methylation
module (version 3.2.0), or GenomeStudio (version 2010.1)
with methylation module (version 1.6.1), was used to pro-
cess the raw image data generated by BeadArray Reader.
Initial quality assessment of assay performance was con-
ducted using the “Control Dashboard” in the software
package, which includes graphical inspection of 8 types of
embedded control probes (staining, hybridization, target
removal, extension, bisulfite conversion, G/T mismatch,
negative control, and non-polymorphic controls). Overall
sample quality was determined through total number of
detected CpGs, average detection p-value across all CpG
sites, and the distribution of average b for all CpGs. All
samples in this study passed these basic quality
assessments.

Batch effect assessment
After the initial QC, we assessed overall methylation pro-
file for batch effects. In this study, a batch was defined as a
set of 12 samples from the same chip (note that batch
effects may not be always at chip level; based on how sam-
ples are handled, they can occur by a plate of 96 samples
or a set of chips). We used several metrics to evaluate
batch effects for each dataset: (a) the distribution of aver-
age b values for all samples in one batch contrasting with
another through a box and density plot, (b) unsupervised
hierarchical clustering of all CpGs (27,578 for Dataset 1
and 3; and 26,486 for Dataset 2) using 1 minus Pearson
correlation distance matrix and average linkage, (c) a prin-
cipal components analysis (PCA) plot of the first few (2-3)
principal components using all CpGs, (d) the associations
of first 10 principal components with the batch variable by
Wilcoxon test at a p value < 0.01, and (e) the proportion
of CpGs significantly associated with batches by applying
analysis of variance (ANOVA) test on each CpG and then
counting those with a p value < 0.01 among all 27,578
CpGs (26,468 for Dataset 2 after excluding CpGs on Chr
X and Y).

Normalization
We first evaluated three quantile normalization strategies
for Dataset 1 with 93 samples where 9 pairs of technical
replicates were used as a measure of performance: 1)
directly on average b (QNb). Similar to gene expression
microarray, this normalization makes the distribution of
CpG b values for each sample in the dataset the same [21];
2) two color (red and green) channel signal adjustment
first and then quantile normalization on pooled signals of
both and recalculation of average b as implemented in
“lumi” package of R (lumi) [20]; 3) separate quantile nor-
malization on methylated (B signal) and unmethylated (A
signal) signals and then re-calculation of average b
(ABnorm). For both lumi and ABnorm, average b values
were recalculated from normalized signal data using the
same formula as implemented in the Illumina Beadstudio
or GenomeStudio (average b = signal B/(signal A + signal
B + 100)). The performance of each normalization was
evaluated by comparing the errors of all CpGs between 9
technical replicate pairs, which were obtained by calculat-
ing the differences for each of CpGs between two repli-
cates and they should be zeros theoretically. Because no
technology can achieve that precision, the criteria were to
examine whether the mean of the errors between two
replicates shifted from zero and how large the deviations
were. We used two measures for each replicate pair: 1) the
mean of the errors; 2) the average absolute deviation of
the errors from zero, which is the sum of absolute values
of the errors divided by the number of total CpGs. The
three normalization methods were then applied to Dataset
2 and 3 with more obvious batch effects.

Batch correction using EB algorithm
Quantile normalization adjusts measurements at a global
level. In other words, it is not designed to remove artifacts
that only affect a subset of probes or genes [11]. For Data-
set 2 and 3, all normalization methods failed to correct a
large proportion of batch effects and we accounted for this
subsequently by applying the EB correction method [17].
We selected this method as it is the most flexible with the
best performance among the commonly used batch cor-
rection methods in gene expression microarray [22]. The
outcome of interest, i.e, the case control status for Dataset
2, and tumor and normal status for Dataset 3, was incor-
porated into the batch correction model so that the biolo-
gical information was taken into account.

Performance evaluation of normalization and batch
correction
In addition to the evaluation of technical replicates for
Dataset 1, we used the same evaluation metrics as
described in the section “Batch effect assessment” to
determine the adequacy of normalization and EB batch
correction after normalization and/or EB correction was
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conducted on each dataset. To measure the improvement
of biological signal detection, we applied ANOVA test for
differentially methylated CpGs between case and control
of Dataset 2 and prostate cancer and normal prostate for
Dataset 3 before and after normalization and EB correc-
tion and recorded the proportion of CpGs associated
with these outcome variables (p value < 0.01 among all
analyzed CpGs).

Results
Patterns and severity of batch effects
Obvious batch effects are often indicated from basic QC
plots such as a density or box plot which shows a differ-
ent distribution of average b values in one batch from
another regardless of sample types. In PCA plot or
unsupervised clustering, samples from the same batch
form a distinct cluster.
The batch effects in Dataset 1 were very subtle. In the

PCA plot, the samples on Chip22 tended to separate
from other samples (Figure 1A); however, this was not
visible in unsupervised clustering. For better visualiza-
tion, we extracted the data from this chip and another
chip (Chip26). As shown in Figure 1B, the density plot
of average b values showed a slight shift and separation
between the samples from the two chips. The batch
effects were more visible in the PCA plot for the two
chips (Figure 1C). Note that two technical replicates
(with across bars) were apart in the first principal com-
ponent and clustered more tightly to the samples on
their respective chip.
For Dataset 2, the samples on Chip12 had lower aver-

age b values than those in Chip11 and shifted to the left
in the density plot (Figure 2A). In both unsupervised
clustering and PCA plot, samples from Chip11 and 12
were clearly separated into two clusters (Figure 2B, PCA
was shown only). Note that the case and control sam-
ples were in the similar ages and were scattered in two
chips; the separation was clearly due to experimental
artifacts. The M-A plot showed an “intensity” dependent
bias of average b values between the two chips (Addi-
tional file 1A).
Dataset 3 presented a different distribution from Dataset

2 where the medians of average b values between the two
chips were similar, yet all samples on Chip36 (green color)
had much smaller upper quartiles (Figure 3A, C). As
expected, unsupervised hierarchical clustering showed
grouping of samples from the same chip regardless they
were from prostate cancer or normal tissues (Figure 3E).
Again, an obvious systematic bias was seen from the M-A
plot between the two chips (Additional file 1B).
As quantitative measures of batch effects, we counted

the percentage of CpGs that were associated with the
batch effects for Dataset 2 and 3. As shown in Table 1
column “Raw b”, the two datasets had 66% and 50% of

CpGs associated with the batch variable at p value less
than 0.01, respectively. The first principal component of
both was significantly associated with the batches from
Wilcoxon test for the first 10 components examined.

Comparison of different normalizations on Dataset 1 with
technical replicates
We applied three normalization strategies to Dataset 1
with all 93 samples together. The purpose was to compare
the errors (pair-wise average b value differences) between
9 replicate pairs before and after normalization. In the box
plot of the errors (Figure 1D), for every replicate pair the
un-normalized data (red color) had the largest inter-quar-
tile range and its median shifted off the zero line the most.
The spread was shrunken and the median was adjusted
closer to zero by each of the normalization methods
(green for QNb, blue for lumi, and cyan for ABnorm)
although there were slight differences among the three
methods. Similarly, the error means deviated from zero
the most for the un-normalized data. These were cor-
rected by each of normalization methods, with QNb lead-
ing to a straight line at zero (Figure 1E, green solid line,
lower panel). The average absolute deviations (from zero)
of these errors were also reduced through each of the
three normalizations, with lumi normalization having the
smallest average absolute deviation in most of replicates
pairs (Figure 1E, upper blue dashed lines). However, the
error means from this normalization deviated more from
zero line than QNb and ABnorm. Note that the replicates
on Chip22 (one of the pair 1, 3, 4, 5), which demonstrated
some batch effects, had higher deviations than the repli-
cates on other chips and these were significantly reduced
after normalizations. After each of the normalizations, the
distribution bias and the cluster of Chip22 were no longer
present, suggesting the minor batch effects could be cor-
rected by simple normalization.

Normalization not sufficient for data with obvious batch
effects
Although the three normalizations performed similarly in
reducing the batch effects for Dataset 1, the results for
Dataset 2 and 3, which both had obvious batch effects,
showed some clear differences. While QNb adjusted each
sample to identical distribution as expected, lumi normali-
zation was not able to remove the distribution bias
as shown in the box and density plots for both datasets
(Figure 2C and 3B and 3D). These biases were successfully
adjusted by ABnorm (Figure 2E). Each normalization
removed a significant portion of technical artifacts for the
two datasets, as measured by significantly reduced percen-
tages (or numbers) of CpGs associated with the batch
effects (from 66% to 24.4%, 32% and 26% for Dataset 2
and from 50% to 37.3%,46% and 35.2% for Dataset 3 using
QNb, lumi, and ABNorm normalization, respectively
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Figure 1 Dataset 1 before and after normalization and batch effect correction. A: PCA plot for all 93 samples using all 27,578 CpGs.
Different colors are for different batches. Nine pairs of technical replicates are marked as R1 to R9. The samples on Chip12 (circled with dash
line) tend to separate from other samples. B. Density plot of samples from Chip12 and Chip26 shows minor distribution biases between the two
chips. C: PCA plot of the 24 samples from Chip22 and 26 using all 27,578 CpGs. Two samples with an across bar are technical replicates. D: Box
plot of pair-wise CpG errors between 9 pairs of technical replicates for unnormalized average b (red), QNb (green), lumi (blue), and ABnorm
(cyan). The unnormalized data has wider interquartile ranges and shifted medians from zero line. All normalized data have condensed
interquartile ranges with medians adjusted close to zero line. E: Error means (lower pane) and average absolute deviations (upper panel) of 9
pairs of technical replicates before (red) and after three normalizations. Unnormalized data has the largest average absolute deviation for each of
replicate pairs and shifted mean for most of the pairs. All normalized data show reduced average absolute deviations. F: Error means (lower
pane) and average absolute deviations (upper panel) of 9 pairs of technical replicates before and after three normalizations plus EB correction.
The normalized and EB correction data have almost identical error means and average absolute deviations compared to normalized data alone.
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Figure 2 Dataset 2 before and after normalization and batch correction. A: The density plot of average b values for two chips of samples.
All samples on Chip12 shift to the left, more CpGs with lower methylation values. B: PCA plot (first two components) for the 24 samples using
26,486 CpGs after excluding CpGs in sex chromosomes; samples on each chip cluster closely with the first component explaining 50.3% of
variance. C: Density plot of lumi normalized data. The distribution bias has been greatly reduced but a significant portion remains. D: PCA plot of
lumi normalized data still shows clear sample separation by batches using 26,486 CpGs after excluding CpGs in sex chromosomes. E: Density
plot of average b after ABnorm. The distribution bias has been successfully removed. F: PCA plot of ABnorm data shows the clear remaining
batch effects using 26,486 CpGs. G: The profiles of selected 20 CpGs that are associated with the batch effects after normalization. X-axis-samples
ordered by Chip (11 or 12). Y-axis-methylation average b. Each line represents one CpG across samples. These CpGs are either all higher or lower
on one chip than another. H: The profiles of the same 20 CpGs as G after normalization and EB correction. The systematic differences between
the two chips have been removed.
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Figure 3 Dataset 3 before and after normalization and batch effect correction. A: Box plot of raw average b for two chips of 24 samples.
The medians between the two chips are similar, but the 3rd quartile values of Chip36 are much lower than Chip54. B: Box plot for the two
chips of 24 samples after lumi normalization. C: The density plot of average b for 24 samples before normalization colored by batches. The
distribution differs obviously between the chips. D: The density plot of “lumi” normalized average b for 24 samples shows a large portion of
batch effects not corrected. E: unsupervised clustering using all 27,578 CpGs before normalization and EB correction shows the clear separation
of samples by chips (Chip54 or Chip36); samples from the same tissue type tend to cluster within the same batch (* for normal prostates and
others for tumors). F: unsupervised clustering after normalization and EB correction using all 27,578 CpGs shows the separation between batches
is removed; samples from the same tissue type cluster closely (* for normal prostates and others for tumors). G: Methylation profiles of selected
20 CpGs that are significantly associated with the batch effects after normalization, showing the dramatic differences between the two chips.
The letter “T” and “N” on x-axis represent tumor and normal sample. H: The methylation profiles of the same 20 CpGs as G after the additional
EB correction. The systematic biases are successfully removed.
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Table 1 Statistical measures of batch effects and performance evaluation of normalization and batch correction

Dataset Statistical measure Raw b QNb Lumi ABnorm QNb+
EB

Lumi+
EB

ABnorm+
EB

Number (%) of CpGs associated with batch at p < 0.01 17,458
(66)

6,466
(24.4)

8,478
(32)

6,926
(26)

12 25 23

2 PCs associated with batch(% variance explained)* 1
(51.6)

1
(17.9)

1
(22.1)

1
(18.9)

None None None

Number (%) of differentially methylated CpGs between case and control at p < 0.01 345
(1.3)

759
(2.9)

714
(2.7)

763
(2.9)

1,155
(4.2)

1,146
(4.3)

1,229
(4.6)

Number (%) of CpGs associated with batch at p < 0.01 13,881
(50.0)

10,300
(37.3)

12,668
(46)

9,694
(35.2)

2 6 8

3 PCs associated with batch (% variance explained) 1
(50.4)

1
(24.8)

1
(30.6)

1
(23.8)

None None None

Number (%) of differentially methylated CpGs between cancer and normal at p < 0.01 794
(2.9)

1,877
(6.8)

1,131
(4.1)

1,635
(5.9)

2,799
(10.1)

2,400
(8.7)

2,289
(8.3)

Raw b: Raw average b without any correction; QNb: quantile normalization at average b values; lumi: two step quantile normalization at probe signals implemented in R package “lumi"; ABnorm: quantile
normalization for A and B signal separately; EB: Empirical Bayes batch correction. * The principal components (PC) significantly associated with batch effects at p value < 0.01 from the top 10 evaluated by Wilcoxon
test and the percentage of variance the PC explains.

Sun
et

al.BM
C
M
edicalG

enom
ics

2011,4:84
http://w

w
w
.biom

edcentral.com
/1755-8794/4/84

Page
8
of

12



(Table 1). The reductions for lumi were the smallest
among the three and QNb and ABnorm were very similar.
In spite of the significant reductions, the numbers of

CpGs remaining associated with batch effects were still
much higher than expected. In fact, clear batch effects
could be seen from PCA plot (Figure 2D for lumi and F
for ABnorm, Dataset 2) or unsupervised clustering and
the first principal component from PCA was signifi-
cantly associated with the batch effects in both datasets
regardless of normalization methods (Table 1). Noted is
that the remaining batch effects after lumi normalization
were larger than QNb and ABnorm normalized data.
This was further indicated by a higher proportion of
CpGs associated with batch effects (32% vs. 24% and
26% for Dataset 2 and 46% vs. 37% and 35% for Dataset
3, respectively, Table 1).

Empirical based batch correction
The results above demonstrated that batch affected CpGs
were not easily corrected by global normalization methods
and they had to be further corrected for reliable biological
signal detection. We subsequently applied the EB algo-
rithm to the normalized data by three normalization
methods to Dataset 2 and 3. For each dataset after the
step we again evaluated the batch effects and the CpGs
associated with the outcome of interest. As summarized
Table 1 none of the PCs were associated with the batch
effects anymore for the batch corrected data; and the
CpGs that were associated with the batch effects were
reduced to a few (12, 25, 23 in Dataset 2 and 2, 6, 8 in
Dataset 3 for QNb, lumi and ABnorm normalized data,
respectively). At the same time, the CpGs associated with
the outcome of interest were dramatically increased: for
Dataset 2, there were 759, 714, and 763 CpG associated
with case and control status for QNb, lumi, and ABnorm
normalized data, respectively. These numbers were
increased to 1,155, 1,146, 1,229, representing 52%, 61%
and 61% increase. Compared to the un-normalized raw
average b where only 345 CpGs were significant at p <
0.01, these were more than 3 fold increase of detected
CpGs. Similarly, for Dataset 3, there were only 794 CpGs
associated with prostate cancer/normal prostate for the
raw data. After normalization, this number increased to
1,877, 1,131, 1,635, respectively, for QNb, lumi and
ABnorm, which further jumped to 2,799, 2400, and 2289
after EB correction. The largest leap in the normalization
step was from QNb; the changes from lumi were the most
modest among the three; and ABnorm performed between
the two.
As a further check of the effectiveness of EB correction,

we conducted unsupervised hierarchical clustering for
Dataset 3 after normalization and EB correction. The
tumor and normal prostate samples in the dataset were
expected to form distinct clusters as two types of tissues

have very different methylation profiles [23]. This was
the cases for the samples in the same batch. However, for
the raw and normalized data, the normal samples were
separated into two main clusters dictated by batches (Fig-
ure 3E, normal samples marked with *). After the EB cor-
rection, the normal prostate samples clustered much
closer and samples from two batches were no longer seg-
regated (Figure 3F).
To illustrate how batch affected CpGs behaved after

normalization and batch effect correction in Dataset 2 and
3, we plotted the b values of the top 20 batch associated
CpGs across samples ordered by batches (Figure 2G, H for
Dataset 2 and Figure 3G, H for Dataset 3). For the data
after normalization (Figure 2G and 3G), these CpGs were
either all higher or lower consistently in one batch com-
pared to the other (these patterns were not related to
tumor or normal status and the differences between sam-
ples within a batch were very small). However, these sys-
tematic biases were adjusted to comparable levels between
the two batches after the EB correction (Figure 2H and
3H)

Discussion
In this study, we evaluated three commonly used normali-
zation approaches in batch effect correction on Illumina
Infinium methylation data. We first used the technical
replicates included in Dataset 1 to assess the reduction of
technical artifacts from these normalizations. Compared
to raw average b, we observed each of the normalizations
reduced the errors measured by average absolute deviation
from zero (Figure 1D and 1E). Lumi outperformed QNb
and ABnorm for this dataset with minor batch effects.
However, when a dataset had more obvious batch effects
such as Dataset 2 and 3, lumi normalization became less
effective, leaving a larger portion of batch effects intact. In
this case, QNb and ABnorm appeared more effective.
ABnorm was less aggressive than QNb as it performed at
signal intensities.
Unlike gene expression microarray where normalization

is routine practice, normalization for Infinium methylation
data has been controversial. One reason is that for a parti-
cular CpG the same dye is used for both methylated and
unmethylated probes and some believe no dye bias adjust-
ment is needed [24]. Additionally, methylation measure is
a ratio between methylated and unmethylated signal
within a sample and it is presumed less affected by techni-
cal issues. The concern as to the appropriateness of nor-
malization assumptions for methylation data is also raised
[25]. However, growing evidence suggests that technical
issues can affect methylated and unmethylated signals dif-
ferently and the magnitude of these effects is too large to
be ignored. For the datasets (Dataset 2 and 3) in this
study, we not only observed the clear technical artifacts
from batches, but also some variations between samples in
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the same batch that were not explained by underlying
biology. This was further evidenced by the clear differ-
ences between technical replicates in Dataset 1. When M-
A plots were investigated, these systematic biases showed
an intensity dependent manner (Additional file 1). All
these suggest the necessity of normalization. In evaluating
methylation profiles of multiple individuals from the same
or different tissues, a study showed that the majority of
CpG methylation patterns were conserved [26], which
implies that the quantile normalization assumption that
the majority of markers in an experiment are not differen-
tially expressed and should have similar distributions lar-
gely holds for methylation data, particularly when it is
conducted in the same or similar tissue type. This was also
supported from our presented data. For example, in Data-
set 1, the variation of each CpG across 83 individuals was
very small (standard deviation < 0.05 for over 95% of
27,578 CpGs). When differential methylation was con-
ducted between case and control samples, only a small
proportion (2.2%) of CpGs was with p value < 0.01. Even
for the case of tumor and normal samples where a large
difference is expected in Dataset 3, the differential CpGs
accounted for < 10% of total (after normalization and
batch correction). QNb is an aggressive normalization
approach yet could be very effective if the underlying
assumption of b value distribution across samples hold,
particularly when technical artifacts are severe. Normaliza-
tion at signal intensities would correct the root cause of
signal intensity bias and lead more accurate adjustment as
the transformation from signal intensities to average b is a
non-linear process and the sources of the bias become
obscure once transformed. The differences between lumi
and ABnorm are that lumi first conducts color channel
adjustment (smooth quantile) and then pools methylated
and unmethylated probes together for quantile normaliza-
tion, assuming the pooled probes have similar distribution
across samples. ABnorm assumes the distribution of A or
B signals should be similar across samples. Although lumi
normalization performed better for the dataset with minor
batch effects such as for Dataset 1, it was the least effective
to remove obvious distribution bias as seen in Dataset 2
and 3. ABnorm, on the other hand, could effectively cor-
rect the distribution biases for both datasets and its perfor-
mance was between QNb and lumi.
In spite of the clear benefit from each of the normali-

zations, it is worth pointing that normalization can be a
double-edged sword, which not only does good but also
harm when used improperly. Investigators should make
sure the samples to be normalized together are “similar”
enough (i.e., the same or similar type of tissue or
patients in the similar characteristics) so that biological
signals will not be compromised through normalization.
Evaluation of the known “positive” (hypermethylated)
and “negative” (no methylation) CpG methylation

patterns in the data may help assess the effectiveness
and potential bias from normalization [27]. For example,
we applied this approach to Dataset 3 where many
genes are known to be hypermethylated in prostate can-
cer compared to normal prostate. Eighty-five CpGs from
14 hypermethylated genes [28,29] and 358 CpGs from a
list of house-keeping genes whose CpGs are presumably
not methylated [30] were selected for differential testing.
Normalization and normalization/EB correction signifi-
cantly increased the numbers of differentially methylated
positive CpGs compared to unnormalized data (up to
60% increase) yet the numbers of significant negative
CpGs remained in the expected type I error rate (<
expected 18 and p values were uniformly distributed,
Additional file 2).
Batch effects appear a common phenomenon in high

throughput genomic data as described recently [11]. The
batch affected probes or markers tend to behave differ-
ently under different conditions and most global nor-
malizations are not able to correct such irregular
probes. For example, after normalization, 24-46% of
total CpGs remained associated with batch effects in
Dataset 2 and 3 depending on which normalization was
used (Table 1), which makes further batch removal
mandatory. Several batch correction methods have been
developed for gene expression microarray, which include
the EB approach applied in this work, distance weighted
discrimination (DWD) [14], mean-centering [16], geo-
metric ratio-based method [31], and surrogate variable
analysis (SVA) [15]. The performance of these methods
in gene expression microarray has been extensively eval-
uated [22]. The similar characteristics of batch effects in
methylation to gene expression suggest that these meth-
ods can be applied to methylation array. Their usage is
mainly dictated by their flexibility of handling the
unique methylation data and performance in gene
expression microarray. Methylation average b values are
bounded from 0 to 1. Algorithms that generate data out
of the bounds after batch correction are problematic.
Besides the factor of study interest, methylation can be
affected by other factors such as age and gender. These
factors may need to be taken into consideration while
batch correction is performed for accurate adjustment.
Batch correction methods that can not incorporate
these factors are less ideal. None of the aforementioned
methods except the EB approach have this flexibility.
The EB approach has been shown outperforming all
other methods in terms of precision and accuracy [22]
because it models both additive and multiplicative
effects. What makes EB algorithm more attractive is
that it corrects batch effects by borrowing information
across CpGs and experimental conditions, which leads
to better estimation of batch parameters and more
stable adjustment, particularly when the number of
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samples in each batch is small. This is particularly useful
to the Illumina Methylation BeadChip data, as we often
see batch effects occurring at chip level, 12 samples a
unit. Our data indicated that it not only successfully
removed the remaining batch effects but also signifi-
cantly increased biological signal detection. Even for the
data with minor batch effects, it can further reduce
technical variability on the top of normalization (Figure
1F). As it is an R function, it can be easily integrated
with other packages such as “lumi” and other normaliza-
tion procedures.
For an illustration, we applied the DWD approach to

our Dataset 2 and 3. As expected, we found that it not
only corrected batch effects but also removed certain
biological signals. The numbers of differentially methy-
lated CpGs associated with the study of interest were all
lower compared to the EB corrected data regardless of
normalization method used (Additional file 3). Similar
to gene expression data, the DWD could change the
scale of the methylation data, making the normalized
data not directly comparable. It needed to be run two
batches at a time and it would be cumbersome when
multiple batches are involved.
It should be emphasized that a good study design is

critical for evaluation and correction of batch effects.
Samples from different study groups should be ran-
domly or evenly allocated to different batches. If batches
and study groups are totally confounded, i.e., one group
of samples allocated on one batch and another group of
samples on another, it would be impossible to separate
batch from biological effects. Normalization might be
the only option that can be exercised. With balanced
design, batch factor and covariates such as sample
group of study can be incorporated for more accurate
adjustment.
The procedure of normalization and batch correction

in this work is sequential, i.e., normalization is con-
ducted first and batch correction is added subsequently.
A comprehensive model that incorporates normaliza-
tion, batch effect correction, and other important factors
such as tissue heterogeneity might lead to a better result
as proposed for gene expression microarray [32].
Although this evaluation was based on the Human
Methylation27 platform, we expect these principles
should be applicable to the new release of the 450 k
Infinium Methylation Beadchip as both platforms use
the similar Infinium methylation assay. To our experi-
ence, this bead based platform is sensitive to batch
effects.

Conclusion
In summary, we have demonstrated that genome-wide
methylation data from Infinium Methylation BeadChip
can be susceptible to various batch effects, which can

profoundly affect downstream analyses and conclusions.
Careful examination of such effects is necessary. All
three commonly used normalization approaches reduce
batch effects, but none of them can remove it comple-
tely, particularly when batch effects are substantial. QNb
is more aggressive yet effective when batch effects are
severe; Lumi normalization performs better for the data
with minor technical variation but worse for the data
with obvious batch effects. ABnorm performed between
the two. Batch effects affect CpG methylation values in
an irregular way and specialized correction techniques
are needed. EB correction along with normalization dra-
matically improves biological signal detection and is
recommended for effective batch effect removal.
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Additional material

Additional file 1: Fitted lowess curves of M-A plot for Dataset 2 and
3. X-axis is for the methylation mean across all samples and Y-axis is the
difference between each sample and the mean. Each curve represents a
sample; red and green mark samples from two different batches. A:
Dataset 2, red for Chip11 and green for Chip12. B: Dataset 3, red for
Chip54 and green for Chip36. Bothe datasets show clear non-linear
“intensity dependent” biases.

Additional file 2: Differential methylation p value distribution of
positive and negative CpGs between prostate cancer and normal
samples for Dataset 3 before and after normalization/batch
correction. The positive CpGs (85) were selected from genes frequently
reported in the literature whose CpGs are hypermethylated in prostate
cancer. The negative CpGs (358) were selected for housekeeping genes.
A: After normalization and normalization/EB correction, the numbers of
differentially methylated positive CpGs all increase compared to un-
normalized data. B: The p values for negative CpGs are almost uniformly
distributed and there is no indication of bias introduced from
normalization and batch correction (the significant CpGs at p < 0.05 are
all less than expected 18).

Additional file 3: Batch effect correction by distance weighted
discrimination (DWD). DWD effectively removes batch effects. However,
the numbers of significant CpGs associated with outcome of study are all
lower than EB corrected data in Table 1 of the main text. Failure to
incorporate biological covariates in the adjustment model is likely to
compromise true biological signals.
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