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Abstract

Skin permeability is widely considered to be mechanistically implicated in chemically-induced 

skin sensitization. Although many chemicals have been identified as skin sensitizers, there have 

been very few reports analyzing the relationships between molecular structure and skin 

permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, 

and integrate the largest publicly available dataset of chemicals studied for their skin permeability; 

(ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore 

the complex relationships between skin sensitization and skin permeability. Based on the largest 

publicly available dataset compiled in this study, we found no overall correlation between skin 

permeability and skin sensitization. In addition, cross-species correlation coefficient between 

human and rodent permeability data was found to be as low as R2=0.44. Human skin permeability 

models based on the random forest method have been developed and validated using OECD-

compliant QSAR modeling workflow. Their external accuracy was high (Q2
ext = 0.73 for 63% of 

external compounds inside the applicability domain). The extended analysis using both 

experimentally-measured and QSAR-imputed data still confirmed the absence of any overall 
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concordance between skin permeability and skin sensitization. This observation suggests that 

chemical modifications that affect skin permeability should not be presumed a priori to modulate 

the sensitization potential of chemicals. The models reported herein as well as those developed in 

the companion paper on skin sensitization suggest that it may be possible to rationally design 

compounds with the desired high skin permeability but low sensitization potential.
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INTRODUCTION

Skin sensitization is a complex adverse toxicological endpoint that is influenced by several 

biological parameters, such as protein binding, dendritic cell activation, individual variation, 

and time-dose exposure (Jaworska et al., 2011; Johansen et al., 2011). Skin permeability is 

also often considered as a potential parameter affecting chemicals’ sensitization potential 

(MacKay et al., 2013). It relates to the ability of a molecule to pass through the skin, a 

characteristic which is primarily influenced by the physicochemical properties of the 

chemical as well as the physicochemical and biological properties of the membrane (Xia, 

2011).

Despite the high importance of skin permeability for consumer product efficacy and its 

supposed influence on potential toxicities such as skin sensitization, the amount of 

experimental data available in the public domain is surprisingly limited. In the early 90’s, a 

compilation of data points for skin permeability gathered from several sources was 

published (Flynn, 1990). Subsequent studies added some complementary data allowing 

researchers to develop Quantitative Structure-Activity Relationship (QSAR) models for 

predicting skin permeability. However, as shown in Table S1, most of the published studies 

reporting on skin permeability modeling (Abraham et al., 1999; Barratt, 1995; Berge, 2009; 

Chen et al., 2010, 2007; Cronin et al., 1999; Hostýnek and Magee, 1997; Lien and Gao, 

1995; Magnusson et al., 2004; Moss and Cronin, 2002; Moss et al., 2011; Patel et al., 2002; 

Potts and Guy, 1995, 1992) have not included certain critical elements of QSAR model 

development and validation protocol, such as the definition of the applicability domain (AD) 

or proof of passing the Y-randomization test, which constitute best practices of QSAR 

modeling (OECD, 2004; Tropsha, 2010). Recently, several QSAR studies were 

benchmarked on a series of 11 compounds and all of them failed to predict skin permeation 

quantitatively; they were only able to rank permeants (Brown et al., 2012). Another recent 

study showed that most of the available QSAR models underestimate the skin permeability 

of hydrophilic solutes (Chen et al., 2013). Recent studies (Chauhan and Shakya, 2010) 

attempted to overcome the related problems with complex chemical mixtures and built a 

QSAR model based on several mixtures of 36 chemicals with porcine skin data. The latter 

model followed the best practices of QSAR modeling (Tropsha, 2010); however, we have 

identified 21 duplicative structures in that dataset (see Table S3) indicating a potential bias 

of the model and a likely over-estimation of its true performance.
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Despite the underlying importance of skin permeability and its identification as a necessary 

step in the OECD Adverse Outcome Pathway (AOP) for skin sensitization (Karlberg et al., 

2008; OECD, 2012), we could not find any study among those compiled in Tables S1 and 

S2, where both endpoints were analyzed concurrently and in the context of their possible 

inter-dependency. The prevalence of dermal exposure to diverse chemicals in consumer 

products and in the environment, the importance of permeability for skin sensitization, and 

the lack of reliable models to predict these endpoints for new chemicals have motivated us 

to initiate a tandem study on collecting and analyzing both skin permeability and skin 

sensitization data. In the companion paper (Alves et al., 2014), we have reported on new 

QSAR models of skin sensitization. In this study, we have compiled, curated, and integrated 

skin permeability coefficient (Kp) data extracted from various literature sources. Using this 

unique data collection, we have developed and rigorously validated QSAR models for skin 

permeability, and explored the relationships between the skin sensitization potential and the 

chemical permeability coefficient. The QSAR models developed in this and the 

accompanying study (Alves et al., 2014) are publicly available and can be used for 

evaluating chemically induced skin effects in silico as part of both research and development 

projects as well as in support of regulatory decisions on consumer products.

MATERIALS AND METHODS

Datasets

Skin sensitization datasets (datasets A and B)—In the Part I of this study (Alves et 

al., 2014) we described two skin sensitization datasets. Briefly, one of them (dataset A) was 

retrieved from the ICCVAM (Interagency Coordinating Committee on the Validation of 

Alternative Methods) report on the murine reduced local lymph node assay (ICCVAM 

2009). The modeling set (Dataset A) consisted of 254 compounds (127 sensitizers and 127 

non-sensitizers) and the external validation set (dataset B) consisted of 133 sensitizers from 

the ICCVAM report (ICCVAM 2009) and 18 additional compounds taken from the study of 

Jaworska et al. (2011). This collection of data was used to explore the intrinsic relationship 

between skin sensitization and skin permeability (human data from dataset D; see below) for 

a subset of 20 compounds from the same dataset for which both skin sensitization and skin 

permeability data were known.

Human skin permeability dataset (dataset D)—In vitro human skin permeability 

coefficients were retrieved from the literature (Chauhan and Shakya, 2010) including 211 

records expressed in logKp (cm.h−1); this dataset contained the well-known and frequently 

studied Flynn dataset (Flynn, 1990). 17 duplicates and two sets of triplicates were identified 

and curated leaving unique compounds only. Three additional compounds and water were 

also removed for the following reasons: both styrene (logKp = −0.19) and ethyl benzene 

(logKp = 0.08) were identified as activity outliers (i.e., their logKp values were far outside 

the activity range of the other compounds in the dataset between −5.52 and −0.69) whereas 

digitoxin (natural product) was a structural outlier. The remaining 186 compounds (dataset 

D) were retained for modeling.
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Rodent dataset (dataset E)—The set of in vitro rodent skin permeability data consisting 

of 103 chemical compounds was retrieved from the literature (Moss et al., 2011). After 

curation, 96 compounds (dataset E) were kept for modeling. The following five activity 

outliers were removed from the dataset E: bisphenol A diglycidyl ether (−5.26), 

decabromodiphenyl oxide (−5.15), 4-N butylamine (−0.64), bufexamac (−0.57), and 

triclosan (0.13). The overall range of logKp for the final dataset varied from −4.85 to −0.94.

Data curation

Chemical structures were retrieved either from PubChem (https://

pubchem.ncbi.nlm.nih.gov/, accessed in March 2012) or ChemSpider (http://

www.chemspider.com/, accessed in March 2012) databases using chemical names. 

Chemicals were removed if their structures could not be found. Each dataset was carefully 

curated according to previously established guidelines (Fourches et al., 2010). Briefly, 

counterions were removed, whereas specific chemotypes such as aromatic and nitro groups 

were normalized using the ChemAxon Standardizer (v.5.3, ChemAxon, Budapest, Hungary, 

http://www.chemaxon.com). The presence of duplicates, i.e., identical compounds reported 

more than once in the same dataset, is known to lead to over-optimistic estimations of the 

predictivity for developed QSAR models. However, the analysis of such records also gives 

an estimate of the dataset quality: if activity data for the same compound are consistent, the 

overall data quality is high; if there is a large deviation in experimental values between 

different records of the same compound, the quality is, obviously, low. Thus, after the 

structural standardization, the duplicates were identified using ISIDA Duplicates (Varnek et 

al., 2008) and HiT QSAR (Kuz’min et al., 2008) software and carefully analyzed. If the 

experimental properties associated with two duplicative structures were identical, or highly 

similar, then one compound was chosen at random and deleted. However, if their 

experimental properties were significantly different, we deleted both records from the 

dataset. During the curation of human skin permeability dataset, we found 17 pairs of 

duplicate structures and two sets of triplicates as shown in Table S3. The permeability 

values for duplicative records were almost identical (logKp variation ~ 0.01 LU) except 

those for butanoic acid that had a variation higher than ca. 0.4 LU. Thus, the LogKp value 

for all 17 compounds was averaged and the duplicative records were removed so that only 

one permeability coefficient was used for a chemical compound.

Cheminformatics Approaches

Hierarchical Cluster Analysis—The clustering of a chemical dataset consists of 

merging compounds into distinct clusters of chemically similar molecules [see (Downs and 

Barnard, 2003; Mercier, 2003) for a review of the most popular clustering approaches used 

in computational chemistry]. In this study, we have employed the Sequential Agglomerative 

Hierarchical Non-overlapping (SAHN) method implemented in the ISIDA/Cluster program 

(http://infochim.u-strasbg.fr) (Varnek et al., 2007). Briefly, each compound represents one 

cluster at the start. Then, the m compounds are merged iteratively into clusters using their 

pairwise Euclidean distances stored in a squared (m * m) symmetric distance matrix. The 

two closest objects (molecules or clusters) are iteratively identified and merged to form a 

new cluster, the distance matrix being updated with the re-computed distances separating the 

newly formed cluster and the others, according to the user-specified type of linkage 
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(complete linkage in this study). The process is repeated until one cluster remains. The 

parent-child relationships between clusters result in a hierarchical data representation, or 

dendrogram. In particular, we used ISIDA/Cluster to obtain the heat map (see Results 

section) of the proximity matrix.

Dragon Descriptors—The following types of descriptors were generated using Dragon 

software (v.5.5, Talete SRL, Milan, Italy): 0D constitutional (atom and group counts), 1D 

functional groups, 1D atom-centered fragments, 2D topological descriptors, 2D walk and 

path counts, 2D autocorrelations, 2D connectivity indices, 2D information indices, 2D 

topological charge indices, 2D eigenvalue-based indices, 2D topological descriptors, 2D 

edge-adjacency indices, 2D Burden eigenvalues, 2D binary fingerprints, 2D frequency 

fingerprints, and molecular properties. The detailed discussion for these descriptors can be 

found elsewhere (Todeschini and Consonni, 2000).

SiRMS Descriptors—2D Simplex Representation of Molecular Structure (SiRMS) 

descriptors (Muratov et al., 2010) (representing numbers of unique tetratomic fragments 

with fixed composition and topological structure) were generated by the HiT QSAR 

software (Kuz’min et al., 2008). At the 2D level, the connectivity of atoms in a simplex, 

atom type, and bond nature (single, double, triple, or aromatic) have been considered. 

SiRMS descriptors account not only for the atom type, but also for other atomic 

characteristics that may impact biological activity of molecules, e.g., partial charge, 

lipophilicity, refraction, and an atom ability for being a donor/acceptor in hydrogen-bond 

formation (H-bond). For atom characteristics with continuous values (charge, lipophilicity, 

and refraction) the division of the entire value range into definite discrete groups has been 

carried out. The atoms have been divided into four groups corresponding to their (i) partial 

charge A≤−0.05<B≤0<C≤0.05<D, (ii) lipophilicity A≤−0.5<B≤0<C≤0.5<D, and (iii) 

refraction A≤1.5<B≤3<C≤8<D. For H-bond characteristic, the atoms have been divided into 

three groups: A (acceptor of hydrogen in H-bond), D (donor of hydrogen in H-bond), and I 

(indifferent atom). The usage of sundry variants of differentiation of simplex vertexes 

(atoms) represents the principal feature of the SiRMS approach (Kuz’min et al., 2007). 

Detailed description of HiT QSAR and SiRMS can be found elsewhere (Kuz’min et al., 

2008; Muratov et al., 2010).

QSAR modeling—The QSAR modeling workflow used in this study includes three major 

steps (Tropsha and Golbraikh, 2007; Tropsha, 2010): (i) data curation/preparation/analysis 

(selection of compounds and descriptors), (ii) model building, and (iii) model validation/

selection. Here we followed a 5-fold external cross-validation procedure: the full set of 

compounds with known experimental activity is randomly divided into five subsets of equal 

size; then one of these subsets (20% of all compounds) is set aside as an external validation 

set and the remaining four sets together form the modeling set (80% of the full set). This 

procedure is repeated five times allowing each of the five subsets to be used as external 

validation set. Models are built using the modeling set only, and it is important to emphasize 

that the compounds in corresponding external set (fold) are never employed either to build 

and/or select the models. Each modeling set is divided into many internal training and test 

sets; then models are built using compounds of each training set and applied to test set 
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compounds to assess their properties. The statistical metrics used to assess different aspects 

of model performance are available in the Supplementary Materials.

Best models were identified and selected according to acceptable threshold values (> 0.6) of 

 for the internal test sets (called out-of-bag set in Random Forest, vide infra). Then, 

selected models were applied to the external set compounds to predict their skin 

sensitization potential. This procedure was repeated five times to ensure that every 

compound was present once and only once in the corresponding external test set. Since the 

accuracy of each model is estimated only based on external set compounds, which are never 

used to derive, bias, or select models, this protocol ensures an objective estimation of the 

true external predictivity of the models. In addition, 1,000 rounds of Y-randomization were 

performed for each dataset to assure that the high accuracy of the models built with real data 

was not due to chance correlations.

Random Forest—Random Forest models were constructed according to the original RF 

algorithm (Breiman, 2001) using the CF software version 2.12 (Polishchuk et al., 2009). RF 

is an ensemble of single decision trees. Outputs of all trees are aggregated to obtain one final 

prediction. Each tree is grown as follows: (i) a bootstrap sample is produced from the whole 

set of N compounds to form a training set for the current tree. Compounds that are not in the 

training set of the current tree are placed in the out-of-bag (OOB) set (size of ~ N/3); (ii) the 

best split by CART algorithm (Breiman et al., 1984) among the m randomly selected 

descriptors from the entire pool in each node is chosen; (iii) each tree is then grown to the 

largest possible extent; there is no pruning. The predicted classification values are defined 

by majority voting for one of the classes. Thus, each tree predicts values for only those 

compounds that are not included in the training set of that tree (for OOB set only). Since RF 

possesses its own reliable statistical characteristics (based on OOB set prediction) which 

could be used for validation and model selection, no cross-validation was performed 

(Breiman, 2001). Thus, the final model is chosen by the lowest error for prediction of the 

OOB set. The local (tree) applicability domain approach (Artemenko et al., 2011) was used 

for all RF models developed in this study.

DERMWIN—The Dermal Permeability Coefficient Program (DERMWIN) is a module 

available in the EPI Suite package developed by the EPA’s Office of Pollution Prevention 

Toxics and Syracuse Research Corporation and available at http://www.epa.gov/oppt/

exposure/pubs/episuitedl.htm. The DERMWIN v.2.02 estimates chemicals’ dermal 

permeability coefficient using the following equation 1 (USEPA, 2004):

(1)

where Ko/w is the octanol/water partition coefficient and MW is the molecular weight of the 

chemical. Human skin permeability dataset (dataset D) was imported to DERMWIN as 

SMILES strings, and logKp was calculated and compared to the predictions of our models.
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RESULTS

Relationship between human and rodent skin permeability coefficients

First, we searched for the subset of chemicals that had both human and rodent skin 

permeability data available to verify whether we could increase the dataset size by merging 

these data. We found 34 compounds that have both human and rodent experimental data. As 

is obvious from Figure 1, the correlation between human and rodent data was not high 

enough to merge these datasets.

A linear regression of the logKp values yielded R2=0.44 only. Therefore, we decided that 

the data for humans and rodents were definitely not compatible and built species-specific 

QSAR models. Human-based and rodent-based QSAR models for skin permeability were 

developed using the same protocol used for skin sensitization as described in the companion 

paper (Alves et al., 2014). The results (Table 1) suggest that continuous models for both 

datasets afforded high predictive accuracy as estimated by Q2
ext values. However, the 

quality and coverage of human-based models 12 and 14 were higher than the same 

characteristics of the best rodent-based model 21. Thus, models 12 and 14 were retained for 

in silico screening of chemical libraries of concern to identify potential human skin 

sensitizers. Additional statistical characteristics of the models are present in Supplementary 

Materials (Table S2).

Relationship between skin sensitization and permeability

We have explored whether there are intrinsic relationships between skin sensitization and 

skin permeability of chemicals. Since rodent data did not correlate well with human data, 

only human skin permeability data were employed for this analysis. We identified a subset 

of 20 compounds for which both skin sensitization and skin permeability data were known. 

These experimental data were compiled from several studies (Chauhan and Shakya, 2010; 

ICCVAM, 2009; Jaworska et al., 2011). As shown in Table 2, there is no direct relationship 

between the two endpoints. The ranges of logKp values for sensitizers (logKp = −3.62 – 

−1.28) vs. non-sensitizers (logKp = −3.05 – −1.6) confirm this finding. For instance, five 

non-sensitizers have low permeability coefficient while logKp values for two other non-

sensitizers are high. There is a common understanding that a chemical should penetrate the 

skin to cause sensitization (penetration is generally regarded as the first step in the skin 

sensitization AOP (Karlberg et al., 2008; OECD, 2012)). However, we found examples 

when a relatively weak penetrant can still be a strong sensitizer (e.g., p-Phenylenediamine, 

logKp = −3.62), whereas a strong penetrant, can be a non-sensitizer (e.g., octanoic acid, 

logKp = −1.60). This observation suggests that skin permeability and skin sensitization are 

generally decoupled processes and therefore it may be possible to modify chemicals such as 

to affect permeability without affecting sensitization, and vice versa.

Cluster analysis of human skin permeability dataset

We have performed a cluster analysis of the human skin permeability set (dataset D) 

following the same method used for the skin sensitization dataset A (part I in (Alves et al., 

2014)). Due to the poor concordance between human and rodent data, and a heightened 

interest in human skin permeability data, this analysis was only conducted using dataset D. 
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As illustrated in Figure 2, the dendrogram for the dataset D is not as extensive as for skin 

sensitization dataset A (Alves et al., 2014), i.e., compounds in the skin penetration dataset D 

are more structurally similar than those in the skin sensitization dataset A. Short-chain 

alcohols have similar logKp values (ca. −3.0) except for ethylene glycol (logKp = −4.07). 

For glycol ethers with short carbon chains (cluster b in Figure 2), the decrease of 

permeability is likely related to the chain length (2-(2-methoxyethoxy)ethanol (logKp= 

−3.69) < 2-(2-ethoxyethoxy)ethanol (logKp= −3.88) < 2-(2-butoxyethoxy)ethanol) (logKp= 

−4.45). To confirm this tendency, we have calculated permeability for two additional glycol 

ethers. We found that 2-(2-propoxyethoxy)ethanol (logKppred = −4.05), which had an 

logKppred intermediary between 2-(2-ethoxyethoxy)ethanol and 2-(2-butoxyethoxy)ethanol, 

followed the trend but our predictions indicated a slight increase in permeability for 2-(2-

(pentyloxy)ethoxy)ethanol (logKppred = −3.95). Then, with further increase of the chain 

length, this effect reached saturation resulting in a highly similar permeability for the next 

three compounds: 2-(2-(hexyloxy)ethoxy)ethanol (logKppred = −3.88), 2-(2-

(heptyloxy)ethoxy)ethanol (logKppred = −3.87), and 2-(2-(octyloxy)ethoxy)ethanol 

(logKppred −3.89). Two compounds, 2-(2-(nonyloxy)ethoxy)ethanol and 2-(2-

(decyloxy)ethoxy)ethanol were outside of the AD for the consensus model 5.

As a result of cluster analysis, we found three compounds that had different activity 

annotations from the rest of the cluster members and were therefore suspicious. These 

compounds included a barbiturate (amylobarbital) and two steroid derivatives of 

hydrocortisone (hydrocortisone methylsuccinate, and hydrocortisone succinamate). Our 

procedure for evaluating suspicious compounds was based on the permeability prediction for 

these compounds using developed models and a search for additional experimental data to 

verify their human skin permeability coefficients. Unfortunately, we were unable to find any 

confirmatory data in the literature to prove or refute the values of permeability coefficients 

for these substances. According to our consensus model 5, amylobarbital had a predicted 

logKp = −3.56 (experimental logKp= −2.64) similar to other barbitals: barbital (logKp = 

−3.95), phenobarbital (logKp = −3.34), and butobarbital (logKp = −3.71), which made us 

less confident in the accuracy of the reported permeability of this compound. Within steroids 

(cluster c in Figure 2), progesterone was the strongest penetrant (logKp = −1.89), whereas 

the addition of one hydroxyl group in position 17 of the steroid scaffold significantly 

decreased the permeability (hydroxyprogesterone logKp = −3.22). The hydroxyl group in 

position 17 appears to be bad for steroid permeability, since testosterone (logKp = −3.40) 

contains the hydroxyl group but lacks the ethoxy group. We removed both hydroxyl and 

ethoxy group from position 17, and the resulting compound, 3-oxo-delta4-steroid, had a 

predicted logKppred = −2.28; adding a methyl group to the same position resulted in a 

logKppred = −2.28, which was higher than the permeability of hydroxyprogesterone and 

testosterone, but lower than that of progesterone.

The presence of other substituents and positions of double bonds seemed to be less 

important. The effects of the substituent in position 21 on compound permeability seem to 

depend on its size: it decreases when a methyl substituent (methylsuccinate; logKp = −3.68) 

is replaced by a larger group (succinamate substituent; logKp = −4.59) but dramatically 

increases as shown in the four hydrocortisone derivatives (hydrocortisone hexanoate, 
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hydrocortisone octanoate, hydrocortisone methylpimelate, and hydrocortisone 

hemipimelate) that have a long chain in this position (see Table S4). In the beginning of the 

homological series of compounds, the permeability of carboxylic acids (cluster a in Figure 

2) increased proportionally to the length of the hydrocarbon chain, i.e., acetic acid (logKp = 

−3.21) < propionic acid (logKp = −2.74) < butanoic acid (logKp = −2.90) < pentanoic acid 

(logKp = −2.70) < hexanoic acid (logKp = −1.85) < heptanoic acid (logKp = −1.70) < 

octanoic acid (logKp = −1.60). Then, similarly to glycol ethers from cluster b, the effect 

reached saturation and predicted logKp values for five next carboxylic acids became very 

similar: nonanoic acid (logKppred = −1.68), decanoic acid (logKppred = −1.68), undecanoic 

acid (logKppred = −1.71), dodecanoic acid (logKppred = −1.82), and tridecanoic acid 

(logKppred = −1.84).

QSAR modeling of skin permeability

We have employed a dataset (Chauhan and Shakya, 2010) comprising 211 compounds 

(dataset D). Several structural duplicates were identified during the curation process. The 

complete list of 17 duplicate pairs and two sets of triplicates is shown in Table S3. Skin 

permeability values for all pairs of duplicates were the same or almost the same. This 

observation also means that the statistical performance of the models developed in an earlier 

study (Chauhan and Shakya, 2010) may have been over-optimistic because, as shown 

previously (Fourches et al., 2010), the presence of duplicates with identical activity 

annotations in both training and test sets generally leads to an overestimation of the model's 

predictivity. Here, we built species-specific QSAR models of skin permeability using the 

same protocol used for the skin sensitization study (Alves et al., 2014). The results shown in 

Table 1 suggest that continuous models with high accuracy for both datasets have been 

generated; however, the quality and coverage of human-based models 12 and 14 were higher 

than the same characteristics of rodent-based model 21. The former models have been 

retained for in silico screening of chemical libraries.

Comparison of developed QSAR models vs. DERMWIN permeability predictions

The DERMWIN module available as part of the EPI Suite software has been employed in 

several recent studies (Fong and Tong, 2012; Fong et al., 2014; Zhang et al., 2013) for 

evaluating skin permeability. For this reason, we decided to compare our models with that 

implemented in this software. DERMWIN uses a linear equation that relates the 

permeability coefficient with the chemical’s octanol/water partition coefficient and 

molecular weight. However, statistical characteristics of this model suggested that this 

correlation was not adequate to predict human permeability. Although our consensus model 

12 had a lower coverage of chemical space than DERMWIN (77% vs. 100%), it 

significantly outperformed DERMWIN in predictivity (Q2
ext = 72% vs. 43%, respectively) 

(see Table 1). When the AD restriction was removed and the predictive accuracy of the 

models was evaluated using the same set of compounds (143 compounds), the comparison 

was in favor of our model (Q2
ext = 71% vs. 66%, respectively) (see Table 3).
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DISCUSSION

Can rodent skin permeability data be used to predict human permeability?

As presented in the Results section, we found 34 compounds that had experimental 

permeability coefficient data for both human and rodents. Although the overall correlation 

between skin permeability measured in these two species was not high, we wished to 

determine whether the model obtained on rodent dataset E could be used to predict skin 

permeability in humans. Virtual screening of the human dataset D using the model 

developed with the rodent data resulted in a reasonably high predictivity (Q2
ext = 0.77, 

RMSE = 1.27) but only for a very small fraction (19%) of compounds. Based on these 

results, one can assume that the rodent model could be used for predicting human skin 

permeability for at least some compounds within the conservative AD, but this observation 

should be considered with caution since it does not hold true for a larger data set. Additional 

experimental results for greater number of compounds are needed for more definitive 

conclusions.

Relationships between skin sensitization potential and skin permeability based on 
computed data

Given the small number of compounds with known experimental values of both skin 

sensitization and permeability, we decided to apply our selected QSAR models to cross-

predict these properties. The use of QSAR-imputed permeability and sensitization data 

allowed us to examine the possible relationships between the two endpoints for a much 

larger set of compounds. Skin sensitization model 5 (see the companion paper (Alves et al., 

2014)) was used for predicting skin sensitization for 186 compounds in the human skin 

permeability dataset (D), whereas skin permeability model 5 (Table 1) was used for 

calculating permeability coefficients for 387 compounds in the skin sensitization dataset 

retrieved from ICCVAM (254 compounds from dataset A + 133 sensitizers from dataset B) 

(see (Alves et al., 2014)). Then, we combined all predictions for compounds with 

unavailable experimental data (see Table S5). Compounds outside of AD either for model 5 

or 12 were removed from the analysis. In the end, 283 compounds that had information 

(experimental or predicted) for both endpoints were considered for the analysis. As one can 

see in Figure S1, all but one of the weakest penetrants (logKp < −5) were non-sensitizers. 

The only exception was 1-dodecyl glycidyl ether, which could have been mispredicted by 

model 5. It was hypothesized recently that compound accumulation in the skin is 

contributing more significantly to skin sensitization than its actual permeability through the 

skin layer (Jaworska et al., 2013). Our results (see Figure S1) show that easily-penetrating 

compounds may be both sensitizers and non-sensitizers. For compounds with low 

permeability we made the same observation. These findings re-confirm the absence of the 

global correlation between skin permeability and sensitization.

Aforementioned results contradict a common view of skin permeation as the first step in the 

adverse outcome pathway leading to skin sensitization (OECD, 2012). To investigate 

whether the concordance between skin sensitization and permeability could be confined to 

certain chemical classes, we have performed a cluster analysis for the entire dataset of 283 

compounds with imputed data. Careful analysis of the relationships between the two 
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endpoints within clusters of structurally similar compounds showed that the observation 

linking the high permeability and skin sensitization potential could be made only for one 

cluster out of 34. This specific Cluster 1 is formed by 11 compounds represented by four 

barbitals (barbital, amylobarbital, butobarbital, and phenobarbital) and seven other drugs 

(scopolamine, ibuprofen, atropine, griseofulvin, cyclamen aldehyde, p-tert-butyl-alpha-

ethyl-hydrocinnamal, and sodium-3,3,5-trimethyl-benzenesulfonate). The comparison 

between permeability and sensitization for compounds in this cluster is shown in Figure S2 

and Table S6. The analysis revealed that seven compounds are associated with logKp < −2.5 

and are non-sensitizers, whereas the four other compounds with logKp > −2.5 are 

sensitizers.

No distinct trend could be observed for the remaining clusters. Although, as noticed above, 

skin permeability is widely considered to be mechanistically implicated in skin sensitization, 

we have found no evidence that high permeability implies high skin sensitization potency 

and vice versa. Some other authors reached the same conclusions. For instance, the analysis 

of mechanism-based QSARs demonstrates no role for skin permeability in determining 

potency (Roberts and Aptula, 2008). Similarly, in another recent study (Jaworska et al., 

2013) the authors hypothesizes that the accumulation of a chemical in the epidermis layer of 

the skin is much more related to the skin sensitization than the actual penetration properties. 

In another study (Roberts and Patlewicz, 2010), it was hypothesized that skin sensitizers 

reach the viable epidermis by-passing skin permeability route via shunt pathways, since bad 

penetrants have shown to be sensitizers when applied by intradermal injection.

Another important benefit of this cheminformatics analysis is the use of structural rules 

established from the interpretation of developed QSAR models, SAR and cluster analysis, in 

order to design new compounds with improved permeability and sensitization 

characteristics. We illustrated this approach using an example of putative stepwise structural 

optimization for permeability of pentanoic acid, considering experimental data and 

predictions using developed models (Figure 3). Starting from this compound with a 

relatively low permeability (logKp = −2.7), several transformation steps can increase its 

permeability more than 10-fold and convert it to n-heptanol (logKp = −1.50). n-heptanol is 

predicted as a sensitizer (which is confirmed by its Material Safety Data Sheet (OXEA, 

2013) but it can be transformed to octanoic acid that has a similar permeability (logKp = 

−1.60) as n-heptanol but lacks its sensitization potential.

CONCLUSIONS

We have compiled, curated, and integrated the largest publicly available datasets of skin 

permeability for diverse chemicals. The analysis of the experimental data for compounds 

containing both skin sensitization and permeability data indicated that, with a few 

exceptions, there is no overall concordance between these two endpoints, i.e., weak 

penetrants could be strong sensitizers and vice versa. Although sensitizers have to penetrate 

the skin layer, the permeability coefficient is not a determinant of the skin sensitization 

potential. Cluster analysis also helped us to highlight the high consistency of experimental 

Kp data reported in the literature.
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We have built statistically significant and externally predictive QSAR models of skin 

permeability that can be used to predict the permeability of untested compounds through the 

skin. Comparison of the developed consensus model with DERMWIN software showed that 

our model significantly outperformed DERMWIN in predictivity (Q2
ext = 72% and 43%, 

respectively) but at the expense of some lost in coverage (77% vs. 100%); when applied to 

the same set of compounds as used for DERMWIN (ignoring the AD for our models) the 

performance of our model is still higher (Q2
ext = 71% vs. 66%). The compiled datasets and 

all the models developed in this study have been made publicly available at the Chembench 

Web Portal (http://chembench.mml.unc.edu).

The use of skin permeability and sensitization values imputed by our QSAR models allowed 

us to examine the relationships between these two endpoints utilizing a significantly 

expanded set consisting of 283 compounds. The results indicated that there is still no overall 

concordance between these endpoints. This phenomenon could be explained by attributing 

higher impact to compound accumulation in the skin on sensitization potential, rather than 

permeability through the skin layer. Further investigation into this observation would be 

facilitated via building predictive models of compound accumulation in the skin, and 

incorporating considerations of protein binding and reactivity.

In conclusion, the skin permeability models developed in this study could be useful for risk 

assessment purposes in addition to the assessment of skin sensitization; for instance, the 

knowledge how much of an applied dose will penetrate the skin may be helpful to estimate 

systemic exposure to topically applied chemicals. Moreover, the lack of correlation between 

skin permeability and skin sensitization established in this study suggests a possibility of 

rational design of compounds with the desired high permeability but low skin sensitization 

potential that may be of value to the cosmetics industry.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

AD Applicability domain

AOP Adverse outcome pathway
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ICCVAM Interagency Coordinating Committee on the Validation of Alternative 

Methods

Kp Permeability coefficient

LLNA Local lymph node assay

LU Logarithmic unit

MAE Mean absolute error

OECD Organization for Economic Co-operation and Development

(Q)SAR (Quantitative) structure-activity relationship

RMSE Root mean squared error
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Highlights

• We compiled the largest publicly-available skin permeability dataset.

• Predictive QSAR models were developed for skin permeability.

• No concordance between skin sensitization and skin permeability has been 

found.

• Structural rules for optimizing sensitization and penetration were established.
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Figure 1. 
Human vs. rodent skin permeability correlation (R2 = 0.44, logKpHuman = 0.72*logKpRodent 

− 1.17).
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Figure 2. 
Cluster analysis of the human skin permeability dataset D: dendrogram and heat map of the 

distance matrix ordered based on structural similarity (blue/violet = similar; yellow/red = 

dissimilar). The following clusters are noted: (a) carboxylic acids, (b) glycol ethers, and (c) 

steroids.
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Figure 3. 
Example of a structural transformation of sensitizer n-octanol with low permeability to non-

sensitizer octanoic acid with improved permeability. Desired change of property is 

highlighted by green, undesired – by red; Δ = logKpparent − logKpchild.
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Table 2

Comparison of experimental data on skin sensitization and human skin permeability

Chemical compound LLNA Result logKp

1,6-Hexanediol diglycidyl ether [1–3] Sensitizer (moderate) −3.87

Resorcinol [1–3] Sensitizer (moderate) −3.62

p-Phenylenediamine [1–3] Sensitizer (strong) −3.62

2-Nitro-4-phenylenediamine [1–3] Sensitizer (strong) −3.30

Isopropyl alcohol [1–3] Non-sensitizer −3.05

Pyridine [1–3] Sensitizer (weak) −2.74

Clotrimazole [1–3] Sensitizer (moderate) −2.70

Methyl acrylate [1–3] Sensitizer (weak) −2.68

Formaldehyde [1–3] Sensitizer (strong) −2.65

Aniline [1–3] Sensitizer (weak) −2.65

n-Butanol [1–3] Non-sensitizer −2.60

Methyl acrylic acid [1–3] Sensitizer (weak) −2.58

Ethyl acrylate [1–3] Sensitizer (weak) −2.39

Salicylic acid [1–3] Non-sensitizer −2.20

Coumarin [1–3] Non-sensitizer −2.04

Methyl 4-hydroxybenzoate [1–3] Non-sensitizer −2.04

Butyl acrylate [1–3] Sensitizer (weak) −2.00

Octanoic acid [1–3] Non-sensitizer −1.60

1-Naphthol [1–3] Sensitizer (moderate) −1.55

n-Octanol [1, 2] Sensitizer (moderate) −1.28

Notes: [1] (Chauhan and Shakya, 2010); [2] (ICCVAM, 2009); [3] (Jaworska et al., 2011); Kp: permeability coefficient.
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Table 3

Comparison of the performance of consensus QSAR model with that of DERMWIN on the set of 143 

compounds.

Models Q2
ext RMSE MAE

Model 5 -Consensus 0.72 0.49 0.38

DERMWIN 0.66 0.53 0.37
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