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Background: We aimed to analyse clinical and gene expression profiles to predict pathologic complete response and disease-
free survival using two consecutive, prospective, preoperative chemotherapy trial cohorts.

Methods: Clinicopathological and gene expression data were evaluated in a cohort from two consecutive phase II preoperative
studies that included patients with stage IIA–IIIC breast cancer of all subtypes. Analysed specimens were obtained before
preoperative chemotherapy, and cDNA microarray analyses were performed using the Affymetrix Gene Chip U133 plus 2.0.

Results: Between December 2005 and December 2010, 122 patients were analysed. The pathologic complete response rate was
significantly higher in HER2þ and HR� /HER2� cancers. Age, pathologic complete response, HR� /HER2� status, and lymph
node positivity (X4) were significant poor prognostic factors for disease-free survival. For the cDNA microarray analyses, sufficient
tumour samples were available from 78 of the 107 patients (73%). An 8-gene signature predictive of pathologic complete response
and a 17-gene signature predictive of prognosis were identified. Patients were categorised into low-risk (n¼ 45) and high-risk
groups (n¼ 33) (HR 70.0, P¼ 0.004).

Conclusions: This study yielded preliminary data on the expression of specific genes predicting pathologic complete response
and disease-free survival in a cohort of chemonaı̈ve breast cancer patients. Further validation may distinguish those who would
benefit most from perioperative chemotherapy as well as those needing further intervention.

Breast cancer is the most common cancer in women worldwide.
Today, the majority of patients with operable breast cancer are
offered systemic therapy to reduce the risk of distant recurrence.
Preoperative chemotherapy reduces the tumour burden of operable
and locally advanced breast tumours (clinical stage IIIB–C) and
thereby improves resectability, with the same survival effect as
postoperative chemotherapy (van der Hage et al, 2001; Wolmark

et al, 2001; Rastogi et al, 2008; de Azambuja et al, 2014). In
addition, preoperative treatment serves as an in vivo chemosensi-
tivity test, allowing for early evaluation of the efficacy of
chemotherapy (Schott and Hayes, 2012).

Clinical response rates to preoperative chemotherapy range
from 60 to 80%, whereas pathologic complete response (pCR) rates
are B10–20% (Fisher et al, 1998; Smith et al, 2002), although both
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differ among tumour subtypes. According to a previous report, the
pCR rates for hormone receptor-positive (HRþ )/human epider-
mal growth factor receptor 2-negative (HER2� ), HRþ /human
epidermal growth factor receptor 2-positive (HER2þ ), hormone
receptor-negative (HR� )/HER2þ , and HR� /HER2� subtypes
were 13%, 19%, 48%, and 29%, respectively (Iwata et al, 2011).
Patients who achieve pCR have a better prognosis compared
with those who do not (van der Hage et al, 2001; Wolmark et al,
2001; Rastogi et al, 2008). Studies investigating the factors
associated with tumour response to chemotherapy have shown
that markers of tumour cell proliferation, including Ki-67 staining,
histologic grade, negative oestrogen receptor (ER) status, and
HER2 overexpression, are significantly associated with the pCR
rate (Petit et al, 2004; Dowsett et al, 2006; Andre et al, 2008;
Nishimura et al, 2010). However, these results come with some
degree of controversy and little indication of their clinically
applicable predictive value (Burcombe et al, 2005). The biological
mechanisms that influence tumour responsiveness in the pre-
operative setting, including tumour recurrence, are not clearly
understood.

Gene expression profiling studies in human tumours have
provided new insights into the genes and pathways that contribute
to tumourigenesis and the gene expression signatures that are
prognostic of patient outcome. Previous studies aimed at
discovering genes associated with breast cancer recurrence have
uncovered several genes associated with cellular proliferation,
resulting in the identification of genes associated with poor patient
prognosis (Huang et al, 2003; Dai et al, 2005). These gene
expression data have the potential to aid the determination of
accurate, individualised prognosis, for example, through Agendia’s
MammaPrint and Genomic Health’s 21-gene Oncotype Dx
systems (van ’t Veer et al, 2002; Paik et al, 2004; Paik et al,
2006). However, these approaches are based on node-negative,
HR-positive early breast cancers, and no studies thus far have
clearly identified gene signatures predicting both pCR and
disease-free survival (DFS) from one cohort.

Here, we aimed to analyse the clinicopathological and gene
expression profiles to predict pCR and DFS in early breast cancers
managed by preoperative chemotherapy, using data from long-
term follow-up of two prospective studies.

MATERIALS AND METHODS

Patients and samples. We synthetically analysed the data of
patients from our two previous consecutive prospective phase II
studies in the preoperative chemotherapy setting, ‘Trial A’
(Tamura et al, 2011) and ‘Trial B’ (Ando et al, 2014). The two
studies included patients with HER2þ and/or HER2� ,
and HRþ and/or HR� tumours. The trials had similar eligibility
criteria; in brief, patients had histologically confirmed, previously
untreated, unilateral, non-inflammatory invasive breast cancer.
Histologic confirmation of invasive cancer was performed by
core needle biopsy, and HER2� disease was assigned a score of 0
or 1þ based on immunohistochemistry or HER2 gene copy
number: a chromosome 17 ratio of o2.0 by fluorescence in situ
hybridisation (Wolff et al, 2007). Patients had clinical stage
IIA–IIIC primary measurable disease. Other requirements included
age X18 years, Eastern Cooperative Oncology Group (ECOG)
performance status (PS) score of 0–1, and adequate organ
function (white blood cell count X4000/ml, platelet count
X100 000/ml, haemoglobin concentration X9.0 g dl� 1, serum
bilirubin p2.0 mg dl� 1, aspartate aminotransferase and alanine
aminotransferase p100 IU l� 1, serum creatinine pinstitutional
upper limit of normal range, PaO2 X60 mm Hg, and baseline left
ventricular ejection fraction 450%).

Patients received 5-fluorouracil/epirubicin/cyclophosphamide
(500/100/500 mg m� 2) q3w� 4 cycles, followed by paclitaxel
(PTX) (80 mg m� 2) q1w� 12 cycles or docetaxel (75 mg m� 2)
q3w� 4 cycles or, if HER2þ , PTX/trastuzumab (loading dose
4 mg kg� 1, maintenance dose 2 mg kg� 1) q1w� 12 cycles.

This study was conducted according to a protocol approved
by the institutional review board and independent ethics
committee, and informed consent was obtained from all patients
for the use of biopsy specimens and the analysis of clinical
information.

Clinical statistical analysis. Complete response rate was defined
as no invasive residual tumour in breast and nodes, with
noninvasive breast residuals allowed (ypT0/is, ypN0), a definition
commonly used by MD Anderson Cancer Center, the Austrian
Breast and Colorectal Cancer Study Group, and the Neo-Breast
International Group (Green et al, 2005). Disease-free survival
was estimated from the date of induction of adjuvant chemother-
apy to the date of relapse or death from any cause (only relapses
were considered events) using the Kaplan–Meier method.
Potential predictive factors for pCR and recurrence were recorded,
including patient age (X35 vs o35 years), tumour stage (IIa–IIB
vs IIIA–IIIC), subtype (HRþ /HER2� vs HRþ /HER2þ ,
HR� /HER2þ , and HR� /HER2� ), nuclear grade (1 vs 2–3),
pCR rate (pCR vs non-pCR), and lymph node involvement.
Nuclear grade, pCR, and lymph nodes were diagnosed with
surgical specimens by two pathologists. A logistic regression model
was used to estimate the odds ratio comparing the odds of pCR.
Cox proportional hazards regression was used to investigate the
prognostic factors for DFS.

Microarray process and statistical analysis. The mRNA was
extracted from fine-needle biopsy samples performed at diagnosis
before preoperative chemotherapy. cDNA was constructed from
the mRNA of the breast cancer tissues by standard RT procedures.
The probes were prepared by immunofluorescence labelling with
cDNA and hybridised to chip arrays containing 54K probe sets
(Affymetrix U133 plus 2.0). The data were processed by the robust
multiarray average algorithm (Irizarry et al, 2003; Gautier et al,
2004) using GeneSpring ver. 12.6 (Agilent Technologies,
Santa Clara, CA, USA). These processed values were corrected
for batch effects using the ComBat function in the R package sva
(Leek et al, 2012). Institution, age, stage, menopausal status,
subtype, grade, ductal carcinoma in situ, pCR, and event DFS were
used as covariates to correct for batch effects.

To identify a genomic signature of DFS using the data set after
preprocessing, the 54 613 probes were filtered down to 104 probes,
which satisfied the P-values of both the univariate Cox regression
analysis and the significance analysis of microarrays (SAM)
(Tusher et al, 2001) tests, which were o0.01. For the 104 probes,
an iterative backward elimination feature selection procedure was
applied using three-component partial Cox regression analysis
(Li and Gui, 2004), where the partial Cox coefficients of the
proteins were used for ranking (Ahdesmaki et al, 2013). During
each iteration, the lowest ranking proteins were discarded after
calculating the C-index (Harrell and Frank, 2010), and this was
continued until the two probes remained. The C-index was
calculated for each number of probes sets (i.e., from 104 to 2 of the
length). In this study, we determined the length with highest
C-index as the optimal one of the genomic signature.

Next, we developed the final genomic signature including
these probes based on the partial Cox regression analysis. The DFS
event risk based on the developed signature was quantified by the
risk score that is defined as the linear combination of the signature
probe values multiplied by their corresponding partial Cox model
coefficients, first subtracted by the mean values of their probes.
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That is, the risk score for patient can be written as

Risk score ¼
XL

j¼1

ðvalue of probe j�mean value of probe j in 78ptsÞbj;

where L is the number of optima length and bj is the coefficient of
the partial Cox regression model for probe j. The risk scores have
by definition a sample mean of zero, and indicate high risk of DFS
events for the larger value.

Finally, we calculate the internal accuracy of the final genomic
signature. The survival curves for DFS between the two groups of
the patients with X0 of risk score and patients with o0 were
compared by the Kaplan–Meier method and log-rank test. The
hazard ratio and its 95% confidence interval for the risk score
dichotomised by zero were also estimated by the ordinary Cox
regression analysis.

Additionally, we also identified the genes that were strongly
correlated with pCR. Similar to the analyses for DFS, the 54 613
probes were filtered down to 363 probes that satisfied the P-values
of both the univariate logistic regression analysis and the SAM
tests, which were o0.001. For the 363 probes, an iterative
backward elimination feature selection procedure was applied
using the ridge regression analysis (Friedman et al, 2010). Based on
the area under the receiver operating characteristic curve (AUC),
we determined the probes with highest AUC as the strongly
correlated gene set.

All statistical tests were two sided. These analyses were
performed using the SAS software (version 9.3; SAS Institute Inc,
Cary, NC, USA) and the original R codes.

Average-linkage hierarchical clustering of genes and arrays was
performed. We also conducted the clustering analysis using probes
significant to the following gene groups: A, cell cycle regulator; B,
signal; C, Rho family-related protein; D, blank; E, angiogenesis-
related protein; F, growth factor; G, cytokine; H, apoptosis
factors; I, DNA transcription factors/damage response, repair,
and combination; J, metabolism/translation/protein turnover;
K, detoxification enzyme; L, transporters/nucleocytoplasmic trans-
porters/symporters and antiporters; M, cytoskeletal proteins; N,
hormone-related and receptors; antibody-dependent cell-mediated
cytotoxicity (ADCC), ADCC activators; Y, glyceraldehyde-3-
phosphate dehydrogenase as a positive control.

Apart from the above-mentioned analysis, we re-identified the
probes that correlated with pCR. To this end, we used the cohort
from Trial A as a training set, and the cohort from Trial B as a
validation set. Similar to the above-mentioned analysis, we first
filtered the probes using the w2 test to remove probe sets that did
not display significant variation in expression across arrays
concerning pCR, a method used by the Cancer and Leukaemia
Group B study for acute myeloid leukaemia (Marcucci et al, 2008).
As the results, a total of B8700 probes met the filtering criteria and
were included in the next step, where Wilcoxon’s P-values by
univariate and permutation tests were applied. The top-ranked
probes were verified using the validation set based on the support
vector machine with a linear kernel (Furey et al, 2000). The
number of genes used in the formula was determined by a fivefold
cross-validation. The HER2 status was also included in the
formula.

RESULTS

Clinicopathological features predictive of pCR and DFS.
Between July 2007 and December 2010, 122 patients were enrolled
in the two consecutive prospective studies. Of these patients, 107
underwent long-term follow-up study. The median follow-up time
from the start of preoperative chemotherapy was 64.1 months
(range 14.3–106 months). Table 1 summarises the patient

characteristics. The median age was 51 (23–75) years. The
respective numbers of patients with ECOG PS of 0 and 1 were
115 and 7; with tumour stages IIA, IIB, IIIA, IIIB, and IIIC were 30,
57, 20, 14, and 1; and with tumour status HRþ /HER2� , HRþ /
HER2þ , HR� /HER2þ , and HR� /HER2� were 51, 18, 29,
and 24. The characteristics and results of the 107 patients were
comparable to those of the original cohort (122 patients). The pCR
rate of the 107 patients was 28% (HRþ /HER2� : HRþ /HER2þ
: HR� /HER2þ : HR� /HER2� ¼ 2.1% : 38% : 70% : 35%).
Table 2A depicts the multivariate analysis with clinicopathological
characteristics of predictive factors for pCR. The pCR rate was
significantly higher in HRþ /HER2þ , HR� /HER2þ , and
HR� /HER2� breast cancers compared with HRþ /HER2�
cancers (P¼ 0.004, Po0.001, and P¼ 0.007, respectively). The 5-
year DFS for all subtypes was 77.4%. The survival curves for each
subtype are shown in Figure 1. The HR� /HER2� subtype had a
significantly poor prognosis (P¼ 0.0045). Multivariate analysis
revealed that non-pCR, age o35 years, HR� /HER2� subtype,
and axillary lymph nodes X4 were significant poor prognostic
factors (P¼ 0.03, P¼ 0.005, Po0.001, and Po0.001, respectively),
as shown in Table 2B.

Table 1. Baseline characteristics of patients from the two
preoperative trials

Trial A
(training set),

N¼89

Trial B
(validation set),

N¼33

No. % No. %
Median age (years), 50 51
range 23–75 28–69

Menopausal status
Pre 30 34 12 36
Post 59 66 21 64

ECOG performance status
0 83 93 32 97
1 6 6.7 1 3.1

Stage
IIA 21 24 9 27
IIB 43 48 14 43
IIIA 15 17 5 15
IIIB 9 10 5 15
IIIC 1 1.1 0 0

Histological grade
1 5 5.6 2 6
2 41 46 15 46
3 43 48 16 49

No. of axillary lymph nodes
1 49 55 18 55
1–3 24 27 8 24
X4 16 18 7 21

Subtype
HRþ /HER2� 44 49 7 21
HRþ /HER2þ 12 14 6 18
HR� /HER2þ 18 20 11 33
HR� /HER2� 15 17 9 27

Preoperative therapy
FEC�4þwPTX� 12 50 56 16 48
FEC�4þ3-wDTX�4 8 9 0 0
FEC�4þwPTXþwT�12 31 35 16 48
FEC�4þ3-wDTX�4þwT�12 0 0 1 3
Pathologic complete response 26 29 12 36

Abbreviations: DTX¼docetaxel; ECOG¼Eastern Cooperative Oncology Group; FEC¼
fluorouracilþepirubicinþ cyclophosphamide; HER2¼ human epidermal growth factor
receptor 2; HR¼ hormone receptor; PTX¼paclitaxel; T¼ trastuzumab; w¼weekly.
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Microarray analysis. Primary breast cancer tissues were obtained
from the 107 patients by fine-needle biopsy; 78 (73%) samples
contained sufficient mRNA for cDNA microarray analysis. Results
of the gene signature analysis identified an 8-gene expression
profile predictive of pCR and a 17-gene expression profile most
associated with DFS, as shown in Table 3A and B. With the DFS
17-gene signature, which includes the apoptosis-related cysteine
peptidase caspase-8 encoding gene (CASP8), patients were
classified into a low-risk group (n¼ 45) and a high-risk group
(n¼ 33) according to the risk score determined by the partial Cox
regression model (Figure 2). A Cox proportional hazards
regression to investigate the prognostic factors, including the gene
expression profiles of low- and high-risk factors, for DFS showed
that the gene profiling was the strongest factor (Table 4).

Based on gene clustering analysis, the breast cancers were
classified according to the following immunohistochemistry
subtypes: luminal A and B, HER2-enriched, and triple-negative
breast cancer (TNBC). Triple-negative breast cancer was further
divided into two clusters most likely indicating basal-like and
claudin-low intrinsic subtypes, as previously reported by Sorlie
et al (2001), indicating the high quality of the representative
method (Supplementary Data and Figure 1). The genes used in the
clustering analysis is shown in Supplementary Table 1. When the
clustering analysis using significant gene groups of A to N and Y
was performed according to HER2 status, HER2þ breast cancers
were successfully clustered using the B group gene probes, whereas
HER2� breast cancers were clustered appropriately with the gene
probes of the N, J, I, and H groups (data not shown).

In addition, using the training set, we identified the top-ranked
gene probes associated with pCR (Wilcoxon’s P-value o0.01). On
the basis of the 100 top-ranked genes (Supplementary Table 2), the
training set was also used for model selection and resulted in the
creation of a gene model for the HER2� breast cancers (HRþ /
HER2� and HR� /HER2� ) (Supplementary Figure 2). This
analysis included 49 samples, which included 35 from the training
set and 14 from the validation set. The discrimination markers
predicting pCR were analysed using the training and validation
sets, and the lowest test error of 7% was observed when the number
of markers fitted in the model was four; these included HER2�
status and the following three genes: promyelocytic leukaemia
protein (PML), tryptophanyl-tRNA synthetase (TrpRS), and cho-
line kinase alpha (CHKA) (Supplementary Figure 3). A similar
analysis including the HER2þ subset failed to show a well-fitted
model.

DISCUSSION

Breast cancer is heterogeneous in terms of prognosis and response
to chemotherapy, even among known intrinsic subtypes. Results
from our clinicopathological data revealed that HER2þ and
HR� /HER2� subtypes were predictive of pCR. A significantly
poor DFS was observed in the HR� /HER2� subtype and in
lymph node-positive tumours. These results are comparable with
results previously reported such as a study by Liedtke et al (2008);
therefore, our cohort of two combined trials is representative of the

Table 2A. Factors predictive of pCR assessed by multivariate
logistic regression model (n¼107)

Odds ratio 95% CI P-value

Age (years)
X35 1
o35 1.22 (0.19, 7.79) 0.83

Stage
IIA/IIB 1
IIIA/IIIB/IIIC 0.4 (0.12, 1.34) 0.14

Subtype
HRþ /HER2� 1
HRþ /HER2þ 38.7 (3.27, 458) 0.004
HR� /HER2þ 142 (13.1, 1540) o0.001
HR� /HER2� 26.3 (2.45, 282) 0.007

Histological grade
1 1
2 or 3 0.55 (0.07, 4.06) 0.56

Abbreviations: CI¼ confidence interval; HER2¼ human epidermal growth factor receptor 2;
HR¼hormone receptor; pCR¼pathologic complete response.
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Figure 1. Kaplan–Meier disease-free survival curves of patients
stratified by subtype (n¼107). The median follow-up time was 64
months. The 5-year DFS% (95% confidence interval (CI)) were as
follows: HRþ /HER2� , 79.9% (64.8, 89.0); HRþ /HER2þ , 83.1%
(47.2, 95.5); HR� /HER2þ , 86.7% (64.3, 95.5); and HR� /HER2� ,
56.5% (34.3, 73.8).

Table 2B. Factors predictive of DFS assessed by multivariate
Cox regression model (n¼107)

Hazard ratio 95% CI P-value

Response
Non-pCR 1
pCR 0.09 (0.09, 0.81) 0.03

Age (years)
X35 1
o35 7.76 (1.83, 32.9) 0.005

Stage
IIA/IIB 1
IIIA/IIIB/IIIC 1.17 (0.45, 3.02) 0.75

Subtype
HRþ /HER2� 1
HRþ /HER2þ 2.28 (0.39, 13.4) 0.36
HR� /HER2þ 3.7 (0.87, 15.8) 0.08
HR� /HER2� 8.09 (2.54, 25.8) o0.001

Histological grade
1 1
2 or 3 0.16 (0.02, 1.17) 0.07

No. of axillary lymph nodes
0 1
1–3 3.19 (0.89, 11.4) 0.07
X4 12.3 (3.33, 45.6) o0.001

Abbreviations: CI¼ confidence interval; DFS¼disease-free survival; HER2¼ human epider-
mal growth factor receptor 2; HR¼hormone receptor; pCR¼pathologic complete
response.
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general cancer population. Liedtke et al (2008) found that the
TNBC subtype had a higher pCR rate than the non-TNBC subtype,
but a significantly decreased survival. This was explained by the
heterogeneity of the TNBC subtype, as some patients achieved pCR
with a good prognosis, whereas the majority did not achieve pCR
and had a significantly worse prognosis than other subtypes.
Lehmann et al (2011) proposed that TNBC could be classified into
seven molecular subtypes, among which the pCR rate differed, as
shown by Masuda et al (2013). These data, together with our own,
suggest heterogeneity even among the known breast cancer
subtypes. The finding that four or more positive axillary lymph
nodes constituted a poor prognostic factor correlates with
historical data showing that lymph node positivity is the most
established and reliable prognostic factor for subsequent metastatic
disease and survival (Fisher et al, 1993).

The microarray analysis that included the cohorts from two
prospective preoperative studies yielded preliminary data showing
that an 8-gene signature predicted pCR and a 17-gene signature
predicted DFS. With the 17-gene signature we were able to
discriminate low- and high-risk patients with a high hazard ratio
of 70, showing a higher discriminating value than single clinical

Table 3A. Eight genes contained in the pCR discriminating profile (n¼78)

Gene bank ID Gene symbol Gene title Odds ratio
Odds ratio,

95% CI
1553973_a_at SPINK6 Serine peptidase inhibitor, Kazal type 6 0.00001 0–0.04

1554666_at LOC100130950 Uncharacterized LOC100130950 0.00001 0–0.05

1558392_at SYNE2 Spectrin repeat containing, nuclear envelope 2 134 11.8–1528

1564707_x_at GLS2 Glutaminase 2 (liver, mitochondrial) 0.00001 0–0.01

1570541_s_at GBP1P1 Guanylate binding protein 1, interferon-inducible pseudogene 1 105 6.87–1611

205746_s_at ADAM17 ADAM metallopeptidase domain 17 172 9.51–3121

206478_at KIAA0125 KIAA0125 0.00001 0–0.07

208557_at HOXA6 Homeobox A6 692 25.1–19038

Abbreviations: CI¼ confidence interval; pCR¼pathologic complete response.

Table 3B. Seventeen genes contained in the DFS discriminating profile (n¼78)

Gene bank ID Gene symbol Gene title Hazard ratio
Hazard ratio,

95% CI
1556236_at — — 5.49 2.38–12.64

201956_s_at GNPAT Glyceronephosphate O-acyltransferase 0.07 0.01–0.31

202321_at GGPS1 Geranylgeranyl diphosphate synthase 1 0.16 0.06–0.46

203283_s_at HS2ST1 Heparan sulfate 2-O-sulfotransferase 1 6.47 2.83–14.82

207254_at SLC15A1 Solute carrier family 15 (oligopeptide transporter), member 1 3.72 2.01–6.9

210861_s_at WISP3 WNT1-inducible signalling pathway protein 3 2.2 1.43–3.39

212479_s_at RMND5A Required for meiotic nuclear division 5 homolog A (S. cerevisiae) 8.54 2.69–27.16

213373_s_at CASP8 Caspase 8, apoptosis-related cysteine peptidase 0.22 0.1–0.49

218783_at INTS7 Integrator complex subunit 7 0.22 0.09–0.5

219958_at TMEM74B Transmembrane protein 74B 2.5 1.54–4.05

228542_at MRS2 MRS2 magnesium transporter 5.29 2.21–12.66

230769_at DENND2C DENN/MADD domain containing 2C 3.72 1.71–8.07

231292_at EID3 EP300 interacting inhibitor of differentiation 3 6.28 2.25–17.54

234726_s_at TMEM168 Transmembrane protein 168 9.64 2.87–32.34

235940_at C9orf64 Chromosome 9 open reading frame 64 0.32 0.18–0.56

239282_at CCDC41 Coiled-coil domain containing 41 8.75 2.82–27.1

241721_at — — 0.11 0.04–0.28

Abbreviations: CI¼ confidence interval; DFS, disease-free survival.
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Figure 2. Patients were classified into low-risk (n¼45, bold line) and
high-risk (n¼33, dotted line) groups with the 17-gene signature
predicting DFS by partial least-squares Cox regression. The hazard
ratio was 67.8 (95% confidence interval (CI), 3.70–1240), P¼ 0.0045.
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variables (e.g., histologic grade, HR status, HER2 status). Many
studies have aimed to identify gene profiles predicting response
and prognosis, including commercially available panels (van’t Veer
et al, 2002; Paik et al, 2004; Paik et al, 2006; Nishio et al, 2014).
Most are based on node-negative early breast cancers, and include
only HR� or HRþ cancers. This study combined all subtypes,
and identified two sets of gene clusters that, respectively, predicted
pCR and PFS. By including all subtypes in the analysis, we tried to
seek for a molecular feature that explains the difference in
chemosensitivity and prognosis beyond the known biomarkers.
There is more hidden biology than the already defined subtypes
using HER2 and hormone receptor proteins, as the prognosis
differs even among the same subtypes(Liedtke et al, 2008). Also,
discordance of subtype between primary and metastatic sites have
been reported (Falck et al, 2013; Yao et al, 2014), which also
implies that the cancer is driven beyond the known biomarkers.
Most molecular analysis in the literature are carried out in breast
cancers of a certain HER2 or HR status and therefore our analysis
is novel in that the identified signatures may be useful regardless of
subtype and those with discordances or changes of subtype at
metastatic sites or at relapse.

The 8-gene signature may identify which patients will benefit
most from preoperative chemotherapy and which should initially
undergo surgery. With the DFS prediction signature, we may be
able to predict those who will benefit from additional adjuvant
chemotherapy or extended hormone therapy.

The genes that were chosen in our two signatures did not show
an overlap with genes in other microarray studies, namely those
assessed with the MammaPrint (Agendia, Irvine, CA, USA) and
Oncotype DX (Genomic Health, Redwood City, CA, USA) panels.
Possible explanations are that our study included all subtypes
regardless of node status, as well as patients who were treated or
not treated with trastuzumab. Nonetheless, we identified a gene
signature with a high prognostic power, assuming that molecular
pathways other than the already known molecular subtypes are
associated with tumour recurrence. Further, in our study the gene

signature predicting pCR and DFS did not identify any overlapping
genes between the two signatures. This result is supported by our
clinicopathological data sets, where a discordance between pCR
and DFS also occurred among subtypes. The HR� /HER2�
subtype was associated with a significantly poor DFS compared
with other subtypes, despite a relatively high pCR rate, which was
also shown by Liedtke et al (2008). The NeoALTTO trial showed
that dual anti-HER2 inhibition significantly increased pCR rate
compared with trastuzumab alone, but at the same time did not
show a survival difference between treatment groups(de Azambuja
et al, 2014). A recent meta-analysis concluded that the pCR rate
should not be used as a surrogate marker for survival (Cortazar
et al, 2014). Therefore, response to chemotherapy and prognosis
outcome may be a result from different biology. Using the two
different signatures for analysis of tumour response to preoperative
chemotherapy and its prognosis may provide a new means of
making individual therapeutic decisions.

Further, discordance of genomic signatures among studies is a
well-discussed topic, and it is known that independent signatures
may be similar in terms of outcome predictions despite a lack of
gene overlap. Our Supplementary Data analysis in the HER2�
subtype, resulting in a 3-gene signature, also did not show an
overlap with the 8- or 17-gene signature. One explanation is that
the number of samples used were different (49 vs 78). Also, two
different analysis methods were used. The results of the
Supplementary Data used a svm with linear kernel, which mainly
focuses on the error rate, rather than the odds ratio.

Our 8-gene signature predicting pCR included genes associated
with tumourigenesis such as ADAM metallopeptidase domain 17
(ADAM17), glutaminase-2 (GLS2), and HOXA6. The ADAM17
protein catalyses the release and activation of ligands such as
transforming growth factor-a, which is essential in activating
epidermal growth factor receptor (Blobel, 2005), and high
expression of ADAM17 was associated with shorter survival in
breast cancers (McGowan et al, 2008). Recently, in vitro data
suggested that an antibody against ADAM17 had antitumour
effects in TNBC cells (Caiazza et al, 2015). Glutaminase is involved
in the Warburg effect in cancer cells, and two human glutaminase
genes, GLS1 and GLS2, have been identified (Erickson and Cerione,
2010). A discovery of an alkyl benzoquinones that preferentially
inhibit GLS2 and subsequently reduces carcinoma cell proliferation
and induced autophagy via AMPK-mediated mTORC1 inhibition
has been reported (Lee et al, 2014). It suggested that the inhibition
of GLS2 may be a potential anticancer target. HOX genes encode a
highly conserved family of homeodomain-containing transcription
factors that have crucial roles in determining the identity of cells
and tissues during embryogenesis. Aberrant HOX gene expression
has been linked to a variety of adult malignancies (Shah and
Sukumar, 2010). In a study to analyse the expression of 39 HOX
genes in malignant breast tissues, HOXA6 showed low expression
levels along with HOXB8 and HOXC5 in malignant tissues,
whereas the other HOX family genes were expressed at higher
levels (Hur et al, 2014). Our 17-gene signature that predicted DFS
included CASP8, an apoptosis-related cysteine peptidase encoding
gene. Caspase-8 has a central role in the transmission of the death
signal in the death receptor (extrinsic) pathway of apoptosis by
coupling the stimulation of death receptors to the activation of
intracellular signalling cascades that eventually lead to cell death
(Barnhart et al, 2003). It is frequently inactivated in tumours of
breast, colon, or lung (Shivapurkar et al, 2002). Therapeutic agents
such as interferon-g and peptides induce caspase pathways, and
microtubule-stabilising agents such as taxanes promote CASP8-
mediated apoptosis, possibly via upregulation of components of the
tumour necrosis factor-related apoptosis-inducing ligand pathway
(Nimmanapalli et al, 2001; Muhlethaler-Mottet et al, 2004) or by
amplification of CASP8 activation via microtubule-anchored death
effector domain ‘filaments’ (Mielgo et al, 2009). Based on these

Table 4. Factors predictive of DFS assessed by multivariate
Cox regression model in patients from gene analysis cohort
(n¼78)

Hazard ratio 95% CI P-value

Gene expression risk score
Low 1
High 6.68 (0.94, 47.1) 0.05

Response
Non-pCR 1
pCR 0.22 (0.01, 3.87) 0.3

Age (years)
X50 1
o50 1.8 (0.26, 12.4) 0.55

Subtype
HRþ /HER2� 1
HRþ /HER2þ 1.14 (0.10, 12.3) 0.9
HR� /HER2þ 1.37 (0.09, 20.9) 0.81
HR� /HER2� 1.02 (0.08, 12.2) 0.98

Histological grade
1 or 2 1
3 0.67 (0.10, 4.48) 0.68

No. of axillary lymph nodes
0 1
1–3 0.69 (0.09, 5.25) 0.72
X4 1.02 (0.17, 5.87) 0.97

Abbreviations: CI¼ confidence interval; DFS¼disease-free survival; HER2¼ human epider-
mal growth factor receptor 2; HR¼hormone receptor; pCR¼pathologic complete
response.
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data, we assume that patients classified into the high-risk group by
our 17-gene signature may benefit from more intensive che-
motherapy, and those in the low-risk group may be able to avoid
extra chemotherapy.

As for the Supplementary Data, analysis using the training and
validation sets identified HER2� status as well as three genes,
namely PML, TrpRS, and CHKA, as the most accurate markers for
predicting pCR. PML is a tumour suppressor gene as its expression
is lost in several types of human cancers and is associated with
tumour grade and progression (Gurrieri et al, 2004). TrpRS has
been documented to function in proangiogenic responses
(Wakasugi and Schimmel, 1999; Mirando et al, 2014). Human
TrpRS exists in two forms: full-length protein and truncated
TrpRS. The expression of mini TrpRS is stimulated by the
antitumorigenic IGN-g (Rubin et al, 1991), and in a protein
signature analysis with TNBC, TrpRS was identified as a good
prognostic marker (Campone et al, 2015). CHKA catalyses the
phosphorylation of choline and has been shown to be upregulated
in many cancer types, including breast, lung, colorectral, and
prostate cancer(Katz-Brull et al, 2002). When the gene is amplified,
it modulates ER-driven proliferation and ER/oestrogen response
element transactivation (Lopez-Knowles et al, 2015). With this
three-gene model, validation set was used for performance
evaluation, which resulted in a 93% accuracy rate on validation.
The clustering analysis revealed that the HER2þ cancers
correlated with only the B group gene probes, whereas the
HER2� cancers showed a correlation with the N, J, I, and H
groups. According to a pooled analysis of studies of gene modules
and response to preoperative chemotherapy (Ignatiadis et al, 2012),
high module scores for chromosomal instability, phosphatase and
tensin homolog loss, and E2F3 transcription factor were associated
with increased pCR probability in HER2� tumours. These
findings, along with our current results, suggest that HER2�
cancers possess marked heterogeneity, with many different
processes and pathways associated with tumour growth or
sensitivity to chemotherapy. This is in contrast to HER2þ
cancers, in which HER2 amplification-driven oncogenesis has a
much more significant role than other pathways. Therefore, we
believe that using the proper sets of genes, pCR could be more
successfully predicted in HER2� cancers compared with those
that are HER2þ , would be most successful in predicting pCR with
the proper sets of genes.

Some limitations of our analysis must be mentioned. First, the
relatively small sample size may have increased the false discovery-
positive rate. Second, all patients in the analysis received
anthracycline plus taxane-based preoperative chemotherapy regi-
mens. It is therefore not known if the associations between
significant genes and pCR or DFS are anthracycline-specific or
taxane-specific, or instead indicate general chemosensitivity. Third,
validation of the gene signatures was not performed owing to the
lack of events, which will be conducted in the future. Fourth, our
analysis integrated all subtypes, which is also the novelty of our
analysis, but identifying a predictive gene signature for each
subtype may have been more suitable for clinical use. However, if
analysis was carried out for each subtype, the number of cases
would be limited with a decrease in the power of the test, leading to
a less meaningful gene signature. We believe that enrolling patients
in a prospective trial, as performed in our study, should decrease
the number of accidental findings related to associated genes.
Furthermore, we performed an integrated analysis of the two trials,
using them as a training set and validation set, respectively.

Our clinicopathological and gene expression analyses for
prediction of response to chemotherapy and recurrence resulted
in two preliminary set of genes predictive of pCR and DFS, which
may provide guidance regarding individual therapeutic decisions.
RNA genomic analysis was feasible in 73% of the specimens,
resulting in successful molecular classification, suggesting that

HER2� tumours have a higher likelihood of gene clustering.
We wish to further expand and validate this analysis by using
integrated data from larger retrospective populations from
previously published studies (Madden et al, 2013) or global
prospective trials.
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