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Abstract
As the worldwide prevalence of colorectal cancer (CRC) increases, it is vital to reduce 
its morbidity and mortality through early detection. Saliva-based tests are an ideal 
noninvasive tool for CRC detection. Here, we explored and validated salivary bio-
markers to distinguish patients with CRC from those with adenoma (AD) and healthy 
controls (HC). Saliva samples were collected from patients with CRC, AD, and HC. 
Untargeted salivary hydrophilic metabolite profiling was conducted using capillary 
electrophoresis–mass spectrometry and liquid chromatography–mass spectrometry. 
An alternative decision tree (ADTree)-based machine learning (ML) method was used 
to assess the discrimination abilities of the quantified metabolites. A total of 2602 
unstimulated saliva samples were collected from subjects with CRC (n  =  235), AD 
(n = 50), and HC (n = 2317). Data were randomly divided into training (n = 1301) and 
validation datasets (n  =  1301). The clustering analysis showed a clear consistency 
of aberrant metabolites between the two groups. The ADTree model was optimized 
through cross-validation (CV) using the training dataset, and the developed model 
was validated using the validation dataset. The model discriminating CRC + AD from 
HC showed area under the receiver-operating characteristic curves (AUC) of 0.860 
(95% confidence interval [CI]: 0.828-0.891) for CV and 0.870 (95% CI: 0.837-0.903) 
for the validation dataset. The other model discriminating CRC from AD + HC showed 
an AUC of 0.879 (95% CI: 0.851-0.907) and 0.870 (95% CI: 0.838-0.902), respectively. 
Salivary metabolomics combined with ML demonstrated high accuracy and versatility 
in detecting CRC.
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1  |  INTRODUC TION

Despite the advances in cancer diagnosis and management in the 
last decade, CRC still represents a significant global health burden. 
Overall, CRC ranks third in cancer morbidity and second in mortality 
among all cancers worldwide.1,2 The prevalence of CRC is strongly 
associated with the westernization of eating and health habits. 
Furthermore, it is expected to increase further in developed coun-
tries with remarkable economic growth.1,3,4 Therefore, cancer de-
tection is an important issue in CRC diagnosis and treatment.

Fecal occult blood tests are the most commonly used CRC screen-
ing tests in Japan. Although these tests have contributed to the re-
duction in the mortality rate associated with CRC,5,6 their limited 
sensitivity for early-stage precancerous lesions, such as AD or CRC, 
indicated the need for improvement.7 In addition, a large proportion 
of the at-risk population is still often detected in advanced stages.8 
Currently used blood-based biomarkers for CRC, such as CEA and 
cancer antigen 19-9 (CA19-9), are suitable for surveillance or prog-
nostic indicator in CRC treatment but are unsuitable for screening or 
diagnosing CRC due to their low sensitivity and specificity, as well as 
the association with other types of gastrointestinal cancers, includ-
ing gastric cancer, pancreatic cancer, or gynecological cancer such as 
ovarian cancer.9 Therefore, developing a convenient novel screening 
method with higher sensitivity and specificity is paramount.

Frequently mutated genes have been identified in association 
with CRC, including APC, CTNNB1, KRAS, BRAF, and SMAD4.10 The 
epigenetic variation in CRC changes the hyper- and hypomethyla-
tion, which inactivates the tumor suppressor genes and activates 
oncogenes, leading to epithelial cell growth to cancerous tumor 
formulation.11 In addition to these genetic changes, malignant 
cancers, including CRC, have shown drastic metabolic shifts. For 
instance, regardless of oxygen availability, tumor cells activate the 
glycolysis pathway to produce adenosine triphosphate (Warburg 
effect).12 In addition, oxidative phosphorylation upregulation has 
been reported in several cancers.13 Glutamine is used as a carbon 
source alternative to glucose via the TCA in proliferating tumor 
cells to synthesize purines and pyrimidines.14 In addition, holistic 
changes in the metabolic pathways have been reported, includ-
ing amino acid, pentose phosphate, urea cycle, polyamine, and 
nucleotide pathways.15–17 Therefore, the metabolites in biofluids 
including blood and saliva that reflect these metabolic aberrances 
associated with CRC have been analyzed to establish a novel set of 
biomarkers.18–24

Saliva is an ideal biofluid that enables various disease detec-
tions.25 However, salivary components are expected to be fragile 
compared with those from other biofluids.26–29 Therefore, strict 
protocols must be established for processing saliva samples for 

reproducible quantification. For example, the unstimulated saliva 
collection, overnight fasting duration, restriction of any oral treat-
ments before the sample collection, and frozen sample storage 
should follow standard protocols.30,31 However, saliva tests allow 
noninvasive sampling, which is beneficial as cancer screening. 
Metabolomic biomarkers in saliva samples have been shown to rep-
resent a potential medium for cancer detection.32,33 Biomarkers for 
oral cancer and cancers in the organs far from the oral cavity, such 
as breast cancer and pancreatic cancers, have been reported.34–37 To 
enhance the discriminability of multiple biomarkers, ML is a corner-
stone.38,39 Using urinary polyamine profiles, we previously used an 
alternative decision tree (ADTree)–based prediction method to de-
tect CRC.22 Salivary polyamines with this ML method showed high 
discriminability for breast cancers.37

In this study, we performed salivary metabolomic profiling of sa-
liva collected from patients with CRC, patients with AD, and HC. We 
developed ML models to determine the combination of metabolite 
concentrations that could discriminate among these groups. Mainly, 
we drew two types of comparison: comparison between CRC + AD 
and HC and comparison between CRC and AD + HC. More than 
2000 samples were examined, and the data were divided into two 
datasets. One dataset was used for the ML model development, and 
the other dataset was used to validate the ML model. Our approach 
has shown the screening potential of salivary metabolomic profiles 
to detect CRC.

2  |  MATERIAL S AND METHODS

2.1  |  Subjects

This study was approved by the Ethics Committee of Tokyo Medical 
University (Nos. 2346 and 3405) and conducted in accordance with 
the Declaration of Helsinki. Written informed consent was obtained 
from all participants who agreed to serve as saliva donors. Patients 
with CRC who underwent chemotherapy and patients with chronic 
metabolic diseases, such as diabetes, were excluded. Patients his-
topathologically diagnosed with colorectal adenocarcinoma were 
included, and patients with all other types of cancer (adenosqua-
mous cell carcinoma, endocrine carcinoma, lymphoma, etc.) were 
excluded.

The resected specimens were pathologically classified according 
to the 7th edition of the Union for International Cancer Control TNM 
Classification of Malignant Tumors.40 All patients with AD were his-
tologically diagnosed as having AD after polypectomy. In addition, 
samples of HC were collected at the Center for Health Surveillance 
and Preventive Medicine, Tokyo Medical University.
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2.2  |  Saliva collection

Subjects were allowed only water intake after 9:00 p.m. on the day 
before collection. Salivary samples were collected between 9:00 
and 11:00 a.m. They were required to brush their teeth without 
toothpaste on the day of collection and could not use lipstick, drink 
water, smoke, brush their teeth, or exercise intensively 1 hour be-
fore saliva collection. A polypropylene straw 1.1 cm in diameter 
was used to assist in the saliva collection. Approximately 400 μl of 
unstimulated saliva was collected and stored in 50 ml polypropyl-
ene tubes on ice to prevent the degeneration of salivary metabo-
lites.30 After collection, saliva samples were immediately stored at 
−80°C. Visibly cloudy and highly bubbly saliva was eliminated by 
visual inspection, and another saliva sample was collected 5 min 
later.

2.3  |  Saliva preparation and metabolomics analyses

Saliva samples were analyzed via two methods. CE-TOF-MS 
(TOF-MS) was used for nontargeted analyses of hydrophilic metab-
olites, and LC–triple quadrupole MS (QQQ-MS) was used for accu-
rate quantification of polyamines as described previously with slight 
modifications.26,30 Frozen saliva was thawed at 4°C for approxi-
mately 1.5 hours and subsequently dissolved using a Vortex mixer at 
25°C. Ten microliters of each sample were used in the LC-MS analy-
sis, and the rest in the CE-MS analysis.

For LC-MS analysis, saliva was mixed with methanol (90 μl) 
containing 149.6 mM ammonium hydroxide [1% (v/v) ammo-
nia solution] and 0.9 μM internal standards (d8-spermine, d8-
spermidine, d6-N1-acetylspermidine, d3-N1-acetylspermine, 
d6-N1,N8-diacetylspermidine, d6-N1,N12-diacetylspermine, 
hypoxanthine-13C,15N, 1,6-diaminohexane, 13C,15N-Arg, 13C,15N-
Lys, 13C,15N-Met, 13C,15N-Pro, 13C,15N-Trp, d3-Leu, and d5-Phe). 
After centrifugation at 15,780 × g for 10 minutes at 4°C, the su-
pernatant was transferred to a fresh tube and vacuum dried. The 
sample was reconstituted with 90% methanol (10 μl) and water 
(30 μl) and then vortexed and centrifuged at 15,780 × g for 10 min-
utes at 4°C. One microliter of supernatant was then injected into 
the LC-MS.

For CE-MS, saliva was centrifuged through a 5-kDa-cutoff filter 
(EMD Millipore) at 9100 × g for at least 2.5 hours at 4°C. The filtrate 
(45 μl) was transferred to a 1.5-ml Eppendorf tube with 2 mM of inter-
nal standards (methionine sulfone, 2-[N-morpholino]-ethanesulfonic 
acid [MES], D-camphol-10-sulfonic acid, sodium salt, 
3-aminopyrrolidine, and trimesate). The instrumentation and mea-
surement conditions used for LC-QQQ-MS and CE-TOF-MS were as 
described previously.26,27,30

Raw data processing was conducted by following the typical 
data processing flow.41 LC-MS data were processed using Agilent 
MassHunter Qualitative Analysis and Quantitative Analysis soft-
ware, including the MassHunter Optimizer and the Dynamic 
Multiple Reaction Monitoring Mode (DMRM) software (version 

B.08.00; Agilent Technologies). Polyamine concentrations were cal-
culated based on the peak area of corresponding internal standards. 
CE-MS data were analyzed using MasterHands (Keio University)33,41 
with noise filtering, subtraction of baselines, peak integration for 
each sliced electropherogram, estimation of accurate m/z in MS, 
alignment of multiple datasets to generate peak matrices, and iden-
tification of each peak by matching m/z values and corrected migra-
tion times to corresponding entries in a standard library. Metabolite 
concentrations in CE-MS were calculated based on the ratio of peak 
area divided by the area of the internal standards in the samples and 
standard compound mixtures. Polyamine LC-MS data were used for 
subsequent analyses because both methods redundantly detected 
their peaks.

2.4  |  Data analysis

The collected data were randomly split into training and valida-
tion datasets (Figure 1A). The metabolites detected in more than 
95% of samples with P values < 0.05 (Mann-Whitney test) be-
tween CRC and HC were selected. Fold changes (FC) of averaged 
concentrations between HC and CRC were calculated. Only the 
metabolites showing higher FC than the average FC were used for 
clustering analyses. To evaluate the overall difference in the me-
tabolite profile between HC and CRC, we conducted partial least 
squares discriminant analysis (PLS-DA)42 and pathway analyses. 
PLS-DA is a classification method frequently used in the metabo-
lomics field, which aims to maximize the covariance between the 
independent variables (metabolites) and the corresponding de-
pendent variables (groups) by finding the subspace of the explana-
tory variables, for example, independent components.43 PLS-DA 
can generate score plots and VIP score plots.44

We evaluated the discrimination ability of multiple combina-
tions of metabolites. As one of the multivariate analyses, MLR 
was used. Stepwise feature forward selection was used to elim-
inate colinearity of the independent variables. This method limits 
the number of variables and deals with only linear relationships 
between independent (metabolites) and dependent variables 
(groups). Therefore, we also used the ADTree algorithm, an ML 
method, which is an improved form of the conventional “if-then” 
decision tree–based method.45 In addition, multiple datasets were 
generated by random sampling allowing redundant selection, and 
ADTree models corresponding to each of the generated datasets 
were developed. Predictive ability of each ADTree model was 
averaged to enhance prediction accuracy (ensemble method; 
Figure 1B).46 The number of nodes and ADtrees were optimized 
via k-fold CV using the training dataset. The developed model was 
validated using the validation dataset (Figure 1A).

In this study, although data were obtained from three groups 
(HC, AD, and CRC), we used MLR and ADTree as a two-group clas-
sification method. Therefore, we drew two types of comparison for 
discriminating CRC + AD from HC (1) and CRC from AD + HC (2). 
ADTree models were developed for (1) and (2), named ADTree1 and 
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ADTree2, respectively. In addition, MLR models were developed for 
(1) and (2), named MLR1 and MLR2, respectively (Figure 1C).

The discrimination ability was evaluated using the area under 
the ROC curves (AUC). The quantified values, such as metab-
olite concentration and predicted probabilities, were evalu-
ated using the Mann-Whitney test for two-group comparisons 
and the Kruskal-Wallis test with Dunn's post-tests for ≥ 3 group 
comparisons.

JMP Pro (ver. 14.1.0; SAS Institute Inc.), GraphPad Prism (ver. 
7.0.3; GraphPad Software, Inc.), MeV TM4 (ver. 4.9.0; http://
mev.tm4.org), Weka (ver. 3.6.15; the University of Waikato), and 
Metaboanalysis (v.5.0, https://www.metab​oanal​yst.ca)47 were used 
for the analyses.

3  |  RESULTS

3.1  |  Overview of profiled metabolites

Table  1 summarizes training and validation data of the subjects 
enrolled in this study. A total of 2602 unstimulated saliva sam-
ples were collected from 235 subjects with CRC, 50 subjects with 
ADs, and 2317 HC. All data were randomly assigned to training 
(n = 1301) and validation datasets (n = 1301; Figure 1A). Among 
the 122 quantified metabolites, 63 metabolites showed a p < 0.05 
(Mann-Whitney test) between HC and CRC. Among them, 23 
metabolites showing an FC > 1.71 (average FC) were selected 
for clustering analyses (Figure  2). The CRC metabolites showed 

F I G U R E  1  Data analysis design. 
(A), Data used in this study. Data 
were randomly split into training and 
validation datasets. Machine learning 
(ML) models were developed using the 
cross-validation (CV) of the training 
dataset and validated using the validation 
dataset. (B), The ensemble alternative 
decision tree (ADTree) models. Each 
model has several nodes. The averaged 
predictions of multiple ADTree are used 
as the final prediction. (C), Depiction of 
the comparisons drawn in the study. The 
gray and white boxes indicate positive 
and negative groups, respectively. HC and 
CRC are negative and positive groups, 
respectively. AD is considered as a 
positive group in comparison (1) and as a 
negative group in comparison (2). ADTree1 
and MLR1 are developed for comparison 
(1), and ADTree2 and MLR2 are developed 
for comparison (2). AD, adenoma; CRC, 
colorectal cancer; HC, healthy controls

TA B L E  1  Subject information

Training data (n = 1301) Validation data (n = 1301)

HC AD CRC HC AD CRC

n 1159 25 117 1158 25 118

Age

Mean 45.65 66.30 67.42 45.19 61.81 69.63

±SD 10.15 11.07 11.24 10.10 10.40 12.14

Gender

Male 318 21 64 338 20 66

Female 841 4 53 820 5 52

Stage

0/I/II(N1)/II(N2)/Iva 2/30/36/25/14/10 2/31/36/25/14/10

Abbreviations: AD, adenoma; CRC, colorectal cancer; HC, healthy controls.

http://mev.tm4.org
http://mev.tm4.org
https://www.metaboanalyst.ca
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higher concentrations than those of HC. Several metabolites as-
sociated with AD also showed higher concentrations than those 
of HC. The FC between HC and CRC is visualized in Figure  S1. 
The acetylated polyamines, such as N-acetylputrescine, N1-
acetylspermine, N1,N8-diacetylspermidine, N8-acetylspermidine, 
N1-acetylspermidine, and N1,N12-diacetylspermine, were included, 
and the first two polyamines showed relatively high FCs in both 
datasets. Two glycolysis metabolites, pyruvate and lactate, two 
citrate cycle metabolites, succinate and malate, and four amino 
acids were also included.

3.2  |  Partial least squares discriminant analysis and 
pathway analysis

The overall differences in metabolomic profiles between HC and 
CRC were evaluated using PLS-DA (Figure 3A,B) and pathway anal-
ysis (Figure  3C). The score plots showed separated HC and CRC 
(Figure  3A). N-acetylputrescine and N1-acetylspermine showed 
high VIP scores, thus highly contributing to this discrimination 
(Figure  3B). Pathway analysis detected three significantly en-
riched pathways, including (1) amino sugar and nucleotide sugar 
metabolism, (2) alanine, aspartate, and glutamate metabolism, and 
(3) arginine as well as proline metabolism. However, the pathway 
impact of pathway (1) was small, while those of (2) and (3) were 
relatively high.

3.3  |  Alternative decision tree models

The discrimination abilities of multiple combinations of metabolites 
were analyzed. Two ADTree models were developed for comparison 
(1) to discriminate AD + CRC from HC (ADTree1) and for compari-
son (2) to discriminate CRC from AD + HC (ADTree2; Figure 1C). CV 
using training data resulted in 16 trees and 7 nodes for ADTree1 
and 12 trees and 8 nodes for ADTree2. The ADTree1 discriminability 
was 0.933 (95% CI: 0.916-0.951) for all data (Figure 4A) and 0.860 
(95% CI: 0.828-0.891) for CV (Figure 4B) in the training dataset. The 
generalization ability of the developed ADTree1 was 0.870 (95% 
CI: 0.870-0.870) in the validation dataset (Figure  4C). This value 
was similar to that observed for CV in the training datasets. The 
stage-specific differences in probabilities of AD + CRC predicted 
by ADTree1 of training data and validation data are depicted in 
Figure 4D,E. The significant differences at all stages except for stage 
0 (n = 2) between HC were observed (Dunn's post-tests of Kruskal-
Wallis test). The ADTree2 proved similar discrimination abilities of 
0.951 (95% CI: 0.936-0.965) for all data (Figure 4F) and 0.879 (95% 
CI: 0.851-0.907) for CV (Figure  4G) in the training datasets, and 
0.870 (95% CI: 0.838-0.902) in the validation dataset (Figure  4H). 
The probabilities of CRC predicted by ADTree1 also showed similar 
patterns (Figure 4I,J). The used metabolites and their usage numbers 
in ADTree1 and ADTree2 are depicted (Figure  S2). The top three 
metabolites (N-acetylputrescine, 4-methyl-2-oxopentanoate, and 
5-oxoproline) were used in both models.

F I G U R E  2  Heatmap illustrating 
salivary metabolite concentrations. Each 
metabolite concentration was divided by 
its average for the training and validation 
dataset. These data were averaged again 
for each group
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3.4  |  Multiple logistic regression models

To compare the discrimination ability of the ADTree and MLR mod-
els, we developed two MLR models for the comparisons (1) and (2) 
(Figure  1C). We developed MLR1 to discriminate AD + CRC from 
HC, and MLR2 to discriminate CRC from AD + HC. The ROC curves 
using training and validation datasets and stage-specific prediction 
probabilities are shown in Figure S3. MLR1 and MLR2 included three 
metabolites, and N-acetylputrescine was selected in both models 
(Table S1). All AUC values yielded by both MLR models showed a 
p < 0.0001 (Table  S2). However, comparing the results following 
validation, the AUC values of ML were higher than those of MLR 
models.

3.5  |  Comparisons with tumor markers

Carcinoembryonic antigen and CA19-9 of AD and CRC subjects were 
measured, and the comparisons of sensitivities among the tumor 
markers (TMs), ML, and MLR models were summarized (Table S3). 
For TMs, the subjects showing a CEA > 5.0 ng/ml or CA19-9 > 37 U/
ml3 were counted as positive. For MLR and ML, the optimal cutoff 
value was defined to maximize the sensitivity and specificity using 
the training dataset, and validated using the validation dataset. 
The predicted probabilities higher than these cutoff values were 
counted as positive. In the validation dataset, the sensitivity to CEA 
and CA19-9 from CRC subjects were 30.5% and 16.9%, respectively. 
Those of ADTree1, ADTree2, MLR1, and MLR2 were 77.1%, 70.4%, 

F I G U R E  3  The difference in salivary metabolites between healthy controls (HC) and colorectal cancer (CRC). (A), Score plots of partial 
least squares discriminant analysis (PLS-DA).42 x- and y-axes indicate the first and the second PLS component. Each plot corresponds to 
one sample. The plots with shorter distances indicate high similarity of the metabolomics profile of these samples. (B), Variable importance 
projection (VIP) score of PLS-DA. (C), Pathway analysis. The metabolite concentration of each sample was divided by its median value. 
Subsequently, the data were log2-transformed and translated into Z-scores. For PLS-DA, the 10-fold cross-validation with five components 
showed the highest generalization value (R2 = 0.552 and Q2 = 0.524)
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77.1%, and 76.3%, respectively. All TM values for AD were negative. 
ADTree1 and MLR1 indicated 68% sensitivities, while ADTree2 and 
MLR2 indicated 60% sensitivities.

The correlations between predicted probabilities and TM 
are listed in Table  S4. In the validation dataset, the correlations 
(R, Spearman correlation) with ADTree1 were 0.174 (CEA) and 
0.133 (CA19-9). Those with ADTree2 were 0.216 (CEA) and 0.169 
(CA19-9). Only the comparison of MLR1 and CEA showed no sig-
nificance. The correlations values with MLR1 were 0.114 (CEA) 
and 0.0900 (CA19-9), and those with MLR2 were 0.117 (CEA) and 
0.0375 (CA19-9). All correlations produced by the MLR showed no 
significance.

3.6  |  Effect of age on the metabolomic profile

Age showed a significant effect on the metabolic profile. Therefore, 
age-matched data were generated by eliminating HC subjects of 
lower ages. The MLR1 and MLR2 model's coefficients without 
feature selection were trained using training datasets and evalu-
ated using validation datasets. In short, these models used already 
selected metabolites (Table  S2). We conducted feature selec-
tion using the age-matched data and developed MLR1 and MLR2 
(Table  S5). Both models with/without feature selection showed 
high AUC values (p < 0.0001) in both training and validation data-
sets (Table S6).

4  |  DISCUSSION

In this study, we investigated the use of metabolomics to discover 
salivary-based biomarkers and discriminate among CRC, AD, and 
HC. As described in the heatmap (Figure 2), both training and valida-
tion datasets were highly similar. All metabolites in the map were 
elevated in CRC (Figure S1). Among them, end products of glycolysis, 
such as lactate and pyruvate, were elevated only in CRC. Lactate, 
also an end product of glycolysis, was observed in various reports, 
including our oral cancer saliva data.35 It can be inferred that the 
Warburg effect48 and glutaminolysis,49,50 which are characteristic 
of cancer metabolism, might underlie the observed characteristics. 
In addition, several amino acids, such as isoleucine, valine, lysine, 
and alanine, were elevated in both AD and CRC. The intermediate 
metabolites associated with these energy and amino acid pathways 
were frequently reported.15,51

In both ML models, acetylated polyamines were selected as 
predictive features. We previously reported the high polyamines in 
the urine collected from CRC patients as a valuable biomarker.20,22 
The synthesis of polyamines is attributed to various pathways, 
with the activation of ornithine decarboxylase that converts orni-
thine to putrescine in cancer cells largely affecting the polyamine 
contents.52 The activation of acetylation of spermine and spermi-
dine resulted in high level of their acetylated forms, which spread 
to the scrounging biofluid (Figure S4).53 As frequently reported, we 
also previously confirmed that N1,N12-diacetylspermine showed the 

F I G U R E  4  Discriminability of machine learning (ML) models. Receiver-operating characteristic (ROC) curves of all data (A) as well as the 
cross-validation (CV) of the training (B) and validation (C) datasets by alternative decision tree (ADTree)1. The ADTree1 prediction probability 
for adenoma (AD) + colorectal cancer (CRC) using the training (D) and validation (E) datasets. ADTree2 ROC curves for all data (F) as well as 
the CV of the training (G) and validation (H) datasets. ADTree2 prediction probability for CRC using the training (I) and validation (J) datasets. 
A, B, E, F, All area under ROC curves (AUC) values are presented with a 95% confidence interval (CI) between parentheses. The values were 
statistically significant (p < 0.0001). D, E, I, J, Asterisks indicate the P value of Dunn's post-test after the Kruskal-Wallis test. ***p < 0.01 and 
****p < 0.0001. The y-axis indicates the prediction probability
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most clearly elevated levels in CRC urine.22,54,55 However, other 
forms of acetylated polyamines, such as N1-acetylspermine and 
N8-diacetylspermidine, were also elevated, consistent with other 
studies.56,57 In the current saliva data, N1-acetylspermine and N1,N8-
diacetylspermidine showed higher discriminability than N1,N12-
diacetylspermine (Figures S5 and S6). The differences in AUC values 
between all stages and early stages (0, I, and II) of CRC were small. 
These data are beneficial in enhancing the capacity to detect early-
stage CRC subjects. The prediction probabilities calculated by the 
two ML models were also successfully utilized. We observed signifi-
cant differences between each CRC stage and HC, even in the early 
stages, although stage 0 showed no significance because of the small 
sample numbers (Figure 4). These metabolites also showed similar 
discriminability for AD (Figures S5 and S6). We previously confirmed 
the similar aberrant metabolomic profiles of AD and CRC, which 
were shifted by the activation of MYC genes observed in AD.16 MYC 
induced the activation of ODC, resulting in the polyamine synthesis 
activation (Figure S4). The prediction probabilities of AD by the de-
veloped models were significantly higher compared with HC, even 
though AD was grouped as negative data in ADTree2 (Figure 4I,J) 
and MLR2 (Figure S3G,H). These data indicate the usefulness of de-
tecting AD and CRC, whereas the differentiation between AD and 
CRC is not satisfactory.

We compared the sensitivity of ADTree models with those of 
CEA and CA19-9 in AD and CRC data. Both ADTree models showed 
better sensitivity compared with these two TM. TM did not detect 
AD subjects; however, the ADTree and MLR models showed more 
than 60% sensitivity (Table  S3). Furthermore, R  =  0.216 between 
CEA and ADTree2 was the highest positive correlation between the 
ML model and TM in the validation data (Table S4). Therefore, the 
complimentary use of ADTree models and TM would benefit the 
screening of AD and CRC.

Right-sided CRC has a higher mortality rate and worse prognosis 
than left-sided CRC, and both genetic and metabolomic differences 
between these two sides have been reported.58–60 Therefore, we 
evaluated the difference between the left and right colon on predic-
tion accuracy. There was no significant difference between tumor 
locations even in the training and validation data (Figure S7). This 
trend was observed for both MLR1 and MLR2. Therefore, the pre-
diction accuracies of the developed models were not affected by 
tumor location.

Recently developed liquid biopsies for CRCs include methylation 
and abnormal levels of circulating tumor DNA and noncoding RNA, 
mainly micro-RNA, as markers; however, most of these markers are 
detected in plasma and stool.61 In saliva samples, MiR-21 has shown 
CRC and HC discrimination ability.62 A single marker that shows 
high specificity for a disease is beneficial for developing simple and 
reasonable assays as compared with simultaneous analyses of mul-
tiple markers for the detection of diseases. The analysis of volatile 
compounds in saliva has also shown potential to detect CRC.63 The 
current study measured only hydrophilic metabolites, and more com-
prehensive analyses could explore the accurate biomarkers of CRC.

Several limitations need to be acknowledged. First, although 
the sample size is relatively large, this is a case-control study; in 
short, the proportion of the three groups does not reflect the ac-
tual prevalence of these diseases. Second, the current data has 
an age bias between HC and the other groups. Therefore, age-
matched subsets were randomly generated, and the models show-
ing discrimination at a significant level were confirmed (Tables S5 
and S6). However, evaluating the developed models using age-
matched data, including larger samples, is necessary for rigorous 
validations. Third, the comparison with other diseases, especially 
using other cancer types, was not performed. For example, sali-
vary polyamines were elevated even in breast and pancreatic can-
cers.36,37,64 The elevation of salivary amino acids was also reported 
in breast cancer.65 Therefore, a single marker may not be enough 
for a disease-specific index, and an ML capturing multiple metab-
olite patterns would enhance the specificity. To use the developed 
biomarkers for diagnostic purposes, rigorous validation is neces-
sary, for example, comparison of clinical-pathological features 
between HC and patients with CRC. The approach in the current 
study showed CRC detection abilities; however, room to improve 
the sensitivity and specificity of CRC detection still exists. In gen-
eral, a lower threshold to determine the positive cases enhances 
the sensitivity and reduces the false-negative cases for screening 
purposes. Meanwhile, a higher threshold is used to enhance the 
specificity and reduce the false-positive cases for diagnostic pur-
poses. Saliva metabolomics demonstrated in this study showed a 
high sensitivity, which is suitable for a screening test; however, the 
specificity is not enough for diagnostic purposes. The current re-
sult can encourage patients who show a higher risk of AD or CRC 
to undergo other diagnostic tests.

In conclusion, we analyzed the salivary metabolic profiles of 
CRC, AD, and HC. The data showed consistent profile patterns, in-
cluding polyamines, with previous studies. The ensemble ADTree 
models successfully discriminated against these groups with high 
sensitivity and specificity. We also showed high generality using val-
idation datasets. In addition, the models showed higher sensitivity 
compared with CEA and CA19-9. The models could contribute to 
clinical screening for AD and CRC.
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