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Abstract

The dynamics of individual neurons are crucial for producing functional activity in neuronal networks. An open question is
how temporal characteristics can be controlled in bursting activity and in transient neuronal responses to synaptic input.
Bifurcation theory provides a framework to discover generic mechanisms addressing this question. We present a family of
mechanisms organized around a global codimension-2 bifurcation. The cornerstone bifurcation is located at the intersection
of the border between bursting and spiking and the border between bursting and silence. These borders correspond to the
blue sky catastrophe bifurcation and the saddle-node bifurcation on an invariant circle (SNIC) curves, respectively. The
cornerstone bifurcation satisfies the conditions for both the blue sky catastrophe and SNIC. The burst duration and
interburst interval increase as the inverse of the square root of the difference between the corresponding bifurcation
parameter and its bifurcation value. For a given set of burst duration and interburst interval, one can find the parameter
values supporting these temporal characteristics. The cornerstone bifurcation also determines the responses of silent and
spiking neurons. In a silent neuron with parameters close to the SNIC, a pulse of current triggers a single burst. In a spiking
neuron with parameters close to the blue sky catastrophe, a pulse of current temporarily silences the neuron. These
responses are stereotypical: the durations of the transient intervals–the duration of the burst and the duration of latency to
spiking–are governed by the inverse-square-root laws. The mechanisms described here could be used to coordinate
neuromuscular control in central pattern generators. As proof of principle, we construct small networks that control
metachronal-wave motor pattern exhibited in locomotion. This pattern is determined by the phase relations of bursting
neurons in a simple central pattern generator modeled by a chain of oscillators.
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Introduction

The dynamics of individual neurons are crucial for the

functionality of neuronal networks. Precise timing and reliability

of temporal responses are critical for memory, pattern recognition,

and especially motor control [1–10]. Functional bursting activity,

latency to spiking, and transient oscillatory activity are necessary

components determining reliability and precise timing. For

example, transient spiking activity is critical for information

representation and memory [2,3,11,12]; precise control over delay

to firing after inhibition is important for the detection of temporal

patterns [4–6]; and bursting activity is crucial for rhythmic motor

functions including respiration, locomotion, and neurogenic

cardiac systems [7,8].

Rhythmic motor functions are executed by precisely coordinat-

ed oscillatory patterns of contracting muscles. These functions

require flexibility of rhythmic patterns to cope with environmental

conditions such as temperature, load, or the demand for speed of

locomotion. Accordingly, some rhythmic behaviors scale their

pattern, maintaining phase relations across a wide range of

periods, for example, according to different speeds of locomotion.

Examples of pattern scaling behaviors include the pyloric rhythm

in Crustacea, crayfish swimmeret beating, the leech heartbeat,

leech swimming, lamprey swimming, and crawling of the

Drosophila larvae [8–10,13–24].

Rhythmic behaviors are controlled by devoted oscillatory

neuronal networks: central pattern generators (CPGs)

[7,8,15,17,25–29]. CPGs adjust their patterns according to motor

tasks, sensory feedback, and environmental conditions

[14,15,22,29]. They are comprised of neurons from a spectrum

of endogenous properties varying from tonic spiking through

bursting to silent neurons [7,25–29]. These neurons could be

sensitive to neuromodulatory tone, descending tonic drive, and

phasic sensory feedback [25–27,29]. Neurons like conditional

oscillators could be found in either tonic spiking, bursting, or silent

regimes, when decoupled from a circuit [25–27,29]. Major open

questions are concerned with determining the key cellular

properties which are characteristic for neurons in CPGs. Are

there organizing principles of cellular dynamics which allow

neurons to produce precise patterns in an orchestrated fashion?

Are there mechanisms which coordinate dynamic properties of

neurons to accomplish adaptations of motor behavior to contin-

uously changing conditions?
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Bifurcation theory explains how dynamical systems like neurons

precisely change their dynamics in response to the variation of a

controlling parameter like neuromodulatory tone or descending

drive [1–3,6,11,12,30–51]. A variety of network mechanisms

producing specific temporal patterns of activity have been

previously studied [1,10,18,31,34,41,52–60].

Our study emphasizes the dynamics of single neurons as an

organizing principle underlying pattern formation. We present a

global codimension-2 bifurcation and assert that this so-called

cornerstone bifurcation can precisely control the regulation of

temporal characteristics in periodic and transient neuronal

activity. We suggest that this bifurcation generates a family of

cellular mechanisms which can answer the aforementioned

questions. These mechanisms also explain the operation of

conditional oscillators in parameter space near a functional

bursting regime.

In neurons, control over regimes of activity is ubiquitously

executed through neuromodulation. Potassium currents and

hyperpolarization-activated currents are common targets for

neuromodulation [61–68]. Among the usual targets of neuromo-

dulation are the kinetic parameters controlling the voltage

dependence of conductances of ionic currents such as a non-

inactivating potassium current, IK2, and a hyperpolarization-

activated current, Ih. IK2 is an outward current that is activated

during the burst and creates a mechanism controlling termination

of the burst. To serve this role, the activation variable of this

current must be significantly slower than the duration of a single

spike. On the other hand, Ih is an inward current that is activated

during the silent phase of bursting activity, and it creates a

mechanism controlling the duration of the silent phase. The

voltage of half-activation of IK2, {hK2, could control burst

duration, and the voltage of half-activation of Ih, {hh, could

control the interburst interval. Here, we present a model in which

the dependence of burst duration and interburst interval on hK2

and hh can be quantitatively described by inverse-square-root laws.

Biophysically accurate neuronal models allow the utilization of

well developed techniques from bifurcation theory. In a model,

bifurcations can predict the dependence of temporal characteris-

tics of oscillatory regimes near the bifurcation [11,12,42,43,48]. In

type I spiking neuronal dynamics, a saddle-node bifurcation on an

invariant circle (SNIC) describes a transition from tonic spiking

into silence; the interspike interval obeys the inverse-square-root

law imposed by the bifurcation. The period of spiking grows

proportionally to 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
a{a�
p

where a� is the bifurcation value of

the parameter a and awa�. In our case, the bifurcation

parameters are either hK2 or hh. The blue sky catastrophe, a

special case of the saddle-node bifurcation for orbits, imposes the

same inverse-square-root law on burst duration [45,69]. A saddle-

node bifurcation for periodic orbits can control the transition from

bursting into tonic spiking [11,12,45,70]. When the criteria for the

SNIC and the blue sky catastrophe are simultaneously satisfied, a

global bifurcation of codimension-2 occurs [69,70]. By coregulat-

ing these currents, we reveal the cornerstone bifurcation and how

the bifurcation parameters control burst duration and interburst

interval, latency to spiking in the response of a spiking neuron to

inhibition, duration of a burst elicited by stimulation of a silent

neuron, and multistability of spiking and silence. We apply these

mechanisms to construct simple proof of principle models of

CPGs. One of these mechanisms describes the coregulation of two

biophysical parameters in the vicinity of the cornerstone bifurca-

tion such that the duty cycle of bursting in a single cell is

maintained across a wide range of periods. Connected into a

chain, such oscillators self-organize their activity into a metachro-

nal wave pattern, which is preserved against variation in period.

We present this model in regard to crawling behavior in Drosophila

larvae.

Results

Regimes of Activity
We developed a generic low-dimensional Hodgkin-Huxley type

neuronal model stemming from a model of the leech heart

interneuron under certain pharmacological conditions [44,45]. In

order to reduce the mathematical complexity of the system, we

simulated the activity of the interneuron in bath with Co2z and 4-

aminopyridine (4-AP). Application of Co2z blocks Ca2z currents

and the synaptic current. Application of 4-AP blocks most of the

Kz currents. The remaining currents in this model are the leak

current, the non-inactivating potassium current, IK2, the fast

sodium current, INa, and a constant polarizing current. Our model

also includes the hyperpolarization-activated current, Ih, which is

present in this pharmacological scenario but has not been

previously represented in our reduced models. Intracellular

recordings in these conditions show slow seizure-like oscillations

with periods that are tens of seconds long [71,72]. The slow

variable in this system is the activation of IK2, mK2; its time

constant was 2 s. As such, the temporal characteristics of these

variables are instrumental in the dynamics of bursting activity. By

systematically manipulating parameters that determine the

dynamics of the slow variables, we observed the range of bursting

activity and bifurcations between qualitatively distinct regimes of

neuronal activity. We investigated the effects of changes to the

kinetics of IK2 and Ih.

The parameters {hK2 and {hh represent the voltages of half-

activation of the variables mK2 and mh. We conducted an

empirical investigation of the model by systematically varying hK2

and hh. The model exhibited a variety of regimes. Silence and

tonic spiking corresponded to equilibria and periodic orbits.

Bursting activity was either periodic or weakly chaotic. For low

values of hK2 and hh (region I ), the model exhibited tonic spiking

(Fig. 1A). For high values of hK2 and low values of hh (region II ),

the model exhibited bursting activity (Fig. 1A). For high values of

hK2 and hh (region III ), the model was silent (Fig. 1A). For low

values of hK2 and high values of hh (region IV ), the model

exhibited bistability of tonic spiking and silence (Fig. 1A).

We determined the boundaries between bursting and tonic

spiking and between bursting and silence by integrating the system

over a range of values for hh and hK2. Samples varied from one

another in the burst duration and the interburst interval (Table 1).

The transition from bursting to tonic spiking occurred near

hK2~20.0105 V almost independently of hh (Fig. 1A). The

transition from bursting to silence occurred near hh~ 0.0413 V
with weak dependence on hK2 (Fig. 1A). As the parameters were

changed to approach the transition from bursting to tonic spiking

or from bursting to silence, the burst duration or interburst interval

increased, respectively. We described the changes in the bursting

wave form by duty cycle: the ratio of burst duration to cycle

period. The duty cycle generally increased as hK2 or hh decreased

(Fig. 1A).

The Inverse-Square-Root Laws Control Bursting Activity
We associated saddle-node bifurcations of equilibria and

periodic orbits with the transitions between different regimes.

The transitions between I and IV and between II and III
coincided with the saddle-node bifurcation for equilibria (Fig. 1A,

black curve). The borders between regions I and II and between

regions III and IV coincided with the saddle-node bifurcation for

periodic orbits (Fig. 1A, grey curve). The location of the

A Codimension-2 Bifurcation Controlling a Neuron
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codimension-2 bifurcation was interpolated as the intersection

of the curves representing the saddle-node bifurcation for

equilibria and the saddle-node bifurcation for periodic orbits at

(h�K2~20.010505 V , h�h~ 0.041356538 V ).

We show that the saddle-node bifurcations along the border

between I and II and between II and III are a blue sky

catastrophe and a SNIC, respectively, through a series of curve fits

and analysis of slow motion (Text S1; Text S2). We investigated

temporal characteristics of bursting near these bifurcation curves

(Text S1; Fig. S1). The system was directly integrated for a series

of parameter values approaching the bifurcation values. As hh

approached the saddle-node bifurcation for equilibria, the

interburst interval grew in a fashion asymptotic to the parameter

value of bifurcation (Fig. S1A–B). The parameter hK2 was similarly

varied so as to approach its critical value for the saddle-node

bifurcation for periodic orbits. Samples of bursting activity for

values of hK2 successively closer to the bifurcation value showed an

asymptotic increase in the burst duration (Fig. S1C–D). The curve

Figure 1. Tonic spiking, bursting, and silence are mapped onto the (hK2, hh) bifurcation diagram. (A) Tonic spiking, bursting, silence, and
multistability of tonic spiking and silence are supported in the corresponding parameter regions labeled I , II , III , and IV . Bursting is described by
duty cycle, which is the ratio of burst duration to cycle period. Duty cycle is represented as a color map from 0 to 100%. The three empty red circles
mark sample parameters sets with duty cycle 10%. The grey curve indicates the position of the saddle-node bifurcation for periodic orbits. The black
curve indicates the position of the saddle-node bifurcation for equilibria. Examples of waveforms of bursting activity at four different parameter sets
(hK2, hh): (B) (20.0105 V , 0.0413564925 V ), (C) (20.0075 V , 0.041326 V ), (D) (20.0075 V , 0.038 V ), and (E) (20.0105 V , 0.038 V ). The point at (B) is
near but not on the codimension-2 bifurcation point.
doi:10.1371/journal.pone.0085451.g001
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fits of the burst duration and interburst interval conformed to the

1=
ffiffiffiffiffiffiffiffiffiffiffiffi
a{a�
p

temporal law at multiple locations along the bifurcation

curves (Text S1). We also confirmed these results for the value of

the time constant of activation of the potassium current 0.9 s used

in the [45].

The Inverse-Square-Root Laws of Pulse Triggered
Responses

For parameter values in regions I and III (Fig. 1), tonic spiking

and silence were attracting regimes. However, a perturbation from

the tonic spiking regime in I or the rest state in III triggered

transient activity that shared the inverse-square-root laws with the

corresponding characteristics of periodic bursting in region II
(Fig. 2). For example, activity at parameter values in region III
was quiescent, but a brief hyperpolarizing pulse of appropriate

duration and amplitude triggered a single burst (Fig. 2 A–C).

These individual bursts closely resembled the characteristic

waveforms of bursting activity observed in Region II . We

investigated this parameter space by observing pulse-triggered

bursts at parameter values such that hh was fixed at 0.0415 V and

hK2 approached the value for the saddle-node bifurcation for

periodic orbits at the border between regions III and IV . As hK2

approached the value of the bifurcation, the burst duration of

pulse triggered bursts grew (Table 2). Even though there was no

closed periodic orbit in region III , the phase point slowed down as

it passed near the ghost of the saddle-node periodic orbit. We

performed a curve fit of this data to the function fK2(hK2) (Eq. 1 in

Text S1) (Fig. 2D).

We carried out a similar analysis for the border of the transition

from regions I to IV . When tonic spiking activity was perturbed

with a hyperpolarizing pulse, the system spent some time in a

transient hyperpolarized silent state before returning to spiking

activity. The trajectory during this time interval resembled the

trajectory during the interburst interval of an endogenously

bursting cell. We fixed hK2 at 20.0107 V , and we sampled

region I for values of hh close to the saddle-node bifurcation for

equilibria (Fig. 2E–G). As hh grew, the latency to spiking grew

(Table 2). As the parameter hh took values close to the saddle-node

bifurcation for equilibria, the phase point spent more and more

time near the ghost of the saddle-node equilibrium. We quantified

the dependence of the latency to spiking on hh by performing a

curve fit to the function fh(hh) (Eq. 2 in Text S1) (Fig. 2H).

The Manifolds of Slow Motion
This model exhibit bursting of square-wave type. The bursting

phase is controlled by the activation of IK2. Over the course of the

burst, mK2 incrementally grows with each spike. Vice versa, mK2

controls the shape of each spike. The shape of each spike depends

on the value of mK2, and the next increment of mK2 depends on the

shape of the spike. To account for this mutual interaction and to

formalize the progression of the burst towards termination, we used

slow-fast decomposition. This technique allows us to describe this

process in terms of the dynamics of one variable: the slow variable.

We considered the model as a slow-fast system. The variable mK2

was the slow subsystem, and fV , hNa, mhg composed the fast

subsystem. The magnitude of mK2 controls rest states (equilibria)

and spiking (periodic orbits) of the fast subsystem. These equilibria

and periodic orbits are located on manifolds that could be

determined by decoupling the slow-fast system and reintroducing

the slow variable as a parameter [35,49]. Trajectories of the full

system stay near these manifolds of slow motion [35,49,73]. The

slow motion manifold that determines periodic orbits describes the

breadth of specifications of spike shapes in the fast subsystem.

The slow motion manifold that determines the silent phase describes

the characteristics of equilibria of the fast subsystem. We used a

more accurate approach, whereby we manipulated a parameter of

the slow variable (hK2) to compute the manifolds of slow motion in

the full system [45–47,74]. We performed slow-fast decomposition

and determined the slow motion manifolds to study the structure of

the codimension-2 bifurcation. We applied the Pontryagin &
Rodygin averaging method [45–47,74]. The stability of the regimes

in the full system was determined by bifurcation analysis (Text S2).

The parameter space that we analyzed is partitioned by two

bifurcation curves: one horizontal and one vertical (Fig. 3). The

horizontal curve is a saddle-node bifurcation for equilibria (SNe1

in Fig. S2). It divides the 2-D parameter space into two subspaces

(red curve in Fig. 3A). At this bifurcation, a stable equilibrium

disappears; the parameter space above this curve supports the

stable equilibrium. The vertical solid blue curve represents a

saddle-node bifurcation for periodic orbits (Fig. 3A; SNo1 Fig. S2).

At this bifurcation, a stable periodic orbit–representing tonic

spiking–disappears; the parameter space to the left of this curve

supports tonic spiking.

The cornerstone bifurcation, which is located at the intersection

of the two bifurcation curves (red and blue solid curves), organizes

bursting, spiking, and silent regimes (Fig. 3A). The bifurcations

defining the borders of region II (SNIC and blue sky catastrophe)

lead to qualitative changes in the vector field which eliminate

periodic bursting by obstructing the passage of the phase point

over one or both manifolds of slow motion (Fig. 3A).

At the codimension-2 bifurcation point, the slow motion

manifold determined by the equilibria of the fast subsystem is

obstructed by a saddle-node equilibrium, and the slow manifold

for spiking is obstructed by a saddle-node bifurcation for periodic

orbits (Fig. 3B).

Perturbations in the (hh, hK2) parameter space from the

codimension-2 point lead to the disappearance of the saddle-node

equilibrium or simple periodic orbit or cause the saddle-node orbit

or equilibrium to split in two (Fig. 3C–F).

In region I , a stable orbit and a saddle orbit were found on the slow

manifold for spiking (Fig. 3C). The stable periodic orbit corresponds

to the tonic spiking regime, and is the only attracting regime in this

region. Perturbations can reveal characteristics of the slow manifold

associated with the equilibrium of the fast subsystem. The phase point

can spend a significant amount of time in a quiescent state before

firing resumes after the cessation of an inhibitory perturbation

(Fig. 2E–G). This perturbation causes a fast transition of the phase

point from a stable orbit onto the the slow-motion manifold of

equilibria for the fast subsystem. The phase point followed the slow-

motion manifold, and the neuron exhibited a transient quiescence.

For parameter values near the border between regions I and IV , the

phase point could spend a long time near the ghost of the saddle-node

equilibrium before the onset of firing.

Table 1. Temporal characteristics of bursting for different
parameter values in region II .

Figure 1: (B) (C) (D) (E)

hK2 (V ): 20.0105 20.0075 20.0075 20.0105

hh (V ): 0.0413564925 0.041326 0.038 0.038

burst duration (s): 412.0 9.8 5.4 488.3

interburst interval (s): 281.6 217.5 2.0 1.9

doi:10.1371/journal.pone.0085451.t001
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In region II , both the manifolds of slow motion are

unobstructed. This parameter region corresponds to the endog-

enous bursting regime (Fig. 3D). During a burst, the phase point

winds around the slow motion manifold for oscillations; during the

interburst interval, the phase point follows the slow motion

manifold for equilibria in the fast subsystem.

In region III , a stable equilibrium obstructs the slow manifold

for equilibria of the fast subsystem (Fig. 3E). The stable

equilibrium is the only attracting regime in this region. A

perturbation can trigger a train of action potentials (Fig. 2A–C).

During a transient burst, a fast transition occurred as the phase

point moved from the stable equilibrium onto the slow manifold

that controls oscillating activity in the fast subsystem. The model

neuron executed a stereotyped burst as the phase point evolved

across this manifold. Near the border between regions III and IV ,

the phase point could spend a long time near the ghost of the

saddle-node orbit, producing a very long transient burst.

In region IV , there were stable and unstable orbits as well as

stable and unstable equilibria. As a result, tonic spiking co-existed

with a silent regime, and perturbations could elicit switches from

one regime to another (Fig. 3F).

Figure 2. The inverse-square-root laws in transient responses triggered by a pulse of current for parameter values that support
silent (region III) and tonic spiking (region I) regimes. (A–D) An individual burst was triggered by a hyperpolarizing pulse of injected current.
Pulses of current were 0.03 s in duration and 0.1 nA in amplitude. The duration of individual bursts were (A) (hK2~20.0077 V , hh~ 0.0415 V )
10.327403 s, (B) (hK2~20.01043 V , hh~ 0.0415 V ) 103.48097 s, and (C) (hK2~20.010496 V , hh~ 0.0415 V ) 309.27622 s. (D) The log-log graph of
burst duration of individual bursts plotted against hK2 . The blue dots correspond to the burst duration measured at the respective values of hK2 . The

red curve is the graph of the curve fitted in the form b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hK2zd
p

zc. Coefficients of the curve fit are b~ 0.97239439, c~28.48809474, and d~
0.01050536. (E–H) Latency to spiking was shown by administering an individual pulse of injected current. Pulses were 0.03 s in duration and 0.2 nA in
amplitude. The delays shown here are (E) (hK2~20.0107 V , hh~ 0.04134 V ) 10.287 s, (F) (hK2~20.0107 V , hh~ 0.041358041 V ) 103.378 s, and (G)
(hK2~20.0107 V , hh~ 0.0413580468 V ) 317.679 s. (H) latency to spiking for sampled parameter values (blue dots) and the graph of the curve fitted

to b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0

h{hh

q
zc (red curve) were plotted in log-log scale against the sampled values of hh . Coefficients of the fitted curve were b~ 0.00709613 and

c~ 14.47354286. The parameter h0
h was 0.04135804734566 V .

doi:10.1371/journal.pone.0085451.g002

Table 2. Measure of burst duration and latency to spiking in
response to inhibition from Figure 2 (A2C,E2G).

Figure 2 hh (V ) hK2 (V )
burst duration
(s)

latency to spiking
(s)

(A) 0.0415 20.0077 10.327403 NA

(B) 0.0415 20.01043 103.48097 NA

(C) 0.0415 20.010496 309.27622 NA

(E) 0.04134 20.0107 NA 10.287

(F) 0.041358041 20.0107 NA 103.378

(G) 0.0413580468 20.0107 NA 317.679

doi:10.1371/journal.pone.0085451.t002
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The mechanisms controlling burst duration and interburst

interval in region II determine a scheme of two-parameter

coregulation that supports bursting with a given duty cycle across a

wide range of cycle periods. This scheme could explain the

maintenance of phase relations in a network of coupled oscillators.

Pattern-scaling in a Chain of Oscillators
We applied a mechanism maintaining the duty cycle of

endogenously bursting activity to show scaling in a metachronal-

wave locomotor pattern. We developed a basic model of a central

pattern generator for crawling of larval Drosophila. Drosophila larvae

crawl by means of peristaltic contractions of the body. Posterior-

to-anterior waves of peristaltic contraction produce forward

motion. The phase lag of motor activity in neighboring segments

scales proportionally to the period so that the phase relations

between activity in neighboring segments is maintained. This

scaling occurs over a two-fold range of cycle periods [24]. Activity

in the nerve cord in isolated preparations occurs on the time scale

of tens of seconds [20,21]. The phase delay from segment-to-

segment of segmental nerve cord activity is roughly 10% of the

cycle period [20]. We suggest that the scheme of coregulation

controlling the duty cycle of participating neurons could present a

cellular mechanism for the metachronal-wave pattern scaling. We

modeled the metachronal-wave central pattern generator (CPG) as

a chain of coupled oscillatory neurons.

The network was assembled from five endogenously bursting

neurons from region II (Fig. 1A). If these neurons receive an

inhibitory pulse during the interburst interval, they respond with a

Figure 3. Diagram of the cornerstone bifurcation (CS). (A) The CS is located at the intersection of the saddle-node bifurcation for equilibria
(SNe1 ; red curve) and the saddle-node bifurcation for periodic orbits (SNo1 ; solid blue curve). The dashed blue curve is SNo2 , where a large
amplitude stable orbit is born. The solid green curve is a period doubling bifurcation. A series of period doubling bifurcations occur between this
curve and the dashed green curve, where the large amplitude regime terminates. For values of hK2 larger than where this regime terminates, we
consider four adjacent regions of the parameter space. In the region marked M , we observe only a small amplitude orbit, which corresponds to tonic
spiking. In B1, a large amplitude orbit co-exists with the small amplitude orbit. In C1, a the large amplitude orbit becomes chaotic and vanishes in a
period doubling cascade. In B2, the tonic spiking regime co-exists with a stable equilibrium. In T , the small amplitude orbit and the stable
equilibrium co-exist with a large amplitude orbit. In C2, the large amplitude orbit becomes chaotic and vanishes in a period doubling cascade. (B–F)
Representations of the dynamics of the system at different points in the parameter space. The orange curves represent trajectories, and the black
arrows indicate the direction of motion of the phase point. The two sets of light green and blue curves represent the maximum and minimum of
orbits on the slow motion manifolds for oscillations. The green and blue portions indicate the attracting and repelling segments of this manifold,
respectively. The solid and dashed purple curves correspond to stable and unstable equilibria in the fast subsystem, respectively. Filled red dots
represent stable equilibria, and unfilled red dots represent unstable equilibria. Solid and dashed vertical dark green lines represent stable and
unstable simple periodic orbits, respectively. (B) The structure of the state space at the CS point. A saddle-node periodic orbit exists on the slow
motion manifold for oscillations, and a saddle-node equilibrium exists on the slow motion manifold corresponding to the equilibria of the fast
subsystem. (C) A stable periodic orbit and a saddle periodic orbit exist on the slow motion manifold for oscillations. (D) Periodic bursting is observed.
The phase point moves as indicated by the black arrows in a clockwise fashion. (E) A stable equilibrium of the full system obstructs the stable
segment of the equilibria of the fast subsystem. (F) Spiking co-exists with the silent regime.
doi:10.1371/journal.pone.0085451.g003
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burst, and the activity is reset. This observation suggests that if

these neurons are coupled in a chain, they will trigger burst

responses one after another as though in a domino effect. We

expect that this effect would be robust if the neurons were

connected in a chain such that the strength of inhibitory coupling

is stronger in one direction than in the other. This sequential

propagation of excitation along a chain is referred to as a

metachronal wave which would travel in the direction of stronger

coupling. With this organization of activity, the phase delay is

determined by burst duration. Thus by scaling the duty cycle, one

can scale the pattern of the metachronal wave. We manipulated

the network by changing the values of hK2 and hh to control the

burst duration and interburst interval. We coordinated these

changes to maintain a constraint of 10% duty cycle within 0.1%

tolerance for individual oscillators over a wide range of periods

from 15 s to 85 s (Table 3). We predicted that a chain of coupled

oscillators each with an intrinsic duty cycle of 10% would produce

a metachronal wave with phase delay of 10% at the period of the

individual oscillators. With this duty cycle, in order to produce

rhythms faster than 68 s, we obtained parameter sets with values

of hK2 beyond the range depicted in Figure 1A. They are located

so close to the SNIC that they appear to sit on the curve (Fig. 1A).

We did not investigate whether the SNIC extends beyond this

range, yet we were able to obtain parameter sets that supported

activity with a duty cycle of 10%.

The model is represented by a chain of identical bursting

neurons with duty cycle 10% as described in Methods. To show

pattern scaling, we investigated this model with parameters of

individual cells varied according to our coregulation scheme

defined in Table 3. Network activity self-organized into a

metachronal-wave pattern following an interval of transient

activity in all ten instantiations (Fig. 4). After the interval of

transient activity, waves of bursts propagated along the chain of

oscillators from the most posterior cell (segment 7) in the anterior

direction. We quantified the time it took a network to reach a

periodic state by counting the number of cycles of the posterior cell

before the transient activity subsided and the propagating wave

fully formed. In each instantiation of the network, the formation of

the metachronal wave occurred within two cycles of the bursting

neuron in segment 7.

We characterized metachronal waves in the activity of each

network instantiation by the period and duty cycle of activity as

well as the relative phase shift of bursting from one segment to its

nearest neighbor. We compared the temporal characteristics of

network bursting activity to those of activity produced by a single

cell with the same values of hK2 and hh (Table 3). The period and

duty cycle of bursting activity of a single cell and the network

matched well; these periods differed by less than 0.1% and 3%,

respectively. The disparity between the period of single-cell and

network activity was greater for network instantiations with larger

period. In each network instantiation, the phase shift of the

metachronal wave exhibited some dependence on cycle period

(Fig. 5). For parameter values that produced activity with lower

periods, the phase shift tended to be greater than that predicted by

the duty cycle. For example, in network instantiations with

Table 3. Cycle period, duty cycle, and values for hK2 and hh. Labeled parameter sets were used to produce activity found in
Figure 4.

hK2 (V ) hh (V ) Period (s): Cell Network Duty Cycle (%): Cell Network

0.0059 0.040736 15.1 15.1 10.0 9.9 Fig. 4(C)

0.0019 0.041048 21.0 21.0 10.0 11.0

20.0001 0.041145 27.4 27.4 9.9 9.9

20.0011 0.041183 31.8 31.8 9.9 9.8

20.0031 0.041244 39.5 39.5 10.0 10.4

20.0041 0.041268 48.0 48.0 10.0 9.9 Fig. 4(B)

20.0057 0.041298 61.8 61.8 10.0 10.3

20.0061 0.041306 68.2 68.1 10.0 10.3

20.0069 0.041318 82.3 82.1 10.0 10.0

20.0070 0.041319 85.3 85.1 9.9 9.9 Fig. 4(A)

All parameter sets were used to produce activity used in the analysis found in Figure 5. Average network cycle period and average network duty cycle each had
coefficients of variation less than 2|10{4 % and 4%, respectively.
doi:10.1371/journal.pone.0085451.t003

Figure 4. Scaling of the metachronal-wave pattern in chains of
coupled endogenously bursting neurons. Neurons connected
through inhibitory coupling with strongest connections to the
immediate anterior neighbor. Metachronal Waves produced by three
examples of the network. The parameter values for (hK2 , hh) used to
create these trajectories were as follows: (A) (20.0069999 V ,
0.041319316864014 V ), (B) (20.0040999 V , 0.041268055725098 V ),
and (C) (0.005905 V , 0.04073603515625 V ).
doi:10.1371/journal.pone.0085451.g004
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parameter values that produced activity with period 15.1 s and

21.0 s, the average relative phase between segments was 13.0%

and 13.2%, respectively. For parameter values that produced

activity with higher periods, the phase shift tended to be close to

10%. The instantiation of the network that produced activity with

period 85.1 s had an average relative phase shift of 10.5%.

The cornerstone bifurcation controls periodicity through both

burst duration and interburst interval. By coregulating hK2 and hh,

we vary the period of bursting while keeping the duty cycle fixed.

As instantiations of the network become closer to the critical

parameter values for the cornerstone bifurcation, the period of

activity increases according to the inverse-square laws governing

burst duration and interburst interval. Since duty cycle is fixed

over variation in period, the burst duration in this model increases

via spike addition. As such, the cycle period varies linearly with

spike number (Fig. 5).

The period of a metachronal wave was well approximated by

the intrinsic period of the individual oscillator on which that

network instantiation was based. For parameter sets that produced

activity with higher periods of bursting, the temporal character-

istics of individual oscillators better predicted the temporal

characteristics of network activity. The metachronal-wave pattern

was maintained over a five-fold change in the period of activity.

Discussion

The flexibility of the central nervous system relies on the ability

of neurons to meet a breadth of temporal specifications.

Oscillatory neuronal networks, such as central pattern generators,

maintain functional output over a wide range of cycle periods in

order to produce appropriate behavior [8–10,13–24,75]. Neuro-

modulation provides control over regimes of activity according to

motor tasks by coordinating adjustments to the biophysical

parameters of ionic currents [28,29]. To understand this process,

we must answer a key question in neuroscience. How do

biophysical characteristics govern functional activity? This ques-

tion is particularly important for understanding motor control of

rhythmic movements. Among the biophysical characteristics that

affect excitability, the maximal conductances and voltages of half-

activation of ionic currents are the most prominent targets for

neuromodulation [25,26,61–68,76–81].

The maximal conductances of ionic currents are coregulated to

produce functional activity [63,64,78–80]. Homeostasis of a

functional pattern of activity, either activity-dependent or activ-

ity-independent, has been well documented in terms of covariation

of maximal conductances. One mechanism for activity-indepen-

dent homeostasis of functional activity is determined by the

pattern of gene expression of ionic channels. The activity of an

identified neuron is specified by the patterns of gene expression of

a set of ionic channels [63,78–80]. Correlations have been shown

in the quantities of mRNA that code for various voltage gated ion

channels in crab [78,79]. Modeling studies have explored the role

of correlation in biophysical parameters in the maintenance of

functional activity [60,82,83]. The biophysical parameters of

hyperpolarization-activated currents and potassium currents are

often correlated [63,78,79]. For example, coregulation has been

revealed by the injection of the mRNA coding A-type potassium

current which induced a corresponding increase in Ih [63]. In

most cells considered, the mRNA quantities for these currents are

strongly correlated [78,79]. The mRNA correlations map to

correlations in expression of channel protein, which in turn

determines the maximal conductance of ionic currents. Correla-

tions in the maximal conductance that support functional activity

has been shown in models [60,82,83]. Maximal conductances are

also correlated in mechanisms of activity-dependent homeostasis

[84,85].

The voltages of half-activation of ionic conductances are also

subject to neuromodulation [61,62,65–68]. These parameters are

shifted in neuromodulation of potassium currents and hyperpo-

larization-activated currents [61,62,65–68]. For Kv2.1 expressed

in HEK293, the voltage dependencies of activation and inactiva-

tion are shown to be shifted negatively by 30 mV and 22 mV in

response to phosphorylation by AMPK [67]. In the pyloric

network of the spiny lobster, depending on the time of exposure

and concentration of dopamine, the magnitude and direction of

shifts varies but in all cases the shifts appear to be small [65,66].

Hour-long application of dopamine induces dose-dependent shifts

in the voltage dependence of the conductance of an A-type

potassium current [66]. In LP neurons, nM and mM concentra-

tions positively shift the activation by 4.6 mV and 1.7 mV,

respectively, while the shifts of the inactivation curve have different

directions: 3.3 mV and 21.2 mV, respectively. In PD neurons,

both nM and mM concentrations negatively shift the activation

and inactivation curves by 1.3 mV or less [66]; moreover, a ten

minute application of a larger concentration of dopamine (100

mM) induces a larger negative shift of 7.6 mV to the activation

curve [65]. In ferret thalamocortical neurons, repeated negative

pulses depolarize the activation of Ih by 3.7 mV, and application

of cAMP depolarizes the activation of Ih by 12 mV [61,62].

Neuromodulators can coregulate currents that have complemen-

tary effects on membrane dynamics–such as hyperpolarization-

activated currents and potassium currents–to tune aspects of

excitability [68]. These shifts appear to be small and negligible.

However, our results show that precise control of these biophysical

parameters in these reported ranges could be sufficient for effective

Figure 5. Temporal characteristics of metachronal wave
pattern across a range of cycle periods. The phase relations of a
metachronal-wave pattern are determined by the duty cycle of each
element in a chain of inhibitory coupled bursting neurons. The
parameters are changed in a coordinated fashion to support different
cycle periods while the duty cycle is kept constant. (A) The phases of
oscillators are portrayed relative to the oscillator in the seventh
segment. (B) The average number of spikes per burst varies linearly with
cycle period as hK2 and hh are changed. The black markers indicated
average spike number with error bars. The grey line was the linear
function for spike number fitted to our data: 0:49(cycle period)z0:93.
doi:10.1371/journal.pone.0085451.g005
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neuromodulation. Amendola et al. [68] show independence of

neuromodulation of half-activation of h- current and half-

inactivation of A-type potassium current. Such ability to indepen-

dently control these parameters supports the biological feasibility

of the mechanisms of independent control of burst duration and

interburst interval by variation of half- activations of IK2 and Ih,

presented in this report.

We have demonstrated a family of cellular mechanisms that

provides three different kinds of control for temporal character-

istics in neuronal activity by coregulating the kinetics of activation

of a non-inactivating potassium current and a hyperpolarization-

activated current. These controlling mechanisms are organized by

a global codimension-2 bifurcation: the cornerstone bifurcation.

The cornerstone bifurcation occurs at the intersection of two

codimension-1 bifurcation curves–the saddle-node bifurcation for

periodic orbits and the saddle-node bifurcation for equilibria–in

the two-dimensional parameter space defined by the voltages of

half-activation of IK2 and Ih.

In our model, the kinetics of activation of IK2 and Ih have

distinctly separate, complementary roles in rhythmogenesis. IK2,

with its voltage of half-activation between 0.006 and 0.011 V

(Fig. 1), activates incrementally during each spike in the burst. For

this mechanism to function, the activation variable must be

significantly slower than the time scale of spiking. Over the course

of the burst, this activation accumulates until the current is

sufficiently activated to terminate oscillations in the fast subsystem.

As the parameter hk2 is changed such as to approach the critical

value for bifurcation, the steady-state activation curve of IK2 is

shifted so that the current is less activated by each spike. Finally, at

the critical value for bifurcation, the activation of this current no

longer accumulates sufficiently over the course of spiking activity

to terminate a burst. Ih plays a similar role during the interburst

interval. Its voltage of half-activation lies roughly between 20.038

and 20.042 V (Fig. 1), and it is responsible for the slow

depolarization leading to the first spike in the burst. As the

parameter hh approaches its critical value for bifurcation, the

steady state activation curve of Ih is shifted so that the current is

less involved during the interburst interval. At the critical value for

bifurcation, this current does not sufficiently activate to initiate the

depolarization of the burst.

Bifurcation Theory and Control of Neuronal Activity
Bifurcation theory considers transitions (bifurcations)–either

continuous and smooth or discontinuous and catastrophic–in

response to a smooth change in a physical parameter. Applications

of bifurcation theory in physics, engineering, and neuroscience

have established a new interdisciplinary field: bifurcation control

[1,86,87]. Bifurcation control offers techniques to control regimes

of activity using knowledge of bifurcation locations in parameter

space and techniques to control the type of a bifurcation. These

techniques prescribe how to precisely control the target charac-

teristics of dynamical regimes by changing bifurcation parameters.

Common targets of control include steady state characteristics of

equilibria, temporal characteristics and magnitude of oscillatory

regimes and transient activity, the borders of basins of attraction,

and properties of and the routes to turbulence in deterministic

systems [2,3,6,11,12,31–40,42–50,87]. For example in the control

of turbulent activity, different types of intermittency have been

associated with specific bifurcation types [86,88]. Intermittency of

type I and type II are related to the saddle-node bifurcation and

the Andronov-Hopf bifurcation, respectively [86,88].

Bifurcation theory has been applied to describe the general laws

of neuronal dynamics that govern characteristics of spiking and

bursting activity as a controlling bifurcation parameter approaches

a transition between qualitatively different regimes of activity

[2,3,6,11,12,31–40,42–50,87]. Excitability in neuronal systems has

been characterized by type of bifurcation. A saddle-node

bifurcation on an invariant circle generates class I excitability

[31,32,43,87]. At this bifurcation, a neuron makes a smooth

transition from silence into tonic spiking as the bifurcation

parameter smoothly changes. This bifurcation controls the

interspike interval according to the inverse-square-root law. At

the bifurcation point the neuron is silent and, thus, the frequency is

zero. The spiking orbit appears at the bifurcation with a large, full-

scale amplitude. It is well described by a canonical model: the h
neuron [31,32,89]. A supercritical Andronov-Hopf bifurcation

generates class II excitability [31,32,39,43]. At this bifurcation, the

rest state loses stability, and a spiking orbit with zero amplitude

and non-zero frequency is born. The amplitude of spiking grows

according to the square root of the bifurcation parameter.

Depending on the class of excitability, the response of the neuron

to a stimulus, in type 2, may advance or delay the next spike

depending on phase or, in type 1, will advance in response to

depolarizing pulses and delay in response to hyperpolarizing pulses

[31,32]. The type of phase response describes synchronization in

neuronal networks [31,32,43]. The quantitative laws described by

bifurcation theory are generic and are not uniquely associated with

specific biophysical properties of ionic currents. For example,

similar dynamical mechanisms may appear in neuronal systems

relying on distinct ionic currents [90], and qualitatively distinct

dynamics such as type 1 versus type 2 can be realized in a

neuronal system by variation of a few biophysical parameters [87].

Dynamical mechanisms have also been used to explain the

generation of bursting in terms of slow-fast systems [35,49,87].

Bursting is usually based on bistability of spiking activity and a

subthreshold regime in the fast subsystem and dynamics of a slow

variable governing switches between these regimes [35,49,89].

The bursting activity in our model is a square-wave burster

[45,87].

Similarly to spiking activity, temporal laws have been described

for bursting activity where the length of the burst duration or

interburst interval is subject to control by a bifurcation parameter

[11,12,42,45,48]. The control of a specific temporal characteristic

has been shown by the manipulation of single bifurcation

parameter. In models of the leech heart interneuron under various

experimental conditions, we have extensively studied how

bifurcations determine the mechanisms that support bursting

activity. Where the blue sky catastrophe controls the transition

from bursting to tonic spiking, it imposes the inverse-square-root

law on burst duration [45]. Where homoclinic bifurcations control

the transition from bursting to the spiking regime–such as the

Lukyanov-Shilnikov scenario–a logarithmic law is imposed on

burst duration [47]. In this report, we describe independent

control of burst duration and interburst interval with two

parameters.

Examples of control over burst duration and interburst interval

have been shown in a model of the electrosensory lateral line lobe

pyramidal cell [11]. In [11], the model shows a unique type of

bursting called ghostbursting. In slow-fast decomposition, the fast

subsystem of the ghostbursting model does not exhibit bistability

[11]; such bistability is a common feature of bursting models [35].

This lack of bistability is described as unique to the ghostbursting

mechanism, and as such, it makes a key difference between

ghostbursting and our model in the topology of the manifolds that

govern slow motion. In our model, bursting activity is based on

bistability of spiking and a stable equilibrium in the fast subsystem,

thus classified as square-wave bursting; the slow manifolds of

spiking activity and equilibria are separated in the phase space.
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This bistability of regimes in the fast subsystem allows for the

bifurcation curves obtained in the full system–the saddle-node

bifurcation for periodic orbits and saddle-node bifurcation for

equilibria–to cross in the two parameter space. This feature of the

bifurcation curves allows the cornerstone bifurcation to generate a

family of mechanisms that independently control the temporal

characteristics of bursting and transient responses to external

stimuli. The curves for saddle-node bifurcation of periodic orbits

and saddle-node bifurcation for equilibria cross, dividing param-

eter space into four regions: spiking, bursting, silence, and

bistability of spiking and silence. Similarly to our model, the

scenario presented in [11] involves a saddle-node bifurcation for

fixed points (SNFP) and a saddle-node bifurcation for periodic

orbits (SNLC). In contrast to our model, on the two-dimensional

bifurcation diagram in [11], SNLC terminates at SNFP. It is

important to emphasize that the saddle-node bifurcation for

periodic orbits and the saddle-node bifurcation for equilibria are

local bifurcations. In our model, the control of bursting activity is

governed by specific global bifurcations: the blue sky catastrophe

and the saddle-node bifurcation on an invariant circle are global

bifurcations, which include the saddle-node bifurcation for

periodic orbits and the saddle-node bifurcation for equilibria,

locally. In our model, the two mechanisms, by which burst

duration and interburst interval of periodic bursting activity are

controlled, are uncoupled.

Another key feature that distinguishes ghostbursting from our

scenario, is that in the ghostbursting model the SNLC describes

the transition from tonic spiking to chaotic bursting, and SNFP

describes the transition of chaotic bursting into silence. Doiron

et al. show that these transitions to chaos are intermittency type I

[11,86,88]. This bursting activity is governed by inverse-square-

root laws for burst duration and interburst interval on average. In

contrast, our model shows periodic bursting; the blue-sky

catastrophe describes the transition between periodic bursting

and tonic spiking [45], and SNIC describes the transition between

periodic bursting and silence. The ability to control temporal

characteristics of periodic bursting activity is critical for the control

of precise rhythmic movements. For the first time, a biophysically

realistic neuronal model is described which combines two inverse-

square-root laws and realizes independent control over burst

duration and interburst interval. Moreover, this is the first model

of a physical system showing the cornerstone bifurcation. By

coordinating burst duration and interburst interval, the duty cycle

could be preserved over a wide range of cycle periods under

neuromodulatory control.

A Cellular Mechanism of Pattern Scaling
We suggest that these cellular mechanisms could contribute to

control of various types of motor activities. For example, phase

shifts of a metachronal-wave pattern could be determined by the

duty cycle of each element in a chain of inhibitory coupled

bursting neurons. Metachronal-wave patterns are ubiquitous in

animal locomotion such as that of the leech, the crayfish, Drosophila

larvae, and the lamprey [15,16,19–24]. In each case, the motor

pattern is maintained across a range of periods. The lamprey can

swim with one body wave cycle with period in the range from

0.13 s to 0.66 s; the leech can swim with one body wave cycle with

period from 0.39 to 1.1 s; or Drosophila larvae can crawl with body

contractions of cycle period from 0.6 s to 1.3 s [13,15,16,23,24].

Phase lags between spinal segments are scaled such that the lag

between neighboring segments is approximately 1% of the cycle

period in lamprey, 5% of the cycle period in leech, or 10% of the

cycle in Drosophila [13,15–17,19–21,23,24]. Coupled oscillators

have been commonly used in the study of central pattern

generators. Phase delay in oscillating patterns have been explained

with various network mechanisms such as frequency gradient,

coupling gradient, and coding phase delays through adjustment of

coupling [18,34,52–54,56,58,59,91]. For example, by tuning the

coupling strengths and synaptic delays in neuronal networks,

complex activity patterns can be generated, stored, and retrieved

[58,59].

Drosophila larvae crawl by means of peristaltic contractions of

body wall muscles. Posterior-to-anterior waves of contraction

propel the animal forward at varying speeds. The segmental phase

delay of the propagation of these waves is proportional to the cycle

period of oscillations [24]. Fictive motor patterns persist in the

isolated nerve cord [19,20]. The period of this fictive pattern

occurs on a time scale of tens of seconds [20,21]. The phase delay

measured from segment to segment in segmental nerve cords is

10% of the period of the motor pattern [20].

We modeled this phenomenon in a chain of coupled bursting

neurons. The model corresponded to segments three through

seven of the larval Drosophila (see Methods). By preserving duty

cycle and varying cycle period we achieved maintenance of delay

in phase between neighboring neurons in the chain. Moreover, the

duty cycle of a model of a single cell predicts the phase delay in the

network. Our model demonstrated a five-fold scaling of the

metachronal-wave pattern, which is comparable to the two-fold

scaling of the motor pattern in Drosophila [24]. This is an example

of a cellular mechanism which translates to network activity.

Although this mechanism does not require extensive synaptic

tuning, it could work in conjunction with synaptic mechanisms to

produce more a more sophisticated phase delay-cycle period

relation.

Transient Response to Stimulus
Dynamical mechanisms govern rhythmic neuronal activity in

the vicinity of bifurcations. These types of mechanisms are often

discussed within the context of steady state activity. Stereotyped

transient responses and activity could process or represent sensory

stimulation [1,4–6,11,12,92]. Such transient responses can be

represented by heteroclinic connections in the phase space of a

neuronal model. Heteroclinic connections can reliably dominate

or control transient neuronal activity by drawing trajectories from

a large basin of attraction into a specific and functional response to

perturbation before relaxing into steady state activity. Strong

attraction to slow manifolds makes evoked responses reproducible.

This control manifests as a temporally precise response to

inhibition.

These parameters provide two types of control over temporal

characteristics for two types of transient activity. First, we

demonstrate control of the duration of pulse-triggered bursts in a

silent neuron. As the voltage of half-activation of IK2 approaches

the critical value for the saddle-node bifurcation for periodic

orbits, the duration of individual bursts increases. Second, we

demonstrated control of the duration of latency to spiking in

response to a stimulus in an a periodically spiking neuron. As the

voltage of half-activation of Ih approaches the critical value for the

saddle-node bifurcation for equilibria, there is an increase in the

latency to spiking after inhibition in periodically spiking neurons.

The dynamical mechanisms underlying transient responses

described here feature the inverse-square-root law shared with

type-I intermittency [11,12,86,88]. In [12], pulses of injected

current induced individual transient bursts from a stable periodic

spiking regime, called type I burst excitability.

Inverse-square-root Law for Pulse-Triggered Burst. In

this article, we showed that the silent model could respond to a

hyperpolarizing pulse by a stereotypical burst of spikes. We report
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that the burst duration of the pulse-triggered bursts scaled as hK2

approached the critical value for the saddle node bifurcation for

periodic orbits (transition from III to IV ). Similarly, Roa et al.

have shown the inverse-square-root law in transient spiking

activity for type II excitability neuronal models with parameter

values near a saddle-node bifurcation for periodic orbits [2]. In

Roa et al., a constant applied current is used as the controlling

parameter, and an additional brief pulse of current is used to move

the phase point away from a stable equilibrium [2]. These models

then spend significant time spiking as the phase point passes near

the ghost of the saddle-node periodic orbit before relaxing back

onto the stable equilibrium. The time neurons spend spiking is

proportional to the inverse of the square root of the value of the

constant applied current. This mechanism is similar to the inverse-

square-root law we reported here for pulse-triggered burst

duration with values of hK2 and hh near the border between

regions III and IV . The main difference between underlying

mechanisms is that in our model, the phase point moves along a

slow motion manifold for oscillations and slows down near the

ghost of a saddle-node orbit on that manifold. In our model, the

inverse-square-root law in transient activity occurred as the phase

point wound around the slow motion manifold.

Latency to Spiking After Inhibition. Our model produces a

stereotypical latency to spiking after a brief hyperpolarizing pulse

in a spiking neuron. By coordinating hK2 and hh, we place the

system in a region of the parameter space with a stable tonic

spiking regime such that it is close to the saddle-node bifurcation

for equilibria (in region I close to the border with region IV ). In

this region after inhibition, the phase point traveled along the

manifold of slow motion and slowed down as it passed the ghost of

a saddle-node equilibrium. Control over latency to spiking could

explain phenomena crucial for pattern coding and motor control.

In Steuber et al., pauses in Purkinje cell firing are implicated in

pattern coding [93]. In their model, a potassium current plays a

key role in the mechanism supporting delay to spiking. It is

activated by the calcium influx which is induced by sufficient

activation of parallel fiber synapses. Pauses in the spontaneous

firing of the Purkinje cell occur after parallel fiber-evoked bursts,

and long-term depression of parallel fiber synapses shorten pause

duration. These pauses code the pattern of synchronous activation

of multiple parallel fibers.

Potassium and hyperpolarization-activated currents have been

implicated in the dynamics of delay to spiking. In Meng et al., the

authors show control over delay to firing by manipulating the ratio

of transient potassium conductances [6]. In the brainstem superior

paraolivary nucleus, Ih controls the timing of firing in rebound

from hyperpolarization [5]. The kinetics of slow conductances

may contribute to duration sensitivity after inhibition from a

sensory stimulus [4].

Bistability of Spiking and Silence
Another important feature of the dynamics of our model is that

it shows bistability of spiking and silence (region IV , Fig. 3).

Perturbations can trigger a switch from one regime to the other

(not shown). This phenomenon has been described in the squid

giant axon model [39]. In the Hodgkin-Huxley model of the squid

giant axon, the stable equilibrium and the oscillating regime are

separated by the stable manifold of an unstable orbit [39]. This

mechanism was also described in a simplified model of the leech

heart interneuron [38]. This model supports a number of types of

multistability including a case where a stable equilibrium and a

spiking regime co-exist and are separated by the manifold of a

saddle equilibrium [38]. Similar mechanisms are described for co-

existence of spiking and silence and of bursting and silence in the

canonical model of the leech heart interneuron [36,37]. In the

example presented here, the stable periodic orbit sits on the

strongly attracting slow manifold for oscillations which is separated

from the stable equilibrium by the manifolds of a saddle

equilibrium and saddle orbit.

Designing Artificial Neurons
In the example presented here, a codimension-2 bifurcation that

satisfies the criteria for the SNIC and the blue sky catastrophe

controls burst duration, interburst interval, pulse triggered

bursting, and latency to spiking. In conclusion, we suggest that

the control over the temporal characteristics of neuronal activity

presented here is critical for designing functional artificial neurons

in biomedical and neuroengineering fields [94]. The parameter

hK2 asserts control of burst duration in an endogenously bursting

neuron and of duration of pulse-triggered bursts in a silent neuron.

The parameter hh asserts control of interburst interval in an

endogenously bursting neuron and latency to spiking in a spiking

neuron. By coordinating these parameters, one could tune an

artificial neuron to produce bursting activity with any burst

duration and interburst interval over a large range of values for the

cycle period. Moreover, the transitions between different regimes

of activity are smooth and safe over the range of hK2 and hh

addressed here, so parameters can be tuned without fear of the

onset of multistability or catastrophe.

Methods

We developed a Hodgkin-Huxley style neuronal model. It

contains three voltage gated currents: a fast Naz current, INa; a

non-inactivating Kz current, IK2; and a hyperpolarization-

activated current, Ih. From our previous models, it inherited the

blue sky catastrophe [44–47]. The model is as follows:

C
dV

dt
~ {½gg�NamNa,?(V )3hNa½V{ENa�z

z gg�K2m2
K2½V{EK�zgg�hm2

h½V{Eh�z
z gleak½V{Eleak�z0:006�,

dhNa

dt
~

1

1z exp (500½Vz0:0325�) {hNa

� �
=0:0405,

dmh

dt
~

1

1z2 exp (180½Vzhh�)z exp (500½Vzhh�)
{mh

� �
=0:1,

dmK2

dt
~ mK2,?(V ,hK2){mK2½ �=2,

where

mNa,?(V ) ~
1

1z exp ({150½Vz0:0305�)

and

mK2,?(V ,hK2) ~
1

1z exp ({83½VzhK2�)
:
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The activation of INa is instantaneous and is denoted as

mNa,?(V ). The inactivation of INa and the activations of IK2 and

Ih are hNa, mK2, and mh. The maximal conductances of ionic

currents are �ggNa = 105 nS, �ggK2 = 30 nS, �ggh = 4 nS, and gleak = 8

nS. The reversal potentials are ENa = 0.045 V , EK = 20.07 V ,

Eh = 20.021 V , and Eleak = 20.046 V . The regulating parame-

ters {hK2 and {hh represent the voltages of half-activation of the

variables mK2 and mh. The function mK2,?(V ,hK2) is the steady

state activation function of IK2. The capacitance, C, is 2 nF .

Similar to [45–47], mK2 is the slow variable.

The majority of the parameters of this model were pulled

directly from our previous model [45]. These models stem from

the model explaining the dynamics of slow plateau-like bursting

activity in the leech heart interneurons under the conditions when

Ca2z currents are blocked with divalent ions and most of the Kz

currents are blocked with 4-aminopyridine [44,71,72]. Here, we

added a hyperpolarization activated current as was described in

Hill et al. [55]. We adjusted �ggNa and the time constant of Ih during

the search for the cornerstone bifurcation. We also adjusted the

time constant of mK2, the slow variable, to make the variable

slower in order to emphasize the separation of time scales.

We built a model representing the CPG that produces a

metachronal-wave pattern of locomotion in Drosophila larvae. It

follows the generic motif of a chain of coupled oscillators

[18,34,52–54,56,91]. This network was composed of a sequence

of endogenously bursting model neurons (parameters taken from

region II in Fig. 1). We connected these cells into a chain of

coupled oscillators, where each node in the chain was an

endogenously bursting neuron. We numbered these cells from

anterior to posterior according to the segments in the Drosophila,

such that the most anterior neuron corresponded to the third

segment, and the most posterior neuron corresponded to the

seventh segment. Coupling was accomplished through inhibitory

synapses. The nearest of the posterior cells provided the strongest

synaptic input. The synaptic input of the anterior cell was weaker

than any of those from posterior cells. The total synaptic current

onto cell j was aggregated into the term Isyn,j, and the current

balance equation and expression for synaptic activation became:

C
dVj

dt
~{½INa,jzIK2,jzIh,jzIleak,jz0:006zIsyn,j�

dsi,j

dt
~

1

1z exp ({5000½Vi{0:02�) {si,j

� �
=0:01

We defined Isyn,j as the sum of the synaptic currents from each

presynaptic cell i[[3 7]:

Isyn,j~
X7

i~3

gg�syn,i,jsi,j½Vj{Esyn�

where gg�syn,i,j~

0:03 i{j~{1

3 i{j~1

0:3 i{j~2

0:3 i{j~3

0 otherwise:

0
BBBBBB@

For Figure 4, the synaptic reversal potential was Esyn = 20.0625

V. Initial conditions for each cell in the network were almost

synchronous. The coordinates were taken from the minimum

between the second and third spike in periodic bursting activity.

To slightly disturb the synchronous initial conditions, perturba-

tions of 10{8 were added to V in odd cells. The parameters used

to control the cycle period and duty cycle were hK2 and hh

(Table 3).

We performed numerical integration using the 8–9 order

Prince-Dormand method from the GNU Scientific Library

(http://www.gnu.org/software/gsl/). The continuation of station-

ary states, periodic orbits, and most bifurcations was performed

using CONTENT [95]. The continuation of the saddle-node

bifurcation for periodic orbits was performed using XPPAUT

[40].

Figure 1 A describes the temporal characteristics of bursting

activity at 4294 different parameter values. We sampled the

activity on a grid for values of hK2 from 20.01054 V to 20.00602

V in steps of 0.00004 V and for values of hh from 0.0375 V to

0.0413 V in steps of 0.0001 V .

We analyzed the activity of all trajectories with custom-made

scripts in MATLAB (The Mathworks, Inc.). We computed burst

duration, interburst interval, cycle period, and duty cycle. Burst

duration is the time from the first spike in a burst to the last spike

in a burst. Interburst interval is the time from the last spike in a

burst to the first spike in the next burst. Cycle period is the time

from the first spike in a burst to the first spike in the next burst.

Duty cycle is burst duration divided by cycle period.

In Figure S1 and Figure 2, to obtain curve fits to a set of data,

we used a Trust-Region optimization routine available in

MATLAB. While fitting the expression Eq. 1 (Text S1), the

coefficients b, c, and d were varied by the optimization routine.

While fitting the expression Eq. 2 (Text S1), the coefficients b and

c were varied by the optimization routine. The value for h0
h

determined in CONTENT and was fixed during optimization.

The parameters TolFun and TolX were each 10{9.

In Figure S3 and Figure 3, we depict manifolds of slow motion

for simple periodic orbits. To identify the blue sky catastrophe, we

compared the average coordinate of each orbit to the average

value of the nullcline of mK2 for each orbit on Mo. The average

coordinate of each orbit was (SmK2T, SVT) where

SVT~
1

T

ðT

0

Vdt and SmK2T~
1

T

ðT

0

mK2dt. The average value

of the nullcline was (SVT, Sm0K2T~ 0) where Sm0K2T~ 0 is

defined by SmK2,?(h�K2)T~
1

T

ðT

0

mK2,?(V ,h�K2)dt. These inte-

grals were computed numerically using the trapezoidal technique

with custom-made scripts in MATLAB.

Supporting Information

Figure S1 Interburst interval and burst duration are
scaled according to saddle-node bifurcations. Graphs are

plotted in the log-log scale. The interburst interval and burst

duration are depicted as blue dots. The curves fitted to these data

are depicted as red curves. Curve fits for the interburst interval

took the form b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0

h{hh

q
zc. (A-B) The two examples provided

here were computed at fixed values for hK2 of 20.010 V (A) and

20.009 V (B) in order to demonstrate that these inverse-square-

root laws were general rather than local properties. (A) Coefficients

b~ 0.00687614 and c~ 15.85933790. The parameter h0
h was

0.0413523801025906. (B) Coefficients b~ 0.00652804 and c~
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15.10833261. The parameter h0
h was 0.0413430845706376. (C-D)

These examples were provided at values for hh of 0.040 V (C) and

0.039 V (D). Curve fits for burst duration took the form

b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hK2zd
p

zc. (C) Coefficients b~ 0.97192591, c~ 211.80755281,

and d~ 0.01050511. (D) Coefficients b~ 0.97039764 c~
215.81396058, and d~ 0.01050462.

(TIF)

Figure S2 The dependence of equilibria and periodic
orbits on the parameter hK2. For each orbit, we plot the

maximum, minimum, and average voltage. The green curves

represent the evolution of a stable orbit as hK2 is varied. This

stable orbit coalesced with a saddle orbit at a saddle-node

bifurcation for periodic orbits (SNo1). We back-traced this saddle

orbit (dashed light blue curves) between SNo1 at hK2~
20.010500 V and a second saddle-node bifurcation for periodic

orbits (SNo2) at hK2~ 20.013027 V where it coalesced with a

stable orbit (solid orange curves). This orbit lost stability in a

period doubling bifurcation (PD) at hK2~ 20.011948 V . The

saddle orbit (dashed dark blue) terminated in a homoclinic

bifurcation (Hom). The purple curve represents the equilibria

states of the system. The solid purple component indicates a stable

equilibrium. The stable equilibria coalesced with the saddle

equilibrium (SNe1) in a saddle-node bifurcation at hK2~
20.010506 V , and this saddle equilibrium coalesces with another

saddle equilibrium in a saddle-saddle bifurcation at the point

labeled SNe2 at hK2~ 0.029936 V .

(TIF)

Figure S3 Structure of the manifolds of slow motion. (A)

The slow motion manifolds for parameter values of both the SNIC

and the blue sky catastrophe calculated at h�h. The stable and

unstable portions of the slow motion manifold for oscillations are

represented by Ms
o and Mu

o , respectively in green and blue. The

manifold is composed of many orbits calculated for different values

of hK2 (see Fig. S2). The average voltage is plotted against the

average slow variable for each orbit in dark green (SVT). The

average nullcline of the slow variable is plotted in orange

(Sm0K2T~ 0). The nullcline for the slow variable is represented

by the grey curve m’
K2~ 0, and the equilibrium state for the fast

subsystem is the purple curve Meq. The saddle-node orbit is the

closed orange curve labeled as SNo1. The saddle-node equilibrium

is the green dot labeled as SNe1. (B) Mo and Meq are calculated at

hh~ 0.038 V . The closed orange curve is a sample periodic burst

computed at hK2~ 20.0105 V and hh~ 0.038 V . The trajectory

of bursting closely follows the manifolds of slow motion.

(TIF)

Text S1 Inverse-Square-Root Curve Fits Confirm SNIC
and Blue Sky Catastrophe Bifurcation Curves.

(PDF)

Text S2 Computing the Manifolds of Slow Motion.

(PDF)
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86. Bergé P, Pomeau Y, Vidal C (1987) Order within chaos: towards a deterministic

approach to turbulence. Wiley-VCH.
87. Rinzel J, Ermentrout B (1998) Analysis of neural excitability and oscillations. In:

Koch C, Segev I, editors, Methods in neural modeling. The MIT Press, 251–

292.
88. Pomeau Y, Manneville P (1980) Intermittent transition to turbulence in

dissipative dynamical systems. Comm Math Phys 74: 189–197.
89. Ermentrout G, Kopell N (1986) Parabolic bursting in an excitable system

coupled with a slow oscillation. SIAM Journal on Applied Mathematics 46: 233–

253.
90. Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate

circuit parameters. Nat Neurosci 7: 1345–1352.
91. Matsushima T, Grillner S (1992) Neural mechanisms of intersegmental

coordination in lamprey: local excitability changes modify the phase coupling
along the spinal cord. J Neurophysiol 67: 373–388.

92. Butera R, Clark J, Byrne J (1997) Transient responses of a modeled bursting

neuron: analysis with equilibrium and averaged nullclines. Biol Cybern 77: 307–
322.

93. Steuber V, Mittmann W, Hoebeek F, Silver RA, Zeeuw CD, et al. (2007)
Cerebellar LTD and pattern recognition by Purkinje cells. Neuron 54: 121–136.

94. Simoni MF, Cymbalyuk GS, Sorensen ME, Calabrese RL, DeWeerth SP (2004)

A multiconductance silicon neuron with biologically matched dynamics. IEEE
Trans Biomed Eng 51: 342–354.

95. Khibnik AI, Kuznetsov YA, Levitin VV, Nikolaev EV (1993) Continuation
techniques and inter-active software for bifurcation analysis of ODEs and

iterated maps. Physica D 62: 360–371.

A Codimension-2 Bifurcation Controlling a Neuron

PLOS ONE | www.plosone.org 14 January 2014 | Volume 9 | Issue 1 | e85451


