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The Specialized Atrioventricular Ring 
Tissues Participate in the Circuit 
of Atrioventricular Nodal Reentrant 
Tachycardia
Demosthenes G. Katritsis , MD, PhD; Hugh Calkins , MD; Robert H. Anderson , MD, PhD (Hon)

The exact location, let alone size, of the circuit of 
atrioventricular nodal reentrant tachycardia (AVNRT) 
is still among the mysteries of contemporary elec-

trophysiology, despite advances in high-density map-
ping, tissue histochemistry, and connexin genotyping. 
This is most intriguing since AVNRT represents the most 
common regular arrhythmia in the human, and proba-
bly the second most often ablated arrhythmia after atrial 
fibrillation.1,2 There has been evidence that the inferior 
extensions of the atrioventricular node are the substrates 
of the slow pathway, whereas the connections to the 
compact node through the working myocardium of the 
atrial septum serve as the fast pathway.3,4 We also know 
that the circuit occupies an area of several centimeters.5 
The prominent variability of detected retrograde atrial ac-
tivation, even in the same patient, suggests many possi-
bilities, as described in a probabilistic model.4 Although 
this conceptual model explains the electrophysiologic 
behaviour and activation patterns of the arrhythmia, it 
cannot provide quantitative data about the size of the 
involved pathways. More importantly, the described in-
ferior and superior atrial inputs represent “dead ends,” 
and not the entire circuit. Because of the problems in 
separating a large ventricular electrogram from the atrial 
tracing, high-resolution mapping of the atrial vestibules 
is inherently difficult.6 Any mapping system will struggle 
to annotate a fused signal appropriately in the window 

and during tachycardia, although novel algorithms for 
this purpose do appear. It may also preferentially anno-
tate the His bundle electrogram because of its high fre-
quency (dv/dt). These limitations may also apply to animal 
models using micro-electrode mapping, thus making the 
tracing of the tachycardia circuit extremely difficult.

HYPOTHESIS
Recently, the study of patients with co-existent types 
of typical and atypical atrioventricular nodal re-entry 
has allowed the calculation of activation times of both 
slow and fast pathways.7 Animal studies, and experi-
mental studies using human hearts, have also pro-
vided data about the conduction velocity in the area 
of the atrioventricular node and its inferior extensions, 
and in working atrial myocardium.8 Based on these 
data, we have proposed a method for the theoretical 
calculations of the dimensions of the slow pathway 
(Figure 1). In the context of measured conduction inter-
vals during tachycardia, the calculated activation time 
of the slow and fast pathways were 268.8±32.4 and 
101.9±23.5  ms, respectively.8 Studies have provided 
evidence on the conduction velocity in the area of the 
atrioventricular node and its inferior extension, calculat-
ing it to between 0.069 to 0.162 m/s in perfused canine 
and rabbit hearts.9–11 In the human heart, mathematical 
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modelling of the conduction velocity in these areas 
has provided a value of 0.04  m/s.12 Considering this 
conduction velocity, the length of the slow pathway is 

≈10.8  mm. This is compatible with the length of the 
right nodal inferior extension as assessed in histologic 
specimens (Figure 2).8 With a conduction velocity value 
of 0.162 m/s, however, the slow pathway could be as 
long as 43.5 mm. The conduction velocity in atrial my-
ocardium has been estimated as 0.49 to 0.8 m/s,11–13 
with values less in the transverse than the longitudinal 
direction (0.49 versus 0.8 m/s), and less in the left than 
the right atrium (0.5 versus 0.8  m/s).13 Mathematical 
modelling studies of human hearts have reported the 
conduction velocity of atrial tissue as 0.53 mm/ms.12 
Since the described “last connection” of the atrial 
septum to the node represents atrial working myocar-
dium,11 the conduction velocity of the fast pathway is 
likely within the range of 0.49 to 0.8 m/s. Considering 
an activation time of 101.9±23.5 ms, the length of the 
fast pathway ranges from 49.9 to 81.5 mm.
On this basis, we can assume that the dimensions of 
the slow and fast pathways have to be contained within 
the range of values derived by applying the boundaries 
of conduction velocity in the involved tissues. Do these 
numbers make sense? A circuit composed of a slow 
pathway of 1 cm, and a fast pathway of 5 cm, might 
well be contained within the triangle of Koch, as con-
ventional wisdom dictates. Larger numbers, however, 

Figure 1.  Theoretical model of the AVNRT circuit.
The left inferior extension is derived from the atrioventricular canal 
myocardium and is low in connexin 43 (C43) expression, thus being 
capable of only slow conduction. The right inferior extension could 
either be slowly or rapidly conducting, since it incorporates both 
the primary ring and the atrioventricular canal myocardium, and is 
an area of higher C43 expression. The site of successful ablation is 
indicated by the red arrow. CS indicates coronary sinus; FO, foramen 
ovale; LI, left inferior extension; RI, right inferior extension; S, superior 
“last” input; and TV, tricuspid valve. Reproduced with permission 
from Katritsis et al.8 Copyright ©2021, Oxford University Press.
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Figure 2.  Calculation of the histological extent of the inferior extension of the 
atrioventricular node in serially sectioned human hearts.
The left panel shows the gross features of the triangle of Koch and the cavotricuspid isthmus, 
with arrows indicating the anticipated sites of the fast and slow pathways (A). Lines B-B and 
C-C show the corresponding histological sections as shown in (B and C). B, The last input to 
the conduction axis prior to its insulation by the fibrous tissues of the atrioventricular junctions. 
This is suggested to be the substrate of the fast pathway. C, The compact atrioventricular node 
and its inferior rightward extension. We tracked the inferior extension until it could no longer be 
distinguished histologically from the vestibular myocardium. Reproduced with permission from 
Katritsis et al.8 Copyright ©2021, Oxford University Press.
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demand larger structures to be involved. We know that 
we are able successfully to ablate the tachycardia cir-
cuit by applying radiofrequency lesions at the septal 
isthmus between the hinge of the tricuspid valve and 
the mouth of the coronary sinus.8 This site is beyond 
the histologically identifiable inferior extensions of the 
node, which most probably, represent the anatomic 
substrate of the slow pathway. There is additional evi-
dence in animal studies that the right inferior extension 
continues within the vestibule of the tricuspid valve as 
“ring tissue.” This is a remnant of the so-called “primary 
ring” found during development. The leftward ring en-
circles the vestibule of the mitral valve, and is derived 
from the initial atrioventricular canal of the developing 
heart.14 It could well be that, in humans, the extent of 
these structures varies in such a way that some sub-
jects are susceptible to atrioventricular nodal re-entry, 
whereas others are not. Thus, part of the tricuspid or 
the mitral vestibule contribute to the re-entry circuit, at 
least in some atypical forms with prolonged His-atrial 
intervals. The circumference of the right atrioventricular 
orifice has been measured at between 9 and 11 cm in 
patients aged <65 years,15,16 whereas that of the mitral 
orifice is from 7 to 9 cm.17,18 The possibility of the ves-
tibules being involved in the circuit, therefore, cannot 
theoretically be excluded, especially in atypical cases 
of AVNRT with prolonged HA intervals.

We propose that the “ring” tissues are part of the 
circuit of AVNRT. Depending on their length in different 
individuals, they may contribute to the development of 
typical or atypical AVNRT forms. In this regard, we also 
emphasise the likely marked variation in the pathways 
between different individuals. We can speculate that, in 
patients with typical slow-fast AVNRT, the remnants of 
these structures are short. The complete circuit, there-
fore, requires capture and excitation of the very close 
atrial or transitional tissue that is capable of conduction 
fast enough to support the tachycardia. In the majority 
of cases, however, the ring tissues extend to at least 
the septal isthmus between the hinge of the tricuspid 
valve and the mouth of the coronary sinus, a site where 
successful and safe ablation is usually implemented. 
In atypical forms of the arrhythmia with prolonged HA 
intervals, which suggest involved pathways with only 
slow conduction properties, the involved atrioventric-
ular ring tissues are likely to be more developed and 
longer, thus participating in the circuit as a component 
with slow conduction properties. This possibility is 
compatible with the low expression of connexin 43, and 
thus slower conduction, in these tissues.14 This could 
also explain the significant variability in retrograde atrial 
activation during tachycardia, that may simulate even 
atrioventricular reentry due to a left lateral accessory 
pathway.1,2 In persons without discernible ring tissues, 
no AVNRT is developed. A schematic representation of 
our model is depicted in Figure 3.
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