
1Scientific Reports |         (2020) 10:6870  | https://doi.org/10.1038/s41598-020-63842-7

www.nature.com/scientificreports

A comparative chemogenic analysis 
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A computational technique for predicting the DTIs has now turned out to be an indispensable job during 
the process of drug finding. It tapers the exploration room for interactions by propounding possible 
interaction contenders for authentication through experiments of wet-lab which are known for their 
expensiveness and time consumption. Chemogenomics, an emerging research area focused on the 
systematic examination of the biological impact of a broad series of minute molecular-weighting 
ligands on a broad raiment of macromolecular target spots. Additionally, with the advancement 
in time, the complexity of the algorithms is increasing which may result in the entry of big data 
technologies like Spark in this field soon. In the presented work, we intend to offer an inclusive idea and 
realistic evaluation of the computational Drug Target Interaction projection approaches, to perform 
as a guide and reference for researchers who are carrying out work in a similar direction. Precisely, we 
first explain the data utilized in computational Drug Target Interaction prediction attempts like this. We 
then sort and explain the best and most modern techniques for the prediction of DTIs. Then, a realistic 
assessment is executed to show the projection performance of several illustrative approaches in various 
situations. Ultimately, we underline possible opportunities for additional improvement of Drug Target 
Interaction projection enactment and also linked study objectives. 

The accurate prediction of interactions formed between a drug and its targeted protein via computational 
approaches is highly demanding because it is an efficient analog to the wet-lab experiments that cost heavily and 
requires additional efforts. Drug–target interactions (DTIs) which are newly discovered are critical for discov-
ering novel targets that can interact with the existing drugs, as well as new drugs that can target some specific 
genes causing diseases1–3. Drug repositioning is one of the efficient methods for the recovery of existing drugs 
for a novel cause, i.e. drugs which are developed for some particular purposes can be used to treat other biolog-
ical conditions, meaning a single drug can be applied to many targets4,5. There is already massive research going 
on the existing drugs based on the bioavailability and their safe use. Repositioning can limit drug costs and 
may enhance the process of drug discovery, making drug repositioning an eminent method for drug discovery6. 
Some major techniques employed for the drug repurposing involve network-based approach7, network-based 
cluster approach8, network-based propagation approach9, text mining-based approach10, and semantics-based 
approach11. Drug repositioning is different from the traditional drug development that involves five stages, 
however, this method requires only 4 stages which include compound recognition, obtaining a compound, pro-
duction and FDA based safety monitoring. The Gleevec (imatinib mesylate) is a well-known example of drug 
repositioning which was initially thought to interact only with the Bcr-Abl fusion gene related to leukemia. But 
later on, it was found that interaction of the Gleevec with PDGF and KIT can also be achieved, with an added 
advantage as a repositioned drug for the treatment of gastrointestinal stromal tumours12,13. The success of Gleevec 
as a repositioned drug is one of the admired stories reported in the literature14–19. As drug repositioning is already 
revealed by the example of Gleevec, it opens new doors for scientists to reposition other drugs as well. A drug’s 
feasibility (i.e. interaction of a single drug with multiple targets) may enrich its polypharmacology (i.e. having 
multiple beneficial effects), which motivates the scientists to discover more about drug repositioning.

On the other side, there still exist a lot of small molecules that can be used as drugs but because of their 
interaction profiles, they can not be used. For example, more than 90 million compounds are stored in the 
PubChem database whose interaction profiles are still unknown20. Thus, by knowing the interactions between the 
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disease-causing genes and the target proteins for these compounds may help in the discovery of new drugs as it 
can help the drug candidates with low potential to work within the drug discovery field21. Likewise, the detection 
of various other interactions of this type may provide a deep understanding of the discovery of drug-targets that 
can have unwanted and adverse effects22. Therefore, for drug repositioning, the discovery of DTIs is very useful, 
as it aids with the drug candidate selection and predicts the side effects of these drugs in advance. Definitely, the 
experimental wet-lab techniques are more helpful in predicting such types of interactions but this job is much 
tiresome and also consumes a lot of time. Thus, from here, the computational methods take over as they are 
proven to be highly useful and may prove efficient in predicting potential interacting candidates with satisfactory 
accuracy, hence reducing the DTIs to be inspected via in-vitro correspondent.

AutoDock is a molecular docking platform that can model the flexibility in the targeted macromolecule 
optionally and protein-protein communications can be explored23. Based on the AMBER forcefield24, linear 
regression scrutiny and diverse protein-ligand complexes with identified inhibition constants, AutoDock has an 
improved free-energy scoring system.

The cmFSM is a parallel acceleration software available for classical frequent subgraph mining algorithm25. The 
main focus of this tool is to parallelize extension jobs by laboring parallel approaches. Simultaneously, it addresses 
the memory constraint issue as well by means of employing the multi-node approach. The mD3DOCKxb26 is 
designed on a coordinated parallel framework technique in which the collaboration of CPU and MICs attains 
elevated utilization of the hardware and is comprised of a new and efficient interaction engine that dynamically 
schedules the tasks.

SNPs have great importance in Genomics, Proteomics and precision medicine. One of the scalable and effi-
cient tools is the mSNP that is an SNP identifying tool for a large-scale human genome that has availed a 38x 
single thread speedup on CPU, and zero loss in its accuracy, scaling up to 4,096 nodes27.

Another available platform is the A-CaMP28, which permits fast fingerprinting of the anticancer and antimi-
crobial peptides. It has robust coding architecture, has been developed in PERL language and is scalable with an 
accuracy of 93.4%.

The accuracy of sequence alignment also bears great importance. For multiple sequence alignments, the 
VCSRA29 (a Vector-based Center-star strategy-based algorithm using Suffix trees Recursively for multiple 
sequence Alignment) is a high duty platform that involves an elevated magnitude of parallelism. It is capable of 
carrying out the MSA in O(mn log2 n) time amid most alike sequences, where m is the number of sequences in a 
dataset and n refers to the sequences’ length average.

Virtual screening is used to search for possible potent hits that can be later confirmed through various docking 
and simulation analysis. One similar purpose efficient tool is the FlexX-Scan30 that is designed for an extremely 
fast, structure-based virtual screening, based on the incremental construction. It’s a compact descriptor for show-
ing favorable protein interaction points.

In the present time, mainly there are three main approaches related to the computational methods for discov-
ering DTIs. The first one is the ligand-based approach, which is based on the concept that molecules with similar 
properties usually share their properties and binds with the same kind of proteins31. In general, the interactions 
are predicted by using the fact of similarity between the proteins and ligands32. In case of the less number of 
reported ligands per protein, the result of the ligand-based approach may be ambiguous33.

The second approach is the docking approach, a 3D structure of the drug and a protein is taken and then 
a simulation program is run to determine whether they can interact or not34–37. However, some proteins with 
unknown 3D structures are there to which docking cannot be applied. Some of the membrane proteins in drug 
targets38 are challenging to predict their 3D structure39. Furthermore, protein flexibility can also be one of the 
challenging factors while dealing with a receptor protein, as we require a certain degree of freedom, so that exact 
calculations can be carried out.

The third approach is the chemogenomic approach. Here, the prediction is carried out by collecting the infor-
mation from both drugs and targets. The chemogenomic approach is associated with the advantage of work-
ing with extensively abundant biological data for prediction. The chemical structures’ charts and nucleotide 
sequences for the drugs and targets are widely used as information while predicting DTIs40 and can be easily 
obtained from the publicly available online databases. Some of the challenges that need to be addressed regarding 
this new technique are the requirement of an additionally enhanced refined integration of bioinformatics and 
chemoinformatics information, selection of top compounds from the existing infinite artificial possibilities by a 
more rational technique and to be able to construct additional catalogs that are information specific41.

In this investigation, the more popular chemogenomic methods are being revised. The investigation initiated 
by knowing different types of data required to perform the prediction task and finding the source of data along 
with exploring ways to use the same data in prediction.

After comparing with the reported literature on the DTI prediction approach1,2,5,42,43, our survey is found to 
be more comprehensive and closely related to the already existing chemogenomic methods for the prediction of 
DTIs. Moreover, a novel approach is provided in this work for the categorization of various chemogenomic meth-
ods. Furthermore, various kinds of data have been described here that is being used for the chemogenomic pre-
diction tasks; however, our focus was mainly on the software listing packages that produce various characteristics 
in demonstrating drugs and targets (conflicting with online databases available for the information on DTIs)44.

The latest review presented by Chen et al.2 describes a complete online database that stores all the information 
related to drugs and their targets ((KEGG)45 and (DrugBank))46. Along with the algorithms, online web servers 
were described for the prediction of interactions and the discussions over the drug identification are carried thor-
oughly. The aim of our investigation is comparable to the work reported by Chen et al. in terms of reviewing the 
state-of-the-art methods and to deliver potential future direction in this field of research. However, we have cate-
gorized different prediction methods very precisely and also suggest different directions towards future research, 
significantly different from those reported by Chen et al.
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Materials and Methods
Interaction data.  This type of data can be found on several publicly accessible online databases that keep 
a record of particular targets and their drugs. Some of the repositories employed for this work include KEGG45, 
DrugBank46, ChEMBL47, and STITCH48. The data collected on interaction from these databases is usually config-
ured in the form of a linkage medium among the targets and their drugs. This medium match up with the bipar-
tite graph where drugs and targets are represented by nodes, and in the form of edges, connecting drug-target 
pairs interaction3,49.

Nearest profile and weighted profile.  Two methods introduced by Yamanishi et al.40 are the Nearest 
Profile and Weighted profile. The nearest profile is the linking outline for a novel drug or target with its nearest 
neighbor (i.e. the most similar drug or target to the drug). For instance, to calculate a nearby outline for a new 
drug di, we follow:

= × .Ŷ d S d d Y d( ) ( , ) ( ) (1)i d i nearest nearest

Here Y d( )i  denotes the interaction profile of the drug di and dnearest denotes the drug that resembles the di the 
most. However, in the Weighted Profile section; we use all the similarities of different drugs or targets and calcu-
late a weighted average for them. The calculation of the weighted profile for drug di is done using:
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We calculated the average of the forecasts from the drug and the target to gain the ultimate estimates.

Regularized least-squares with weighted nearest neighbors.  The other technique which was 
founded on RLS-Kron50 was introduced in51, where the performance of RLS-Kron was increased with a preproc-
essing technique WNN having the same as that of NII. WNN can be used to deduce an interaction profile for 
every new drug di,:
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Based on similarity to drug dj, the drugs di to dn are arranged in descending order and ω η= −
j

j 1 where η 
denotes the decay term and η ≤ 1. This procedure is applied from the target side also, and then the RLS-Kron 
method is used as a usual process. By applying the WNN method with NII, the prediction performance boost up 
which shows that these preprocessing methods performed well.

Network-based inference.  Network-based inference (NBI)52 applies network diffusion on the DTI bipar-
tite network corresponding to the linkage matrix Y to perform predictions. The working of network diffusion 
follows:

=Ŷ WY, (4)
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Where Γ is the diffusion rule. Whereas, k(x) denotes the degree of node i.e., x in the DTI bipartite network. In the 
NBI case, the Γ rule is given by:

Γ = .( )k dj

Kernelized bayesian matrix factorization with twin kernels.  Kernelized Bayesian Matrix 
Factorization with Twin Kernels (KBMF2K)53 in our view, is the first method to use matrix factorization for the 
prediction of DTIs. It employes a Bayesian probabilistic design along with the concept of matrix factorization to 
complete the forecast. In other words, nonlinear dimensionality reduction is performed by the use of variational 
approximation and, hence the efficiency of computation time taken by this method has been improved. The 
algorithmic details of this method are very broad, so a negligible impression of the algorithm is provided here53.

Collaborative matrix factorization.  Collaborative Matrix Factorization (CMF)54 practices cooperative 
filtering for forecasting. The key purpose of matrix factorization is to discover two matrices A and B where 
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where . F is the Frobenius norm, ⊗ is the elementwise product, λ λ λand, ,l d t are parameters and ∈ ×W n mis 
weight matrix where Wij = 0 for unknown drug-target pairs, so that in the estimation of A and B they have no role. 
The first line is the weighted low-rank approximation that tries to reconstruct Y by finding the latent feature 
matrices A and B. The second line is the Tikhonov regularization term that provides simpler solutions by prevent-
ing the larger values and helps in avoiding overfitting. The 3rd and 4th ranks are normalization terms that require 
latent feature vectors of similar drugs/targets to be similar and latent feature vectors of unlike drugs/targets to be 
dissimilar correspondingly.

MSCMF is another variant of CMF which involve the use of multiple similarities for both the drug and the 
target54. Rather than the chemical structure similarity and genomic sequence similarity that is typically used for 
the drugs and targets respectively. ATC similarity is also used for drugs, and GO and PPI network similarities are 
used for the targets. The MSCMF objective function is given as:
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s.t. ω ω= = 1d t  where M and Md t represent the number of drugs and targets’ similarity matrices respectively 
and λω is a parameter. The ω ωandd T are the weight vectors for the linear combination of similarity matrices of 
drugs and targets respectively. Tikhonov regularization terms for ω ωandd T, while the sixth term is a restriction 
that ensures that weight of ω ωandd T sum up to 1.

Weighted graph regularized matrix factorization.  Weighted Graph Regularized Matrix Factorization 
(WGRMF)55 is similar to CMF except that it practices chart normalization terms to learn a manifold for label 
propagation. The objective function for WGRMF is given as:
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where .T ( )r  is the trace of the matrix, and ˜ ˜l and ld t are the normalized graph Laplacians which are obtained from 
S and Sd t  respectively. S and Sd tare sparsified before calculating the Laplacians graph via having only a 
pre-selected value of closed neighbors for individual drug and its target respectively. For more details on the 
graphical regularization please refer to56,57.

The role of the weight matrix is the same as in the CMF; we can control that unknown drug-target pair don’t 
contribute to interactions’ prediction by setting =W 0ij . The weight medium is vital as or else the test cases would 
sum no interactions (i.e. negative instances) and have unwanted effects on the predictions; for more information, 
refer to the available supplementary data.

Results
Drug and target data classifiers.  The data available for a different type of drugs can be used to train new 
DTI classifiers but the available information must not be limited only to the graphical representations, including 
chemical structures58, side effects59, Anatomical Therapeutic Chemical (ATC) codes60, and how genes respond to 
different types of drugs61. Data can be obtained in many useful forms from the chemical assembly charts of drugs 

Figure 1.  Flowchart of DTI prediction task using a chemogenomic prediction. Three different types of data 
have been used for the DTIs prediction.
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which also includes substructure fingerprints in addition to the constitutional, topological and geometric signi-
fiers among other molecular characteristics (e.g. via the Rcpi62, PyDPI63 or Open Babel64 packages). The availa-
ble data that can be obtained for the targets include genomic sequences65, Gene Ontology (GO) information66, 
gene expression profiles67, disease associations68 and protein-protein interaction’s (PPIs) network information69,70 
among others. Moreover, additional data for the targets are obtained as well from the amino acid sequences, that 
involves its arrangement, CTD (composition, transition, and distribution) and auto correlativity signifiers (e.g. 
via the PROFEAT Web server71).

In the past few years, many (chemogenomic) DTI prediction methods have been developed50,51,54–57,72–104. 
Based on different techniques, these methods are employed for the prediction, which briefly explains and catego-
rizes them according to the techniques employed.

Neighborhood Weighted Profile, Bipartite local models, Network diffusion and Matrix factorization, the sup-
plied information is used in these techniques, comprising of a linking matrix ∈ ×Y n m that displays the interact-
ing drugs and targets, a drug similarity matrix ∈ ×Sd

n n and a target similarity matrix ∈ ×St
m m. While in the 

‘feature-based classification’ section, the similarity matrices both for the drug and target have been replaced by 
feature matrices,  ∈ ∈× ×F and Fd

n p
t

m q  which represents the drugs and targets respectively.

Empirical evaluation.  Here we have done a broader empirical evaluation among various methods, under 
three different CV settings:

	 1.	 S1, where some arbitrary pairs are left out of the test set.
	 2.	 S2, where complete drug profiles are left out of the test set
	 3.	 S3, where complete target profiles are left out of the test set.

Figure 2.  Depicts the DTIs prediction using different methods, X-axis represents the applied methods and 
Y-axis indicates the DTIs’ prediction scores. All the methods (NP (Nearest Profile), NBI (Network-based 
inference), KBMF2K (Kernelized Bayesian Matrix Factorization with Twin Kernels), WGRMF (Weighted Graph 
Regularized Matrix Factorization), CMF (Collaborative Matrix Factorization (CMF), WP (Weighted Profile), 
and WNN (Weighted Nearest Neighbors)) show approximately same prediction score with minor changes 
except WGRMF that achieved comparatively highest value. The NP and NBI approach exhibits comparatively 
much lower prediction scores.
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6Scientific Reports |         (2020) 10:6870  | https://doi.org/10.1038/s41598-020-63842-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

S1 is a traditional setting for assessment. However, S2 and S3 are proposed to assess the capability of various 
methods to predict novel drug and target interactions. Here, novel drugs and targets are those for which no inter-
action information is available. Besides, the experiments conducted under the S2 and S3 draws a complete picture 
of how the performance of different methods differ according to various situations.

The results of the different methods under the CV settings have already been visualized in Figs. 2 and 3. All 
the outcomes of this study are explained, including their advantages and disadvantages for each of the methods 
along with other general observations. It is worthy to note that results on the NR data set were found inconsistent 
probably due to its smaller size43.

Pair prediction case (Drug-target interaction).  Based on the results obtained from Figs. 2 and 3, the 
following two conclusions have been made:

	 (i)	 Under the DTI CV settings, CMF is found to be the best method, followed by WGRMF. It means that the 
matrix factorization method is finest over other methods, which makes them the most promising DTIs 
prediction methods for the study of DTIs (Fig. 4).

	(ii)	 In the ion channels (IC) and enzymes (E) data sets, the performance of the Weighted Profile is better than 
the Nearest Profile. This is due to the reason that IC and E data sets are larger than non-redundant (NR) 
and G-Protein Coupled Receptor (GPCR) counterparts having a large number of neighbors. Therefore, 
interactions can be deduced more accurately (Fig. 4).

Drug prediction case (Drug).  Ongoing from the drug-target interaction CV setting to the Drug CV setting, 
it was observed that the results in Fig. 4 were more interesting than the Drug-target interaction. Usually, it is more 
difficult to predict interactions for the drugs or targets which are unknown in the test sets. This is different from 
the Drug-target interaction where the drug or target interaction profiles are partially missing out.

The performance of WGRMF is best, followed by the CMF. Therefore, the Matrix Factorization method is 
again performing well in general. The WGRMF has done well than the CMF under Drug setting because of its 
graph regularization terms. This also expresses the benefits of manifold learnings while it is an informative locale.

RLS-WNN, which is based upon the network similarities also provides a useful prediction performance. The 
reasonable performance of RLS-WNN is due to its preprocessing procedure which strengthens its learning pro-
gression by inferring to the temporary profiles for the missing drugs. The network similarity in RLS-WNN is 
calculated by the GIP kernels which can be used in the algorithm later on. Logically, temporary profiles are indeed 
better for calculating network similarity than the initially empty profiles of the missing drugs, which underlines 
the significance of preprocessing procedures like WNN when the inclusion of a network similarity in training the 
classifiers is intended.

Figure 3.  Depicts the AUC (Area Under the Curve) and AUPR (Area Under the Precision-Recall) scores using 
different methods, X-axis represents the applied methods and Y-axis indicates the average AUC and AUPR 
scores of DTI.
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Target prediction case (Target).  As projected, the AUPR (Area Under the Precision-Recall) results of the 
Target settings are relatively lower than the S1 setting but are gradually higher than those of the results obtained 
under drug-target interaction settings. Methods including Matrix Factorization are usually better in drug cases. 
From here, we conclude that the target genomic sequence similarities are extremely better even than the similar-
ities of drugs’ chemical structures. The performance of WGRMF is better even than the CMF due to the involve-
ment of graph regularization terms. However, RLS-WNN has an average performance. As for NBI, similar to the 

Figure 4.  The different cross-validation settings: 1: Pair (DTI)- involves drug-target pairs from the interaction 
matrix Y to use as the test set, 2: Drug- is the setting where entire drug profiles are shown and 3: Target- entire 
target profiles. The CV settings for S1, S2, and S3 are provided on the X-axis while the Y-axis represents the 
standard deviation (SD) of all the employed techniques.

https://doi.org/10.1038/s41598-020-63842-7


8Scientific Reports |         (2020) 10:6870  | https://doi.org/10.1038/s41598-020-63842-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

Drugs’ cases and Drug-target interactions, It is not capable to outperform the Nearest Profile, baseline methods, 
and Weighted Profiles. Therefore, it is concluded that the best choice for the prediction of DTIs is network-based 
methods as shown in Fig. 4; for more information (Supplementary Data).

Discussion
Many computational techniques are involved in drug repositioning which is used in various conditions, depend-
ing on the existing knowledge about the concerned disease or adverse condition. Using these methods, we have 
generated an outline of DTI prediction, which is an important aspect of the drug discovery process. Many web 
servers have been developed to deal with this work for practitioners, intending to perform this work on a univer-
sal scale.

Generally, in the prediction of DTIs, the best method reported is the Matrix Factorization method. In addition 
to this, the manifold assumption is that the point lies on or near to the low dimensional manifold90–92 are more 
successful for the improvement of DTIs’ prediction performance (as demonstrated by WGRMF). It is essential to 
state that the RLS-WNN method did not compete with the Matrix Factorization method in the DTIs prediction 
but an added advantage is the faster algorithm (RLS-WNN). However, when someone wants to predict DTIs, it is 
beneficial to obtain the primary predictions by RLS-WNN first. It is also highlighted that if the data sets are larger, 
then the BLMs (Bipartite local models) are the best to be considered as they are proved to be faster and efficient.

While considering the network-based method (NBI), it did not perform well in comparison to other meth-
ods which may be due to the properties of DTIs networks that are not satisfactory to deal with network-based 
methods. Examples related to the interactions of drugs or targets present in the network are very less or there may 
be the presence of undiscovered interactions present in the noninteracting groups (which may have a negative 
influence upon the obtained prediction). Moreover, their performance in the prediction of new interactions for 
orphan drugs (previously unknown interactions) is not well discovered. However, this problem becomes more 
complex when attempts are being made to predict new interactions for the orphan targets as well; this is because 
of the indirect network path between the orphan drug and its target which gives a low prediction score; for more 
information (Supplementary Data).

Conclusion
Alternatively, network-based methods still have a significant role in predicting DTIs. For example, the NRWRH80, 
the generation of a heterogeneous network is a prominent idea for performing DTIs prediction. By improving 
the heterogeneous network with more data (i.e. addition of more drug-target pairwise similarities) can help the 
network-based methods to solve the issues occurring in DTIs prediction for orphan drugs or targets up to some 
extents. It is also helpful to be inspired from the previous effort on generating functional linkage network (FLNs). 
FLNs are functionally linked networks between genes that have been used successfully in genes-related func-
tions and disease research. To construct FLN, it requires the information collected from various heterogeneous 
resources of varying classes and comprehensiveness that may highly correlate with each other. Such understand-
ing in creating FLNs can be delivered to the generation of heterogeneous DTI networks on which network-based 
methods can be applied for new DTIs prediction with greater precision and accuracy.

In the present work, we have started with a brief description of the data that we required for the drug-DTI 
prediction and also showed some examples that could be used for its prediction. An outline of different methods 
is given that are trained with the available data. After this, we have performed an empirical comparison between 
the methods which are best in their respective category, to illustrate their prediction performances under different 
situations. At last, a compiled list of all the possibilities was provided for further enhancement of the prediction 
performance.

According to data, the datasets are binary in nature, i.e. given an interaction matrix Y (where Yij = 1 if the drug 
and target interact with each other, if there is no interaction Yij = 0); that creates another possibility. Some of the 
interactions where Yij = 0 have not yet been discovered, which may create a problem in the training process for 
various classifiers. Besides, there is another possibility that in a real situation, the drug-target pairs having binding 
energies, showing variations over a wide range of the spectrum (interactions are not binary on/off). Some data 
sets having continuous values representing drug-target binding energies (as opposed to distinct 0 and 1 values). 
For that reason, using such continuous-valued data sets is more useful because it represents the actual situation 
than the binary sets in a better way which has been used earlier in the DTI’s prediction extensively.

Future direction.  The type of work mentioned above particularly focuses on the target proteins, but there 
is another type of target which is the noncoding RNAs (ncRNAs), and the drugs which are successfully devel-
oped. These are the RNAs that are not protein-coding, and they contain subcategories which include microRNAs 
(miRNAs), long coding RNAs (lcRNA) and Intronic RNAs (iRNA) among several others. A few examples are 
the use of miRNAs to treat the Hepatitis C virus and Alport nephropathy. The behavior and mechanism of each 
of the ncRNAs are quite. Research on chemogenomic methods for prediction of ncRNAs is likely to continue 
for the next several years with contributions involving deep learning concepts, Multiview learning and possibly 
unprecedented clever features for representing drugs or targets. Therefore, it leads to different opportunities and 
challenges, all of which are discussed with examples in the recent reports regarding DTIs.

Data availability
The way we want to predict the new DTI is completely different from the existing training data. The data which 
represents the drug and the target involved in the interaction is also needed for this purpose. The overall workflow 
for the prediction of new DTIs is graphically produced (Fig. 1). Interaction data were retrieved from different 
sources. Drugs data were retrieved from Rcpi, PyDPI, and Open Babel. Targets data were retrieved from Gene 
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Ontology (GO) information, gene expression profiles, gene sequence, disease associations, and protein-protein 
interaction (PPI) network information; for more information (Supplementary Data). All data generated and 
analyzed during this study are included in this article. The proposed DTI (Dataset, Statistical Metrics, Confidence 
Interval & Benchmark Evaluation Results) is freely accessible at http://weislab.com/WeiDOCK/?page=DTI.

The provided data includes dataset files (.txt format), metrics files (.mat format), statistical metrics (.mat for-
mat), confidence intervals (.mat format), benchmark evaluation results (.mat format), and scripts for executing 
this DIT Model (.py format).
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