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Introduction
Acute ischemic stroke (AIS) is associated with a variety of 
pathological changes affecting both glial and neuronal brain 
tissue. These changes are mirrored in the release of proteins 
into the cerebrospinal fluid (CSF) and to lesser extent into 
the blood.1,2 Experimental studies have found that cerebral 
ischemia promotes changes of cytoskeleton and activation of 
apoptosis-related genes, resulting in morphological reactions 
of neurons, astrocytes, oligodendrocytes, and microglia.3 One 
consequence of these hypoxic/anoxic processes is brain inflam-
mation, further contributing to cell death and cerebral injury 
in acute stroke.4 Neuroinflammation, a common mechanism 
that links various cerebral insults, has also been proposed as 

one of the pathways leading to Alzheimer’s disease5,6 as well as 
to cognitive decline after stroke.7,8

Several animal studies have identified increased levels of 
certain CSF biomarkers that reflect pathological events within 
the central nervous system (CNS) in relation to ischemia.2,9,10 
In humans, only a small number of studies have examined 
CSF biomarkers in relation to stroke.11 However, so far, there 
are no studies measuring a broad range of markers related to 
neuroinflammation and neurodegeneration in patients with 
AIS. While neuron-specific enolase (NSE),12 protein S100B,13 
and glial fibrillary acidic protein (GFAP) have mostly been 
investigated as peripheral markers of brain damage,14,15 only 
a small number of studies have focused on CSF biomarkers, 
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despite the fact that CSF concentrations better reflect cerebral 
damage.11 Some of these studies have measured the levels of 
NSE,16 amyloid precursor protein metabolites,17 GFAP and 
protein S100B,18 and ferritin (which is actively produced by 
microglia after injuries within the CNS).14

Our aim in the present work was to investigate the pro-
file of glia-related inflammatory CSF biomarkers (YKL-40, 
GFAP, MCP-1, sCD14; see Table  1) and cytoskeleton and 
myelin markers of neurodegeneration (NFL, T-Tau, P-Tau181, 
myelin basic protein (MBP); see Table 1), and their relation to 
clinical stroke severity and white matter lesions (WML).

Methods
Study patients. A total of 20 patients with AIS were 

included in days 5–10 after the debut of AIS. The patients 
were recruited from the Stroke Care Unit, Sahlgrenska 
University Hospital in Göteborg, during 2009–2011. All 
subjects underwent a detailed clinical examination on 
admission to hospital, together with clinical history and 
functional assessment. Stroke was defined as the acute 
occurrence of focal neurological signs lasting for more than 
24 hours in a different neuroanatomical location from that 
of any previous stroke, or less than 24 hours if accompanied 
by a new lesion on neuroimaging.19 The severity of stroke 
was graded according to the National Institute of Health 
stroke scale (NIHSS).20 Brain imaging was performed by 
computer tomography (CT). The local ethics committee 
of the University of Gothenburg approved the study. Each 
patient signed an informed consent form. AIS subtype was 
assessed according to the TOAST (Trial of ORG 10172 in 
Acute Stroke Treatment) classification.21,22

Exclusion criteria were history of alcoholism, drug abuse, 
previously diagnosed mild cognitive impairment or dementia, 
any known psychiatric disorder, current treatment with antico-
agulant therapy, coagulopathies, cerebral edema, stroke lesions 
located in the peduncular region and/or medulla oblongata, and 
cerebral vasculitis. In all, 13 patients declined participation.

Controls. To obtain normative data for the findings in 
the CSF, 20 controls were recruited at the memory clinic at 
Sahlgrenska University Hospital, Gothenburg, Sweden. The 
controls were age-matched individuals with no prior anam-
nesis of stroke or other cardiovascular pathology from the  
Gothenburg MCI study.23

CSF. A total of 10  mL CSF were collected by lumbar 
puncture through L3–L4 or L4–L5  intervertebral space, in 
accordance with the standard procedure, between days 5 and 
10 (mean 7.1 days ± 1.6) after stroke onset. Samples were col-
lected in polypropylene tubes and immediately transported 
to the local neurochemistry laboratory. After cell counting, 
samples were centrifuged at 2,000 × g at +4 °C for 10 minutes. 
The supernatant was then gently mixed, to avoid possible gra-
dient effects, and stored within one hour at −80 °C pending 
biochemical analyses, without being thawed and re-frozen.

Neuronal and glial biomarkers. The CSF analy-
ses of T-tau (INNOTESThTau Ag) and phospho-tau181 
(P-tau181) (INNOTEST PHOSPHO-TAU (181P)) were 
performed using Innogenetics enzyme-linked immunosorbent 
assays (ELISA, Innogenetics, Ghent, Belgium). The NFL 
ELISA (UmanDiagnostics NF-light, Umeå, Sweden) was 
performed according to a previously established protocol,24 
with minor modifications. The analysis of MBP was performed 
by an ELISA (Active MBP, Diagnostic Systems Laborato-
ries, Webster, TX, USA) purchased from Diagnostic Systems 
Laboratories. CSF levels of YKL-40 and sCD14 were analyzed 
by ELISAs (Quantikine ELISA, Human Chitinase 3-like 1 
Immunoassay and Human sCD14 Immunoassay, both from 
R&D Systems Inc, Abingdon, UK). MCP-1 was measured by 
an ultra-sensitive ELISA (Human MCP-1 Ultra-Sensitive kit, 
Meso Scale Discovery, Rockville, MD, USA). All the com-
mercial assays were analyzed according to the instructions 
given by the manufacturers. GFAP was measured by a previ-
ously described ELISA procedure.25 The coefficients of varia-
tion for all biochemical analyses were below 10%.

Analysis of computerized tomography scans. Stroke 
localization and lesion characteristics were determined by  
CT-scans. WML were classified using the age-related white 
matter changes (ARWMC)26 scale, which defines WMC 
on CT images as ill-defined moderately hypodense areas of 
$5 mm. WMC is rated from 0 to 3, where 0 corresponds to 
no WMC, 1 to focal lesions, 2 to beginning of confluence of 
lesions, and 3 to diffuse involvement of the entire region. For 
the basal ganglia, 1 corresponds to focal lesions $5 mm, 2 to 
.1 focal lesion, and 3 to confluent lesions. The ARWMC scale 
classifies WMC separately for left and right hemispheres in 
five different brain regions: frontal, parieto-occipital, tempo-
ral, basal ganglia, and infratentorial. The WMC score is then 
added for the 10 different regions for a final score ranging from 
0 to 30. The ratings were performed on one occasion, and the 
rater (CE) was blinded to the study participants’ clinical data.

Statistical analyses. ARWMC scores were strati-
fied into two groups: mild (ARWMC score of 0–5) and 

Table 1. Key references for the neuron- and glia-related CSF 
markers.

Group Abbreviation Reference

Neurodegeneration  
related

NF-L Xu et al (1996)28; Norgren  
et al (2003)24

markers Zetterberg et al (2006)29

Tau, p-Tau Hampel et al (2010)31  
Vanmechelen et al32

MBP Sternberger et al (1978)30

Glia-related markers GFAP Aurell et al (1991)18

YKL-40 Bonneh-Barkay et al  
(2010)41

MCP-1 Galimberti et al (2003)5 

sCD14 Beschorner et al (2002)43
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moderate/severe (ARWMC  .  5). Mann–Whitney U test 
was used to examine relationships between CSF markers 
and WML severity. In addition, multivariate analysis was 
performed by employing orthogonal projection to latent 
structures discriminant analysis (OPLS-DA), which is 
implemented in the SIMCA P+ software (v 13.0, Umetrics, 
Umeå, Sweden). The OPLS-DA algorithm finds the projec-
tion direction, score vector, that gives the largest covariance 
between the variables and the pre-defined classes (ie patients 
and controls) and that maximizes the separation between the 
classes.27 The variables that are found to have an influence 
on the projection (VIP) and that contribute to discriminate 
between the classes are summarized in the VIP plot. The 
higher the VIP bar, the more influential is the variable on 
the model. The VIP plot also gives a 95% confidence interval 
(CI) for the contribution of each variable, and a large inac-
curacy, ie variables with a CI exceeding the VIP bar, is an 
indicator of a less useful variable from a biomarker point of 
view. Receiver operating characteristic (ROC) analyses were 
performed on the score vector values to visualize the diag-
nostic value of the multivariate analyses, and the cut-off was 
found by maximizing the sum of the sensitivity and specific-
ity. ROC analyses were performed in GraphPad (GraphPad 
Software Inc, La Jolla, CA, USA).

Descriptive statistics and data comparison tests were 
carried out using SPSS 19.0 package (SPSS Inc., Chicago, 
IL, USA). Differences between groups were analyzed by 
nonparametric tests, Pearson chi-square or Mann–Whitney 
U test, as stated. The relevance of parameters considered to 
predict stroke severity was analyzed by multiple linear logis-
tic regression with backward stepwise removal based on the 
likelihood-ratios.

The results are presented as mean values with 95% CIs. 
P-values , 0.05 were considered statistically significant.

Results
The main clinical characteristics of the study group are 
presented in Table 2. There were 14 men among the stroke 
patients and 9 men in the control group. There was no sta-
tistically significant difference between the AIS and control 
groups with respect to age (age of controls 72.7 years ± 3.7; 
age of stroke patients 76.0 years ± 6.5; P = 0.052). We found 
no correlation between age and biomarker levels and no dif-
ferences in biomarker levels between men and women. The 
stroke patients suffered from diverse comorbidities (Table 2). 
The correlation between specific comorbidities (hyperlipi-
demia, hypertension, diabetes mellitus, heart failure, and 
previous TIA/stroke) and the tested biomarkers was inves-
tigated. The only significant correlations that we found were 
between hyperlipidemia and MCP-1 (P = 0.028) and sCD14 
(P = 0.047), respectively.

CSF biomarkers, stroke location, and stroke severity. 
Neurodegeneration-related markers. Based on the neuroimag-
ing findings, the cerebral lesions were corticosubcortical in 

n = 17 patients (85%). We found increased levels of T-tau, 
NFL, and MBP in the CSF of stroke patients compared 
with controls, see Table  3 and Figure  1. In patients with 
mild stroke (NIHSS , 5), the concentrations of T-Tau and 
MBP were significantly lower compared with patients with 
more severe stroke (NIHSS  $  5); for details see Table  4 
and Figure 2.

Glia-related markers. CSF concentrations of GFAP and 
YKL-40, but not sCD14 and MCP-1, were higher in stroke 
patients compared to controls, see Table 3 and Figure 1. Again, 
no statistically significant correlations were noted between the 

Table 2. Main clinical characteristics of study patients (n = 20).

Male (%) 70

Age, mean (SD) 76 (6.5)

Smoking (%) 15

TIA or previous stroke (%) 50

Heart failure (%) 10

Diabetes melitus (%) 40

Hyperlipidemia (%) 70

Hypertension (%) 70

NIHSS score at admission, mean (SD) 4.4 (3.4)

NIHSS , 5 (n) 12

NIHSS $ 5 (n) 8

Localization of WML

Cortical, n (%) 17 (85)

Subcortical, n (%) 12 (60)

Infratentorial, n (%) 2 (10)

Stroke etiology

Large-artery atherosclerosis (%) 50

Cardioembolism (%) 20

Small vessel occlusion (lacunar) (%) 20

Other determined etiology (%) 0

Undetermined etiology (%) 10

Note: Numbers represent absolute numbers, mean (SD) or percentage  
as appropriate.

Table 3. CSF biomarkers in controls (n = 20) and stroke patients (n = 20).

Controls Stroke P-value

T-tau (ng/L) 410.5 ± 44.6 1720.5 ± 520.9 0.004

P-tau181 (ng/L) 65.4 ± 7.3 53.4 ± 6.6 0.182

NFL (ng/L) 1417.5 ± 206.1 15484.0 ± 3486.4 , 0.001

MBP (ng/mL) 0.7 ± 0.1 26.8 ± 12.2 , 0.001

GFAP (ng/L) 649.5 ± 48.2 5014.5 ± 1887.8 0.005

MCP-1 (pg/mL) 757.3 ± 49.2 747.8 ± 54.7 0.725

SCD14 (ng/mL) 148.3 ± 10.3 151.0 ± 9.1 0.844

YKL-40 (ng/mL) 185.3 ± 18.4 264.1 ± 26.7 0.015

Notes: Data are expressed as mean ± SEM. Comparisons made by  
Mann-Whitney test.
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level of any of these markers and the location of WML, but 
GFAP and YKL-40 were significantly correlated to clinical 
stroke severity; for details see Table 4 and Figure 2.

Relation of CSF markers to degree of WML. The only 
marker that was significantly associated with the degree of 
WML was NFL (4804.0 ± 2020.5 in the group with ARWMC 
score  #5 compared to 19044.0  ±  4240.8  in the group with 
ARWMC score .5; P = 0.033); for details see Table 5.

Discussion
In the present study, we found several marked neurochemical 
deviations reflecting neurodegeneration- and glia-related 
changes in patients with stroke compared with healthy con-
trols. The most pronounced changes were found in markers 
reflecting subcortical lesions ie, NFL28,29 and MBP,30 but 
changes in T-Tau31 corresponding to damage in cortical 
regions were also found. P-tau,32 which is known to be the 
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Figure 1. Concentration of CSF biomarkers of neurodegeneration- (panels A–D) and glia-related biomarkers (panels E–H) in patients with AIS, grouped 
according to NIHSS-assessed stroke severity (NIHSS , 5, NIHSS $ 5), as compared to controls.
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Table 4. CSF biomarkers in stroke patients (n = 20) in relation to clinincal stroke severity as defined by NIHSS.

NIHSS , 5 NIHSS $ 5 P-value (for comparisons  
by NIHSS score)

T-tau (ng/L) 743.3 ± 160.3 3186.1 ± 1126.7 0.017

P-tau181 (ng/L) 52.3 ± 9.2 55.0 ± 9.5 0.844

NFL (ng/L) 12570.0 ± 4206.7 19855.8 ± 6018.0 0.319

MBP (ng/mL) 7.5 ± 2.4 60.1 ± 29.9 0.033

GFAP (ng/L) 1900.8 ± 809.0 9685.0 ± 4176.9 0.040

MCP-1 (pg/mL) 753.1 ± 90.1 739.9 ± 34.9 0.910

SCD14 (ng/mL) 142.5 ± 12.0 163.8 ± 13.5 0.263

YKL-40 (ng/mL) 216.9 ± 15.4 334.8 ± 55.3 0.025

Notes: Data are expressed as mean ± SEM. Comparisons made by independent samples T test.

single most specific CSF biomarker for AD, was not at all 
affected. Subcortical biomarker deviations have also been 
found in prodromal and manifest subcortical vascular demen-
tia without obvious stroke episodes,33,34 which may indicate 
that subcortical lesions were present before the acute episodes.  
Levels of the glia-related markers GFAP and YKL-40 were 
also higher in AIS patients compared with healthy individuals.  
Both neurodegeneration- (T-Tau, MBP) and glia-related 
biomarkers (GFAP, YKL-40) were related to clinical stroke 
severity, but the only CSF biomarker that was significantly 
associated to the degree of WML was NFL.

Neurofilaments—being the most common sort of 
filaments—are mainly localized to the axons of myelinated tis-
sue. Elevated CSF levels of NFL are thus mainly indicative 
of subcortical axonal damage. This is in line with the overall 
increase in NFL and the high presence of WML (95%) in our 
study population. The levels of NFL in CSF have previously 
been found to correlate with both NIHSS on the day of lum-
bar puncture (10–14 days after acute brain damage) as well as 
outcome assessed by extended Glasgow outcome scale (GOSE), 
MMSE (mini mental state examination), and NIHSS after one 
year in patients with aneurysmal subarachnoid hemorrhage.35 
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Figure 2. CSF biomarkers important for discrimination between stroke patients and controls, the above left and right panels (A and B) and between mild 
and moderate/severe stroke patients, the left and right panels below (C and D); results of multivariate analysis performed by employing OPLS-DA.
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To our knowledge, data regarding CSF concentration of NFL 
in patients with AIS are extremely scarce, with only two avail-
able studies with contradictory results; one study measured 
NFL in six patients, all of them with middle cerebral artery 
infarction;24 no correlation to stroke severity or radiological 
findings was available in this study; the other study14 found 
no difference between CSF levels of NFL in stroke patients 
compared with controls. We believe that their negative results 
might be because of a different time-point of CSF sampling, 
extending up to 15  days after stroke onset. Moreover, the 
patients included had mixed pathology: vasculitis, herpes 
zoster infection, antiphospholipid antibodies, and malignancy. 
Other factors, such as non-age-matched controls and labora-
tory measurements, could also play a role. The levels of the 
biomarkers vary with the time-point for CSF sampling. The 
dynamics of certain CSF biomarkers in ischemic stroke is not 
very rapid; sampling the CSF on day 1 might not be relevant 
and/or consistent with the real dimension of the pathologic 
process, because several biomarkers reach their peak several 
days/weeks after the acute ischemia phase.36,37

The results of our study not only indicate that NFL is 
a good marker for discriminating between AIS patients and 
controls, but also that NFL was the only biomarker associated 
to the degree of WML. This suggests that NFL might be a 
marker of small vessel disease of the brain, as recently shown 
by Jonsson et al,38 because NFL was not significantly related 
to stroke severity.

Thus, our hypothesis is that NFL is primarily a marker of 
pre-existing small vessel disease in this stroke population with 
pronounced cardiovascular comorbidity.

The few studies that have previously measured the CSF 
levels of T-tau in AIS have reported a marked increase of 
this biomarker, which also seems to correlate with the infarct 
volume.37 In agreement with the results of Hesse et al37 and 
Strand et al,39 we also found high T-tau in CSF of patients 
with stroke, supporting the findings of tau as a marker of 
neuronal injury. P-tau, on the other hand, does not seem to 
be changed at all in stroke patients, which rather supports its 

role as a marker reflecting the neuropathological changes in 
patients with AD.40

Astroglial cells change from their normal quiescent state into 
a reactive state whenever damage is inflicted on the CNS. This 
process of reactive gliosis is characterized by a profound increase 
in GFAP. MBP, on the other hand, is expressed in oligodendro-
cytes and constitutes approximately 30% of the myelin.41

In the case of stroke, the most likely explanation for the 
elevated levels of MBP as well as GFAP, except for astroglio-
sis, is acute/subacute tissue destruction. In our stroke patients, 
the levels of MBP and GFAP correlate to each other; further-
more, they are both significantly higher in patients with mod-
erate to severe stroke than in those with mild stroke, thereby 
supporting their role as possible prognostic markers.

To our knowledge, no previous studies are available on 
the association of YKL-4042 to stroke severity. Our findings 
of increased levels of YKL-40  in patients with more severe 
stroke compared to those with mild stroke indicate that YKL-
40 might be a prognostic marker for neurological outcome.

So far, data on human CSF markers of neuroinflamma-
tion obtained from stroke patients are very limited. In one of 
the very few human studies on CSF levels of MCP-1 in stroke 
patients, Losy and Zaremba found high MCP-1 levels at 
24 hours after ischemic injury.43 Another marker, glycoprotein 
CD14,44 which exists both as a membrane-bound receptor on 
monocytic cells, and as a soluble form, has been suggested to 
possibly enhance phagocytic activity as well as suppress glial 
neurotoxicity.45 In our study, neither MCP-1 nor sCD14 was 
increased in AIS patients. One possible explanation could be 
the timing, because collection of CSF in our study was done at 
the earliest five days after stroke debut.

All the CSF markers that were elevated in AIS were inter-
correlated to each other, except NFL, which only correlated 
with T-tau (data not shown). This is an interesting finding, 
because tau is a protein found not only in neurons but also in  
glial cells, and tau immunoreactivity has been found both 
in astroglia and in oligodendroglia after TBI (traumatic brain 
injury) and stroke, respectively.46,47 This could possibly explain the 

Table 5. CSF biomarkers in stroke patients (n = 20) in relation to WML as defined by ARWMC score.

ARWMC # 5 ARMWC . 5 P-value (for comparisons  
by ARWMC score)

T-tau (ng/L) 2445.7 ± 1233.2 1329.9 ± 464.0 0.631

P-tau181 (ng/L) 57.6 ± 4.8 51.1 ± 9.9 0.295

NFL (ng/L) 4804.0 ± 2020.5 19044.0 ± 4240.8 0.033

MBP (ng/mL) 58.6 ± 36.6 12.2 ± 3.4 0.643

GFAP (ng/L) 6758.6 ± 3378.5 4075.4 ± 2323.4 1.000

MCP-1 (pg/mL) 713.7 ± 71.5 766.2 ± 76.5 0.930

SCD14 (ng/mL) 138.9 ± 11.7 157.6 ± 12.4 0.341

YKL-40 (ng/mL) 350.4 ± 62.0 217.6 ± 13.2 0.570

Notes: Data are expressed as mean ± SEM. Comparisons made by Mann-Whitney test.
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increase in T-tau, while P-tau still remains unchanged. However, 
the correlations could also be explained by acute tissue destruc-
tion affecting both cortical and subcortical neurons and glia.

One limitation of this study is the lack of data on the 
correlation of the location of cerebral lesions with the concen-
trations of CSF biomarkers; even if we tried to assess this rela-
tion, we could draw no conclusions, because the investigated 
material consisted predominantly of mixed type (corticosub-
cortical) infarctions, with very few purely cortical lesions.

In addition, this study is weakened by the collection of 
samples at different time points after stroke debut. On the 
other hand, serial CSF sampling—in the clinical setting of 
ischemic stroke—is not feasible. Another limitation of our 
study is the relatively low number of patients, though this is 
quite common in studies involving CSF sampling; therefore, 
we regard the present work as a pilot study. Also, the patients 
were treated according to the general treatment recommenda-
tions for stroke, and whether the treatment affected the CSF 
biomarkers or not, it is a question that remains to be answered. 
However, few drugs are known to penetrate the blood–brain 
barrier in normal conditions; thus, any potential effect of the 
drugs used would be indirect, by affecting the vascular com-
ponent, and not the neuronal component. Finally, the NIHSS 
scores on admission are low, mirroring only mild/moderate 
stroke. There was a natural selection because of the fact that 
the patients included in this study were also subjected to cog-
nitive screening (cognitive data in relation to CSF concentra-
tions of beta-amyloid are going to be presented in a future 
report). Thus, patients with more severe deficits were not able 
to perform the above-mentioned screening.

Nevertheless, the strength of our study is that this is the 
first time that eight different CSF biomarkers, reflecting both 
degeneration and inflammatory processes induced by ischemic 
injury, were simultaneously investigated.

Conclusions
The results of this study show that NFL is not only higher in 
patients with stroke, but also a good marker of the degree of 
WML, indicating that it may be a reliable indicator of previ-
ous cerebrovascular disease. In addition, the study showed that 
specific biomarkers related to both neurodegeneration (T-tau, 
MBP) and neuroinflammation (GFAP, YKL-40) were associ-
ated with clinical stroke severity.

In summary, our findings add to the knowledge on the 
CSF biochemical markers related to ischemic injury, and may 
thus help improving the diagnostic strategy and the treatment 
monitoring, as well as the estimation of clinical prognosis in 
patients with stroke.
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