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Abstract
IL-5-induced chemotaxis of eosinophils is an important feature of allergic airway inflamma-

tory diseases. Simvastatin, a lipid lowering agent, has been shown to exhibit anti-inflamma-

tory and anti-allergic effects. Our aim was to investigate the effect of simvastatin on IL-5-

induced eosinophil chemotaxis and its regulatory mechanisms. Eosinophils were derived

by treating HL-60 clone 15 (HC15) cells with butyric acid (BA) in an alkaline condition or

through direct isolation from human peripheral blood. The expressions of CC chemokine

receptor 3 (CCR3) and interleukin (IL)-5 receptors (IL5Rα and β) were analyzed using RT/

real-time PCR. The granular proteins were stained using fast green. Eotaxin-induced che-

motaxis was measured using a transwell migration assay. CCR3 protein expression was

revealed by immunocytochemistry. An animal model of allergic rhinitis was established by

challenging Sprague–Dawley1 rats repeatedly with ovalbumin. Butyric acid significantly

increased the expression of IL5Rα and IL5Rβ, CCR3 and granular proteins in HC15 cells,

indicating the maturation of eosinophils (BA-E cells). IL-5 further enhanced the CCR3

expression at both the mRNA and protein levels and the eotaxin-induced chemotaxis of BA-

E cells. Simvastatin inhibited the effects of IL-5 on BA-E cells, but not in the presence of

mevalonate. Similar results were also exhibited in human primary eosinophils. In vivo ani-

mal studies further confirmed that oral simvastatin could significantly suppress the infiltra-

tion of eosinophils into turbinate tissues of allergic rats. Therefore, simvastatin was

demonstrated to inhibit IL-5-induced CCR3 expression and chemotaxis of eosinophils medi-

ated via the mevalonate pathway. We confirmed that simvastatin also reduced eosinophilic

infiltration in allergic rhinitis.
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Introduction
Atopic diseases including allergic rhinitis, asthma and atopic dermatitis are global health prob-
lems resulting in significant comorbidity, and the economic impact is under-estimated. Allergic
rhinitis can increase the recurrence rate of sinusitis and nasal polyps [1], and is a risk factor for
asthma development [2]. In IgE-mediated diseases, such as allergic rhinitis and asthma, eosino-
phils play an important role in the allergic reaction, with their activation and migration into tis-
sues being common features. Activation of eosinophils results in inflammation, tissue edema,
airway remodeling, mucus production, and airway hyper-reactivity. Besides, release of several
cytokines and chemokines also relates to recruitment of eosinophils, causing corresponding tis-
sue damage [3]. In addition to responding to IL-5 producing cells in allergic reaction, eosino-
phils can express major histocompatibility complex class II and act as antigen presenting cells
in allergic airway [4]. Clinical manifestations of atopic airway diseases and the disease severity
are related to accumulation of eosinophils and release of their granular proteins [5]. Intercep-
tion of their activation, accumulation and degranulation is believed to have a marked therapeu-
tic effect on atopic diseases. Distinct responses to standard therapeutic plan for atopic airway
diseases have been reported for eosinophilic and non-eosionophilic airway inflammation, and
novel treatments have targeted inflammations based on phenotypes [6].

There are less than 4% eosinophils in human peripheral blood, necessitating large quantities
of blood for eosinophils studies to be conducted. HL-60 clone 15 (HC15) cells, derived from a
leukaemia cell line, can be induced to differentiate into eosinophils after treatment with butyric
acid in mildly alkaline conditions for 5–7 days [7]. Given the eosinophilic phenotype, these
cells can respond to eosinophilic chemoattractants and produce eosinophil granular proteins
too [8]. Therefore, these cells can be used as an alternative cell model to investigate the behav-
iors of human eosinophils.

The trafficking of eosinophils into allergic inflammatory sites has been shown to involve
several cytokines (e.g. IL-4, IL-5, IL-13) [9], adhesion molecules (e.g. integrins, selectins, inter-
cellular adhesion molecule-1) [10] and chemokines (e.g. RANTES and eotaxins) [11]. Among
these cytokines, only IL-5 and eotaxins are selectively specific in regulating eosinophils [12],
making them more suitable targets for the study of eosinophil activities. Eotaxin, a potent che-
moattractant of eosinophils, binds to CC chemokine receptor 3 (CCR3), which is expressed in
cells important in allergic inflammation, and appears potentially crucial for atopic diseases
[13]. IL-5, a key cytokine, which binds to the IL5R on eosinophils, is important for the survival,
activation and migration of eosinophils [14]. IL-5-induced chemotaxis of eosinophils has been
reported to involve several airway diseases [15–18]. Antagonists of IL-5 and CCR3 have been
found to have marked potential for inhibition of eosinophil recruitment in allergic diseases [9].
Accordingly, these two receptors are closely associated with eosinophil functions and were
investigated in the present study.

Statins, inhibitors of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, are gener-
ally utilized as cholesterol-lowering agents. Previous literature has demonstrated their addi-
tional anti-inflammatory and immunomodulatory effects [19]. Statin treatment has been
shown to reduce asthmatic airway inflammation in in vivomurine models [20–21], inhibit
monocytes chemotaxis in vitro [22] and decrease cell count and cytokine production in human
airway secretion [23]. Another recent clinical trial using oral statins to treat asthma, as supple-
mentary therapy to inhaled corticosteroids, showed an additive effect on the inhibition of spu-
tum eosinophils [24]. Through an adequate dose and delivery method, statins may have a
potentially therapeutic role in eosinophil-related allergic airway diseases. One of the most com-
monly used statins, simvastatin, was investigated in the present study using both a HC15 cell
model and human peripheral eosinophils. The effect of simvastatin on IL-5-induced CCR3
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expression and chemotaxis was examined. An allergic rhinitis animal model was also devel-
oped to confirm the in vivo effect of simvastatin on eosinophil infiltration. We believe this
study may advance the therapeutic principles related to allergic airway diseases.

Materials and Methods

Reagents
Butyric acid (BA), simvastatin, mevalonate, ovalbumin (OVA), fast green solution, neutral red,
Sirius Red, RPMI-1640 medium and propidium iodide (PI) were purchased from Sigma-
Aldrich (St. Louis, MO). Anticoagulant citrate dextrose solution, formula A (ACD-A) was pro-
vided by Harvest Technologies Corp (Plymouth, MA). Recombinant human IL-5 was obtained
from R&D systems (Minneapolis, MN). Ficoll-Paque™, RBC lysis buffer and Liu stain were pur-
chased from Blossom biotechnologies, Toolsbiotech Inc. and Giantech (Taiwan), respectively.
Eotaxin and aluminium hydroxide gel were obtained from InvivoGen (San Diego, CA) and
TRIzol reagent from Invitrogen (Carlsbad, CA). M-MLV reverse transcriptase was obtained
from USB Corporation (Cleveland, OH). Antibodies used for ERK and p38 MAPK inWestern
blotting were purchased from Cell Signaling Technology (Danvers, MA). Antibodies used in
immunocytochemical staining, CCR3 primary antibody and fluorescein isothiocyanate
(FITC)-conjugated secondary antibody were obtained from Aviva systems biology (San Diego,
CA) and Jackson ImmunoResearch Inc. (West grove, PA), respectively.

Cell cultures
HC15 cells were obtained from Bioresource Collection and Research Center (Taiwan, ROC).
Cells were cultured in RPMI-1640 medium containing 10% fetal bovine serum (FBS) and pH
was adjusted to 7.6–7.8 to maintain the differentiation ability towards eosinophils. Cells at
1×106 cells/ml were sub-cultured in a 1:5 dilution in fresh growth medium. Medium was
refreshed every 2 to 3 days. Cells were maintained at 37°C in an atmosphere of 95% air/5%
CO2. The eosinophilic differentiation was induced by treating HC15 cells with 0.5 μM butyric
acid for 5 days (BA-E cells). Cell viability was determined by tryptan blue exclusion assay. Cells
were mixed with 1/10 volume of 0.4% trypan blue in phosphate-buffered saline, pH 7.2, loaded
on a hemacytometer and examined under a microscope at low magnification. If cells took up
trypan blue and cytosol appeared in blue, they were considered non-viable. Cell survival rate
was calculated as the number of viable cells divided by the total number of cells.

Human primary eosinophils were isolated from the peripheral blood of healthy donors (2
females and 3 males, without any reported allergic disease or taking any medications) with
informed consent approved by the Institutional Review Board of Chang Gung Memorial Hos-
pital (104-4615B). In brief, venous blood anticoagulated with ACD-A was processed for centri-
fugation in combination with Ficoll-Paque™. The lower layer was mixed with RBC lysis buffer
to lyse the red blood cells and the remaining granulocytes were processed further using a
human Eosinophil Enrichment Kit (Stem Cell Technologies, Vancouver, BC). The characteris-
tics of eosinophils such as deep-purple-colored cytoplasmic granules and a bilobed nucleus fol-
lowing staining with Liu stain were verified by morphological observation under a light
microscope. Human primary eosinophils were placed in the RPMI-1640 medium containing
10% FBS and immediately used for the experiments.

Staining of cellular granular proteins
Fast green and neutral red were used to stain the morphological changes and the cellular granu-
lar proteins. Cells were cytospun to glass slides, air-dried and fixed in methanol. Slides were
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incubated in 0.2% fast green solution for 10 min. After washing with running water, slides were
stained with 0.5% neutral red for 5 min, then washed again, air-dried and mounted. Cells were
observed and photographed using a light microscope. Green color represented cytoplasmic
granule proteins and red color represented the nuclei of eosinophils.

Chemotaxis assay
Eosinophil chemotaxis assays were performed using transwell filters (8μm pore size; Corning,
NY) with 10 ng/ml eotaxin used as a chemoattractant along with 650 μl RPMI 1640 added in
the lower chamber. After experimental treatments, 2×105 cells were harvested, washed twice
with 1× PBS and then resuspended in 250 μl RPMI 1640 in the upper chamber. Chemotaxis
assays were performed at 37°C in an atmosphere of 95% air/5% CO2 for 3 h. The filter was
removed, stained and cell number was counted in four random fields (200×) under
microscopy.

RNA extraction and RT/real-time PCR
Cells were lysed in 0.5 ml TRIzol reagent, and 100 μl chloroform–isoamyl alcohol (49:1, v:v)
was added to the homogenate. After vortexing for 1 min, the solution was centrifuged at 12,000
rpm for 20 min at 4°C. The RNA was precipitated by the addition of 0.5 ml isopropanol and
kept at −80°C for 1 h. RNA was pelleted by centrifuging the solution at 12,000 rpm for 20 min
at 4°C. The RNA pellet was rinsed in ice-cold 75% ethanol, air-dried and dissolved in DEPC-
treated ddH2O. The cDNA was synthesized from total RNA using M-MLV reverse transcrip-
tase. Real-time PCR was performed with universal cycling conditions (15 min at 95°C, followed
by 40 cycles of 30 s at 95°C, 1 min at 55°C and 30 s at 72°C) using an Mx3000 real-time PCR
detection system (Agilent Tech, CA, USA) with IQTM SYBR Green Supermix (Bio-Rad Labs,
LA, USA) according to the manufacturer’s instructions. GAPDH was used as an internal stan-
dard. Oligonucleotide sequences for primers in this study were as follows: GADPH (forward:
50-GACCTGACCTGCCGTCTA-30; reverse: 50-AGGAGTGGGTGTCGCTGT-30); CCR3 (for-
ward: 50- TCCCTCTGCTCGTTATGG-30; reverse: 50-GATGCTTGCTCCGCTCAC-30); IL-5
receptor (IL5R): (forward: 50-ATTGAAGGAACTCGTCTC-30; reverse: 50-CTCTCACTTGAA
CATCGTA-30).

Western blotting
HC15 cell extracts were prepared in lysis buffer containing Tris-HCl (pH 7.5), 150 mM NaCl,
1 mM EDTA, 2 mMDTT, 2 mM PMSF, and 1% Triton X-100 (Sigma-Aldrich, St. Louis, MO).
Protein concentration of the cell extracts was determined by Bradford assay (Bio-Rad Labora-
tories, CA). Samples with identical protein quantities were then separated by 10% sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto a PVDF
membrane. The membrane was incubated at room temperature in blocking solution (1% BSA,
1% goat serum in PBS) for 1h, followed by 2-h incubation in blocking solution containing an
appropriate dilution of primary antibodies. After washing, the membrane was incubated in
PBS containing secondary antibodies conjugated with horseradish peroxidase (Sigma-Aldrich,
St. Louis, MO) for 1h. The membranes were washed, and the positive signals developed with
enhanced chemiluminescence reagent (Amershan Pharmacia Biotech, Little Chalfont Bucking-
hamshire, UK). The semiquantitative measurement of the band density was calculated by Digi-
tal Analysis Software (Kodak Digital Science TM, Eastman Kodak, Rochester, NY). The band
density of each protein was normalized to relative band density of tubulin.
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Immunocytochemical stain
Cells were cytospun on glass slides, air-dried and fixed in 10% formaldehyde for 15 min. Slides
were incubated quickly in blocking buffer (Bio-cando, Taipei, Taiwan) for 1 min and then
CCR3 primary antibody (1:500 dilution; rabbit) was added for 2 h at room temperature. After
washing slides with 1× PBS containing tween-20 (PBST), FITC-conjugated (1:200 dilution) goat
anti-rabbit secondary antibody was added for 30 min at room temperature followed by another
wash and PI (1:1000) staining for 5 min at 37°C. Finally the slides were washed with PBST, air-
dried and mounted with fluorescent mounting medium. Cells were observed using a fluorescent
microscope (Nikon DXM1200), and Nikon ACT-1 image software was used for data analysis.

Allergic rat model
Animal studies were conducted with the approval of the Institutional Animal Care and Use
Committee of Chang Gung University (CGU13-074). This study was carried out in adherence
to the National Institutes of Health guidelines. We anesthetized the rats by 4–5% inhaled iso-
flurane for induction and kept 3% isoflurane for maintenance to reduce the distress and suffer-
ing of animals before any procedure that is potentially stressful. Humane endpoints and
euthanized animals prior to the endpoint of these experiments were applied. We determined
when the animals should be euthanized by the signs of anorexia, weight loss more than 20%,
dysphagia, dyspnea, cyanosis, or seizures. Overdose sodium pentobarbital would be applied as
the method of euthanasia. The health of the rats was examined and monitored every 2 h, and
there were no unexpected deaths among the experimental rats.

Male pathogen-free Sprague–Dawley1 (SD) rats (BioLASCO Taiwan Co., Ltd., Taiwan),
weighing 150 to 250 g, were housed in a temperature- and light-controlled room with free access
to food and water. Rats were sensitized and challenged with OVA according to a previous study
with some modifications [25]. Rats were sensitized by subcutaneous injection of 1 ml saline con-
taining 1 mg OVA (2 � 10 μg/0.1 ml) and 3.5 mg aluminium hydroxide gel (2%) on day 1. Four-
teen days after OVA sensitization, rats from all groups were prepared for allergen challenge. The
rats were divided into a control group, sensitized group and treatment group. The sensitized and
treatment groups were sensitized by OVA on the first day, whereas the control group was injected
with PBS only. Rats from the treatment group were treated with 40 mg/kg simvastatin intragastri-
cally one day before the allergen challenge. Rats were exposed to an aerosolized 0.5% (wt/vol)
OVA challenge for 30 min daily on 3 consecutive days, using a nebulizer (PARI BOY1, Germany)
in a 40 × 50 × 60 cm exposure chamber, with an airflow rate of 4.41 L/min and mean air particle
diameter of 3.7 μm. Rats were sacrificed on the next day after the 3-day challenge was completed.

Histological examination
Turbinate tissue, documented to be the site for a higher infiltration of eosinophils [25], was
harvested from the lateral nasal wall, washed with PBS twice, fixed in 10% neutral-buffered for-
malin for 24 h at room temperature and embedded in paraffin. Sections were cut at 5 μm thick-
ness at the head of turbinates and stained with hematoxylin and eosin (H&E) for routine
morphology and eosinophil counts. Sirius Red stain was applied as well for its better eosino-
philic staining [26]. The number of infiltrated eosinophils for each group was recorded in five
random areas by light microscopy.

Statistical analysis
AMann–Whitney test was used for comparison of CCR3 presentation and migrated/infiltrated
cell counts between each group. Data were presented as mean ± standard error of mean (SEM).
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All the p-values were 2-tailed, whereas P< 0.05 was considered statistically significant and
P< 0.01 indicated a more marked significance. Statistical analysis was performed using Prism
5.0 (GraphPad Software Inc., La Jolla, CA).

Results

Up-regulated expression of IL5R, CCR3 and granular proteins in BA-E
cells
HC15 cells were treated with 0.5 μM BA for 0, 1, 3 and 5 days and the expression of IL5Rα,
IL5Rβ and CCR3 was analyzed by RT/real-time PCR. The mRNA expression level of IL5Rα
was increased significantly by BA and reached its nadir on day 5 (Fig 1A). The mRNA expres-
sion levels of IL5Rβ and CCR3 were similar to IL5Rα (Fig 1B and 1C, respectively). Results
demonstrated that BA treatment for 5 days successfully induced the expression of correspond-
ing receptors for major eosinophilic chemoattractants including IL-5 and eotaxins. In addition,
the cytosolic eosinophilic granular proteins as revealed by fast green stain, were also signifi-
cantly increased in BA-E cells (Fig 1D). Thus, the differentiation of HC15 cells towards eosino-
phils by BA treatment for 5 days was suitable for the study of eosinophilic chemotaxis.

IL-5 enhanced chemotaxis and CCR3 expression in BA-E cells
BA-induced expression of both IL5Rα and IL5Rβ enabled the cells to respond to exogenous IL-
5, particularly the eosinophilic chemotactic ability. We treated BA-E cells with different

Fig 1. Effects of butyric acid on HC15 cells.RNA was isolated from HC15 cells at different days after 0.5 μMBA
treatment and analysed by RT/real-time PCR to detect the expression of (A) IL5Rα, (B) IL5β and (C) CCR3. Data were
presented as the combined mean ± standard error of mean (SEM) of n = 4 independent experiments. (D) Fast green
and neutral red stain revealed the formation of granular proteins in HC15 cells without (left panel) and with the BA
treatment for 5 days (right panel).

doi:10.1371/journal.pone.0157186.g001
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concentrations of IL-5 (0, 1, 5, 10, 20 ng/ml) for 24 h and assessed the chemotaxis of cells
towards eotaxin stimulation. Fig 2A revealed a dose-dependent enhancement of chemotatic
ability and the maximal effect of IL-5 was observed at a concentration of 10 ng/ml. The expres-
sion of CCR3, the receptor for eotaxins, was also increased by IL-5 (Fig 2B) with maximal effect
at 10 ng/ml similar to the result of the chemotaxis study.

Simvastatin Inhibited IL-5-Induced Chemotaxis of BA-E Cells
The effect of simvastatin on IL-5-induced chemotaxis of BA-E cells was investigated. We
found a dose-dependant inhibition ability for cell viability for BA-E cells and being favorable if
pretreated simvastatin was no more than 25 μM (Fig 3A). Cell viability would decrease to 70%
or less if HC15 cells were pretreated with simvastatin more than 25 μM. HC-15 derived eosino-
phils were pretreated with 25 μM simvastatin for 3 h before stimulation with IL-5 and chemo-
taxis was measured at 24 h after the addition of 10 ng/ml IL-5. Fig 3B revealed that simvastatin
had a significant inhibitory effect on the IL-5-induced chemotactic ability towards eotaxin
(P = 0.028).

Simvastatin Effect on IL5R and CCR3
The inhibition of IL-5-induced chemotaxis towards eotaxin could possibly be because of the
modulation of either IL-5R or CCR3. To understand the mechanism of the inhibitory effect of
simvastatin on chemotaxis, the expression levels of IL5R and CCR3 were investigated. Results
demonstrated neither IL5Rα nor IL5Rβ expression in BA-E cells was affected by simvastatin
treatment for 3 h (Fig 3C and 3D). However, the expression of CCR3 at the mRNA level was
down-regulated in a dose-dependant manner as revealed by RT/real-time PCR (P = 0.028) (Fig
4A). Similar results were also obtained by immunofluorescent staining of the BA-E cells, show-
ing the inhibitory effect of simvastatin on CCR3 protein expression (Fig 4B).

Simvastatin inhibited p38 MAPK and ERK1/2 phosphorylation in BA-E
cells
To further discover the effect of simvastatin for signaling pathway related to CCR3-mediated
chemotaxis of eosinophils, downstream effectors of CCR3 pathway, p38 MAPK and ERK1/2,

Fig 2. Dose-dependent effect of IL-5 on the chemotaxis and CCR3 expression in BA-E cells. BA-E cells were
treated with different concentration of IL-5 for 24 h and (A) the number of migrated cells towards 10 ng/ml eotaxin was
determined and (B) the CCR3 expression was analysed by RT/real-time PCR. Data were presented as the combined
mean ± SEM of n = 4 independent experiments. *P < 0.05, **P < 0.01, Mann–Whitney U test.

doi:10.1371/journal.pone.0157186.g002
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Fig 3. The inhibitory effects of simvastatin on cell viability, chemotaxis and receptor expressions of BA-E
cells. BA-E cells were pretreated with simvastatin for 3 h and then stimulated by 10 ng/ml IL-5 for 24 h. (A) The cell
survival rate was determined by trypan blue exclusion assay. (B) Chemotaxis assay using 10 ng/ml eotaxin as a
chemokine was performed as described to determine the number of migrated cells. Expressions of (C) IL5Rα and
(D) IL5Rβ were measured by RT/real-time PCR. Data were expressed as the combined mean ± SEM of n = 4 (A, B)
or n = 5 (C, D) independent experiments.*P < 0.05, Mann–Whitney U test.

doi:10.1371/journal.pone.0157186.g003

Fig 4. Effect of simvastatin treatment on CCR3 and downstream activation of ERK1/2 and p38 in BA-E cells. (A) BA-E
cells were pretreated with 0–25 μM simvastatin for 3 h and stimulated by 10 ng/ml IL-5 for 24 h. Presentation of CCR3
measured by real-time PCR was inhibited by simvastatin treatment in dose-dependant manner if BA-E cells treated with
simvastatin no more than 25 μM. (B) CCR3 expression (green) on the surface of BA-E cells was revealed by
immunocytochemical stain in different treatments. (C) BA-E cells were pretreated with/without 25 μM simvastatin for 3 h,
followed by 10 ng/ml IL-5 for 24 h and 100 ng/ml eotaxin was added for 0, 30, 60 and 90 min. The activations of ERK1/2 and
p38 were analyzed byWestern blot with the use of antibodies against phosphorylated ERK1/2 and phosphorylated p38
MAPK. Data were expressed as the combined mean ± SEM of n = 5 independent experiments. #P < 0.01, compared with
BA-E cells without IL-5 treatment; *P < 0.05, compared with IL-5 primed BA-E cells without simvastatin treatment, Mann–
Whitney U test.

doi:10.1371/journal.pone.0157186.g004
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were investigated. P38 MAPK and ERK1/2 have been proved to involve in the chemotaxis of
eosinophils [27]. BA-E cells were co-cultured with / without 25 μM simvastatin for 3 h before
10 ng/ml IL-5 and 100 ng/ml eotaxin stimulation. Western blot was applied to compare the
simvastatin effect for the phosphorylation activity of p38 MAPK and ERK1/2. Eotaxin treat-
ment enhanced the presentation of phospho-p38 MAPK (p-p38) and phospho-ERK1/2 (p-
ERK) after 30 min (Fig 4C). A significant suppression was discovered for the presentation of p-
p38 and p-ERK1/2 in simvastatin-treated BA-E cells. Accordingly, we may propose the sup-
pression of phosphorylation activity of p38 MAPK and ERK1/2 were related to inhibition
effects of simvastatin for IL-5 enhanced CCR3-mediated chemotaxis of eosinophils.

Mevalonate reversed the inhibitory effects of simvastatin on chemotaxis
and CCR3 presentation
Statins can suppress the formation of mevalonate by inhibiting HMA-CoA reductase. To deter-
mine whether the inhibitory effect of simvastatin on IL-5-induced chemotaxis was mediated by
blockage of the mevalonate pathway, the restorative effect of mevalonate was analyzed. BA-E
cells were co-cultured with 2 μMmevalonate and 25 μM simvastatin for 3 h before IL-5 stimu-
lation. A chemotaxis assay and RT/real-time PCR for CCR3 expression were subsequently per-
formed as mentioned above. Results demonstrated that mevalonate could reverse the
inhibition of chemotaxis (Fig 5A) and CCR3 expression at both the mRNA and protein levels
(Fig 5B and 5C, respectively). Thus, the inhibitory effects of simvastatin for IL-5-induced che-
motaxis and CCR3 presentation were achieved by the inhibition of the mevalonate pathway.

Simvastatin exerted similar effects on human primary eosinophils
To test whether the modulation of chemotaxis and CCR3 expression by IL-5 and simvastatin
in BA-E cells could represent the cellular physiology of primary eosinophils isolated directly
from human blood, we performed the same experiments as described above. Human primary
eosinophils pretreated with 25 μM simvastatin for 3 h were stimulated by 10 ng/ml IL-5 for
24h, and then the chemotactic ability and CCR3 expression were analyzed with at least 90%
cell viability. The expression of CCR3 significantly increased after IL-5 stimulation and was sig-
nificantly suppressed by simvastatin (both P< 0.001) (Fig 6A). Simvastatin also significantly

Fig 5. Mevalonate replacement reversed the inhibitory effects of simvastatin on BA-E cells. BA-E cells were
pretreated with 2 μMmevalonate and 25 μM simvastatin for 3 h before the stimulation of 10 ng/ml IL-5 for 24 h. (A)
Chemotaxis assay using eotaxin as a chemokine was performed as described. (B) CCR3mRNA expression was analyzed
by RT/real-time PCR. Data were expressed as the combined mean ± SEM of n = 4 independent experiments. *P < 0.05,
Mann–Whitney U test. (C) CCR3 protein expression (green color) on the surface of BA-E cells was revealed by
immunocytochemical stain in different treatments.

doi:10.1371/journal.pone.0157186.g005
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inhibited the IL-5-induced chemotaxis of human primary eosinophils (P = 0.012) (Fig 6B),
similar to the results observed in BA-E cells.

Simvastatin reduced eosinophil infiltration in a rat allergic rhinitis model
The inhibition of IL-5-induced chemotaxis and CCR3 expression in eosinophils by simvastatin
may impede in vivo tissue infiltration of eosinophils. To explore the in vivo effect of simvastatin
on eosinophil infiltration, an allergic rhinitis rat model was established. The eosinophil infiltra-
tion was observed in turbinate tissue by H&E stain under light microscopy (Fig 7A). The
results from 15 rats revealed an increase in the number of infiltrated eosinophils after OVA

Fig 6. Effects of simvastatin on the chemotaxis and CCR3 expression in human primary eosinophils.
Human primary eosinophils isolated from peripheral blood were pretreated with simvastatin 25 μM for 3 h and
then stimulated by 10 ng/ml IL-5 for 24 h. (A) CCR3 expression and (B) chemotatic ability towards eotaxin
were analyzed. Data were expressed as the combined mean ± SEM of n = 5 (A) or n = 4 (B) independent
experiments.*P < 0.05, **P < 0.01, Mann–Whitney U test.

doi:10.1371/journal.pone.0157186.g006

Fig 7. Simvastatin reduced eosinophil infiltration in a rat model of allergic rhinitis. Rats were sensitized by
subcutaneous OVA injection on day 1 except for control group. Rats of the simvastatin treatment group were treated with
40 mg/kg simvastatin intragastrically one day before allergen challenge. Fourteen days after OVA sensitization, rats of all
groups received allergen challenge with aerosolized OVA for 30 min daily on three consecutive days and sacrificed on the
next day to examine the infiltration of eosinophils in turbinate mucosa by (A) H&E stain and (B) Sirius Red stain under light
microscopy (400×). (C) Number of eosinophil infiltration counts was recorded in five random areas for each group. Data
were expressed as the combined mean ± SEM of five rats. **P < 0.01, Mann–Whitney U test.

doi:10.1371/journal.pone.0157186.g007
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sensitization and subsequent challenge (P = 0.008) (Fig 7C). After simvastatin treatment, the
number of infiltrated eosinophils was significantly inhibited (P = 0.008). Another eosinophil-
specific stain, Sirius Red [26], was applied and revealed the similar results (Fig 7B). Simvastatin
was demonstrated to exert an in vivo inhibitory effect on reducing the eosinophil infiltration in
an animal model of allergic rhinitis.

Discussion
HL-60 clone 15 cells maintained in an alkaline condition have been demonstrated to differenti-
ate into eosinophils by treatment with butyric acid, a histone deacetylase [28]. The differenti-
ated cell line has been utilized to exhibit ERK1/2 phosphorylation after IL-5 or eotaxin
stimulation and human eosinophils had the same response [29]. RNA silencing of GATA-2
had a similar effect, resulting in a decreased expression of eosinophil-derived neurotoxin for
both HC15-derived and differentiating human eosinophils derived from CD34+ hematopoietic
progenitors [30]. As revealed by various chemical stain methods, HL-60-derived eosinophils
can produce typical granules as seen in human primary eosinophils [31]; therefore, they are
suitable cell models for human primary eosinophils. It could help us to understand more about
the characteristics of eosinophils, which although constitute a small percentage of the human
peripheral blood, play a critical role in allergic diseases and potentially contribute to the devel-
opment of new therapeutic approaches.

A previous literature reported fluvastatin and lovastatin significantly inhibited GM-CSF-
stimulated eosinophil adhesion to rhICAM-1 but had no effect for unstimulated eosinophils
[32]. In that study, fluvastatin and lovastatin at a low concentration of 1–10 nM significantly
inhibited GM-CSF-stimulated eosinophil adhesion to rhICAM-1, but not by same concentra-
tion of simvastatin or pravastatin. It clearly indicates that although statins all exhibit the same
effect to inhibit HMG-CoA reductase and reduce LDL and triglycerides in the blood, their
actions in different cell types and appropriate dosage should be carefully determined by experi-
ments. Further, in inflammatory and allergic disorders, such as asthma and allergic rhinitis, are
associated with the behaviors of primed eosinophils. Thus we preceded our study with primed
eosinophils stimulated with IL-5, including the following investigation of inhibitory ability for
statins.

Because the recruitment of eosinophils is closely associated with the severity of allergic dis-
eases, the chemotaxis of eosinophils and related regulatory mechanisms have become the
emphasis of the present study. Among the cytokine receptors that have been identified on
eosinophils those specific to eosinophil trafficking include IL5R for IL-5 and CCR3 for eotaxin
[16], and these were proved to be highly expressed on HC15-derived eosinophils in this study.
Although IL-5-induced chemotaxis has been generally recognized as one of the the most criti-
cal roles of eosinophils in severity of atopic airway diseases, the anti-IL-5 therapy targeting
elimination of eosinophils has not brought about any major clinical improvements [33]. The
present investigation discovered that a maximal effect could be reached for both CCR3 expres-
sion and IL-5-induced chemotaxis by treatment with IL-5. Given CCR3 is also one of the che-
mokine receptors selectively responsible for eosinophil trafficking, its amplification during IL-
5 stimulation is likely to be involved in the reinforcement of chemotactic ability for both BA-E
cells and human primary eosinophils.

In addition to the cholesterol-lowering effect, statins have been demonstrated to exhibit
anti-inflammatory and immunomodulation effects [34–35]. Simvastatin has also been found
to significantly reduce the rhinovirus-induced CXCL10 secretion from human alveolar macro-
phages which corresponded with decreases in IFN-α secretion and pSTAT1 [36]. Rhinovirus
infection frequently triggers the exacerbations of asthma and currently no appropriate
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intervention is available. Simvastatin might be further developed based on this anti-inflamma-
tory effect to attenuate the chance of asthma triggered by rhinovirus. As a potential treatment
for respiratory inflammatory diseases, simvastatin is likely to exhibit multiple beneficial effects
that required more studies to understand in details. In addition, a decrease in inflammatory
infiltrates in lung tissue and cell counts in bronchoalveolar lavage fluid (BALF) has been previ-
ously demonstrated in allergic murine models after statin treatment [20–21]. Another mouse
model of asthma revealed that a CCR3 monoclonal antibody could significantly suppress air-
way eosinophilia and mucus production without decreasing IL-5 levels in BALF [37]. Simva-
statin in the present study, for the first time, we demonstrated that simvastatin could
significantly inhibit IL-5-induced chemotaxis of BA-E cells with comparable cell viability.
Compared to asthma, allergic rhinitis is a more prevalent disease with quite different pathogen-
esis. We also firstly proved that simvastatin can inhibit the eosinophil infiltration in nasal tur-
binates of an allergic rhinitis animal model that is different from previous studies focused only
in lung or BALF of asthmatic mice [20, 21]. The expression of CCR3, but not IL5R, was sup-
pressed by simvastatin as well both at the mRNA and protein levels in BA-E cells or human
primary eosinophils. The inhibition of CCR3, one of the most specific chemokine receptors
responsible for eosinophil trafficking, may contribute significantly to the suppression of
inflammatory cell recruitment in eosinophil-dominant allergic diseases. In addition, our in
vitro study suggests that the molecular mechanism underlying this inhibitory effect of simva-
statin is likely associated with the suppression of downstream activation of ERK1/2 and p38
signaling pathways in IL-5-treated eosinophils. This pharmacological effect of simvastatin has
not yet been reported before either. We may propose the phosphorylation activity suppression
was related to inhibition effects of simvastatin for IL-5 enhanced CCR3-mediated chemotaxis
of eosinophils. Simvastatin has been examined in only one previous study on the expression of
CCR3 in murine tracheal epithelium cells [37]. However, this study only investigated the genes
that could be induced by IL-13. Because the expression of CCR3 in murine tracheal epithelium
cells was not affected by IL-13, the effect of simvastatin was not observed. Therefore, the modu-
lation of CCR3 expression is dependent on the cell type and cytokine used in the study. Our
results demonstrated the specific inhibitory effect of simvastatin on CCR3 expression in
eosinophils.

In eosinophilic airway diseases, statins have been shown to have no steroid-sparing effect
for asthmatics [35]. However, they are useful in attenuating Th2 cytokines concentration in
BALF [38] and decreasing the eosinophil counts in sputum related to the severity of asthma
[24] and hospitalization for asthma attacks, which was shown in a nationwide study [39]. Fur-
thermore, the inhibitory effect of statins has been proposed regarding the proliferation, myofi-
broblast differentiation and collagen production in nasal polyp-derived fibroblasts [40–41],
indicating that statins may be another potential treatment for nasal polyps, which is a Th2-do-
minant and eosinophil infiltrative sinonasal disease [42]. We demonstrated IL-5-induced
CCR3 gene expression of eosinophils is already reduced by simvastatin at the concentration of
5 μMwhen cell viability was not yet affected (Fig 4A). The clinical usage of simvastatin for an
adult is suggested to be 10–40 mg/day. Dosage at 80 mg/day is sometimes applied. The blood
volume in an adult is 60–80 ml/Kg. Therefore, for a 60 Kg adult, the maximum concentration
of simvastatin is calculated to be around 10–30 μM. Xu et al have reported the effect of simva-
statin delivered by inhalation at a higher concentration of 5 mg/ml (12 mM) to attenuate air-
way inflammation in a murine model of asthma [43]. By delivering simvastatin via inhalation
could eliminate the problems of systemic adverse effects and low clinical efficacy by oral
administration. These results suggest that simvastatin is a potential anti-inflammatory drug for
airway inflammatory diseases with properties suitable for delivery by inhalation, which proba-
bly could also be applied to treat allergic rhinitis. Recently, a novel simvastatin inhalation

Simvastatin Inhibits Chemotaxis and CCR3 Expression in Eosinophils

PLOS ONE | DOI:10.1371/journal.pone.0157186 June 8, 2016 12 / 15



formulation is developed and characterized by Tulbah et al [44]. In this delivery method, sim-
vastatin at concentration as high as 0.5%, w/w (10 mM) is formulated. Therefore, study on the
local effect of simvastatin at higher concentration is necessary in the future for the development
of new inhalation method for airway inflammatory diseases.

Co-treatment with mevalonate could reduce the inhibitory effect of statins for pulmonary
inflammation and leukocyte influx into airways in an allergic murine model [45]. In this study,
mevalonate replacement reversed the inhibitory effect of simvastatin on IL-5-induced chemo-
taxis, thus statin-induced inhibitory effects on eosinophil chemotaxis may occur through the
mevalonate pathway. It also neutralized the reduction of CCR3 expression by simvastatin in
both mRNA and protein expression. Because CCR3 is crucial for IL-5-induced chemotaxis as
shown previously in this study, mevalonate reversed the inhibitory effect of simvastatin on che-
motaxis probably by way of restoring the expression of CCR3.

Collectively, CCR3 is of great value in modulating IL-5-induced chemotaxis, a key step in
the allergic reaction, in both BA-E cells and human primary eosinophils. Simvastatin, a poten-
tially useful therapeutic agent, with its inhibitory effect on chemotaxis of eosinophils via the
mevalonate pathway may be quite beneficial in eosinophil-predominant atopic diseases and
may provide another treatment option for those unresponsive to anti-IL5R therapy. The
molecular mechanism underlying this inhibitory effect of simvastatin is possibly associated
with the suppression of CCR3 gene expression and downstream activation of ERK1/2 and p38
signaling pathways in IL-5-treated eosinophils that need more investigations to confirm in the
future. The present study also provided important evidence about BA-E cells that behave simi-
lar to human primary eosinophils in response to IL-5 including the CCR3 expression and the
chemotaxis towards eotaxin, a crucial step in allergic reactions. Therefore, BA-E cells could be
used alternatively as an excellent cell model for exploring the molecular regulation of eosino-
philic functions and progressing the development of potential therapeutics for atopic diseases.
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