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Abstract: Acute myeloid leukaemia (AML) is an aggressive haematological malignancy with a poor
overall survival. Reactive oxygen species (ROS) have been shown to be elevated in a wide range of
cancers including AML. Whilst previously thought to be mere by-products of cellular metabolism,
it is now clear that ROS modulate the function of signalling proteins through oxidation of critical
cysteine residues. In this way, ROS have been shown to regulate normal haematopoiesis as well
as promote leukaemogenesis in AML. In addition, ROS promote genomic instability by damaging
DNA, which promotes chemotherapy resistance. The source of ROS in AML appears to be derived
from members of the “NOX family” of NADPH oxidases. Most studies link NOX-derived ROS to
activating mutations in the Fms-like tyrosine kinase 3 (FLT3) and Ras-related C3 botulinum toxin
substrate (Ras). Targeting ROS through either ROS induction or ROS inhibition provides a novel
therapeutic target in AML. In this review, we summarise the role of ROS in normal haematopoiesis
and in AML. We also explore the current treatments that modulate ROS levels in AML and discuss
emerging drug targets based on pre-clinical work.

Keywords: acute myeloid leukaemia; reactive oxygen species; oxidative stress; NADPH oxidases;
anti-oxidants

1. Acute Myeloid Leukaemia

Acute myeloid leukaemia (AML) is a highly aggressive heterogeneous cancer of immature
cells of the myeloid lineage known as myeloblasts, or AML blasts. Recurring somatic mutations in
epigenetic modifying genes block differentiation into more mature forms, leading to clonal expansion
within the bone marrow and blood. This leads to bone marrow failure and ultimately death without
successful treatment. Typically, patients present with clinical symptoms related to failure of normal
haematopoiesis including fatigue, breathlessness, bleeding events, and infections. Overall survival has
improved marginally over the last 40 years, predominantly thanks to improvements in supportive care.
Most of the gains, however, are in seen younger patients (<40 years) who have an estimated 5 year
overall survival of ~50%. Outcomes for older patients’ remain dismal with less than 5% of patients
over the age 70 surviving long term [1].

In recent years, the genomic landscape of AML has been well characterized and has highlighted
the biological heterogeneity of AML [2,3]. The treatment of AML, however, has remained largely
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unchanged since the advent of the so-called “7 + 3” regimen in the 1970s, with younger fit patients
being transplanted once they reach their first complete remission, apart from patients deemed to have
a favourable genetic profile, and older patients receiving palliative chemotherapy and transfusion
support only. In the last two years, the United States Food and Drug Administration (FDA) has approved
a number of novel targeted therapies for AML. These include the small molecule inhibitor Rydapt
(midostaurin) for Fms-like tyrosine kinase 3 (FLT3)-mutant patients [4], and Tibsovo (ivosidenib) [5]
and Idhifa (enasidenib) [6] for isocitrate dehydrogenase (IDH1 and IDH2)-mutant patients [7], as well
as agnostic therapies such as the B-cell lymphoma 2 (BCL2) inhibitor Venetoclax [8]. Whilst responses
appear impressive, relapse rates remain high and follow-up durations are short, highlighting the
importance of ongoing research investigating the underlying biological processes that drive AML
initiation and progression [9]. This review outlines the emerging roles reactive oxygen species (ROS)
play in the pathogenesis of AML, with a focus on current and future therapeutic interventions where
modulating ROS levels may play a key role.

2. Overview of Reactive Oxygen Species and Redox Homeostasis

ROS are a heterogeneous group of molecules and radicals including superoxide anion (O2
•−),

hydrogen peroxide (H2O2), and the hydroxyl radical (HO•−). ROS have been extensively studied in
cancer over the last 20 years [10] and have been implicated in neurodegeneration [11,12], ageing [12,13],
diabetes [14,15], and hypertension [16]. Mitochondria were first discovered to produce ROS, namely
hydrogen peroxide, over fifty years ago [17]. Whilst previously it was thought that these ROS were
non-functional by-products of cellular metabolism causing tissue damage and promoting disease
through lipid peroxidation and DNA damage, it is now well recognised that they play an important
role in cellular signalling in both physiological and pathological cellular processes [18].

Superoxide anion is produced by a one electron reduction of oxygen and is the precursor to
most ROS. During oxidative phosphorylation, 1–5% of electrons escape from the electron transport
chain, giving rise to a background level of superoxide in the presence of oxygen [19]. It has been
shown in vitro that superoxide is predominantly produced from Complexes I and III of the electron
transport chain, with some variability depending on cell type [20–22]. Given the physiological amounts
generated, superoxide can be dismutated to hydrogen peroxide, which can be further reduced to
water via the cooperation of superoxide dismutase and catalase; however, some superoxide can
be partially reduced to the more damaging hydroxyl radical [21]. Reactive nitrogen species (RNS),
the most proximal of which is peroxynitrite, are generated when superoxide reacts with nitric oxide
(NO), which is generated by nitric oxide synthases [23]. RNS will not be directly addressed in this
review, but it is possible that they cooperate with ROS in regulating haematopoiesis as well as driving
leukaemogenesis in AML, although the evidence is currently limited.

The phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) was
the first enzyme system found to produce ROS not merely as a by-product of cellular metabolism,
thus suggesting a more profound role for ROS within biological systems [24]. Initially, thought
to be limited to phagocytes, NADPH oxidases have now been found in almost every tissue and
are involved in a wide range of physiological processes including host defence, post-translational
modifications of proteins, cellular signalling, regulation of gene expression, and cell differentiation [24].
Collectively they are now known as the “NOX family” of NADPH oxidases and include NOX1
(NOX1), NOX2 (CYBB), NOX3 (NOX3), NOX4 (NOX4), NOX5 (NOX5), dual oxidase 1 (DUOX1),
and DUOX2 (DUOX2)—NOX2/CYBB (also known as gp91phox) being the originally described as
phagocyte NADPH oxidase. All NOX family members are transmembrane proteins that utilise
intracellular NADPH to reduce extracellular oxygen to ROS, by effectively transporting electrons across
the membrane [24]. NOX1–4 require the close interaction with p22phox (CYBA) for electron transfer [25],
whilst NOX5 and DUOX1 and 2 contain EF hands that are calcium-dependent [26]. NOX1–5 produce
the superoxide anion whilst DUOX1 and 2 (and possibly NOX4) produce hydrogen peroxide, as they
contain a peroxidase-like domain [27]. Each NOX family member also requires a number of regulatory
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subunits for activation. NOX2, as an example, is regulated by p40phox (NCF4), p47phox (NCF1), p67phox

(NCF2), and the Ras-related C3 botulinum toxin substrate (RAC1) that are found in the cytoplasm [26].
This complex interaction involves both the exchange of GDP for GTP on Rac and the phosphorylation
of the p47phox subunit, which allows p47phox to bind with the p22phox/NOX2 complex (vesicle bound),
leading to the subsequent fusion of NOX2 containing vesicles with the phagosomal membrane [24].
The activated phagocyte NADPH oxidase then is able to generate the ‘respiratory burst’ required for
destroying microbes.

A number of other metabolic sources of ROS generation have been discovered. Cytochrome P450
is the terminal oxidase of the membrane-bound microsomal monooxygenase system (MMO), which is
localized in the endoplasmic reticulum and is primarily found in the liver [28] as a detoxification enzyme.
The main function of MMO is to oxidise exogenous compounds, in most cases leading to oxygenation
of the substrate, to facilitate its excretion from the body. This oxidative process commonly results in
the production of ROS as a by-product, and similar to oxidative phosphorylation, the ROS from MMO
also appear to play an important role in cell signalling [29]. Xanthine oxidase, which catalyses the
oxidation of hypoxanthine to xanthine and further xanthine to uric acid, results in ROS production.
Xanthine oxidase is a key enzyme of the peroxisome system, which has been shown to produce both
ROS and RNS. Toward regulating states of oxidative stress, peroxisomes also contain a number of ROS
scavenging enzymes including catalase and glutathione peroxidase [30]. This highlights a subset of
the complexity regarding intracellular ROS production as well as the wide spectrum of subcellular
locations in which redox homeostasis appears important to many cellular functions.

Given the reactivity of ROS and therefore their potential harmful effects on cells and tissue,
redox homeostasis is tightly regulated with oxidative stress largely prevented via a suite of anti-oxidant
systems. The dismutation of superoxide, for example, can occur spontaneously (particularly at a low
pH) but is predominantly regulated enzymatically via a mitochondrial specific superoxide dismutase
(now named SOD2) to hydrogen peroxide [31]. SOD isoforms, SOD1 and SOD3, perform the same
function in the cytoplasm and extracellular space respectively. Hydrogen peroxide is more stable than
superoxide, has a longer half-life and importantly, can readily diffuse across cellular membranes [32]
unlike the superoxide anion. Interestingly, SOD2 knockout mice show lethality in the first week of life
through the accumulation of oxidative DNA damage caused by superoxide [33]. Furthermore, factors
known to cause oxidative stress, such as ionising radiation and hyperoxia, have been shown to induce
SOD2 expression via the activation of the nuclear transcription factor NFkB [34,35], which increases the
clearance of superoxide from the mitochondrial intermembrane space. SOD2 can achieve a net ROS
reduction in the mitochondrial space by converting the membrane-impermeable superoxide anion to
hydrogen peroxide, which is then free to diffuse into the cytoplasm. The conversion of superoxide to
hydrogen peroxide is, thus, essential for intracellular redox homeostasis.

Whilst hydrogen peroxide is considered relatively stable compared to other ROS, it can also
lead to oxidative damage to lipids and proteins. This is particularly so in the presence of iron,
where hydrogen peroxide is readily converted to hydroxyl radicals via Fenton chemistry. A number of
anti-oxidant systems, therefore, regulate cytoplasmic hydrogen peroxide levels. Glutathione (GSH) is
a tripeptide (composed of cysteine, glutamic acid, and glycine) and is present in all mammalian tissues
(reviewed in [36]). It is the most abundant non-protein thiol and is biologically present at 1–10 mM
concentrations, with the highest concentrations found in the liver (up to 10 mM). GSH exists in two
forms, the thiol-reduced form and the disulphide-oxidised form (GSSG), with >98% existing in the
reduced form, thereby providing an important source of electrons for anti-oxidant processes. It is
found within different subcellular compartments including the cytosol, mitochondria, endoplasmic
reticulum, and nucleus, as well as within extracellular fluid [37]. Its key role as a regulator of oxidative
stress is via the reduction of hydrogen peroxide to water and oxygen. This redox reaction is catalysed
by the GSH-peroxidase (GPx) and peroxiredoxin (PRDX) families [37]. The pool of GSH is utilised
by GSH peroxidase (GPx)-catalysed reactions that reduce ROS, forming oxidised GSSG, which in
turn are reduced back to GSH by GSSG reductase at the expense of NADPH, and thus the reserve of
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reduced GSH is maintained [36]. Catalase enzymes are another important regulator of intracellular
ROS. They exclusively convert hydrogen peroxide to oxygen and water and are found primarily in the
cytosol and peroxisomes [38,39]. Similar to GSH-supported anti-oxidant systems, catalase diminishes
the ROS pool since its reaction products are largely redox-inert. Peroxiredoxins (Prdxs) are a family of
anti-oxidant proteins that contain a conserved peroxidatic cysteine (Cp), which reacts with peroxides
to form cysteine sulfenic acid (Figure 1). This then reacts with another cysteine residue, named the
resolving cysteine (Cr), to form a disulphide bond that, in turn, can be reduced by an electron donor,
such as GSH or thioredoxins (Trxs) [40].

Figure 1. Redox-mediated post-translational cysteine modifications. Cysteine post-translational
modifications are a key mechanism by which protein activity can be modulated or influenced. Oxidative
cysteine thiol modifications can be broadly grouped into reversible and irreversible modifications.
The reversible modifications, including the formation of the sulfeinc acid via s-sulfenylation, and the
familiar formation of disulphide bridges, provide a mechanism to sense local redox states. While some
redox-sensitive proteins can be activated by these modifications (e.g., EGFR), others can be silenced
(e.g., PTPs). Most irreversible modifications, largely lead to a loss of function and are a result of multiple
thiol oxidation steps that can occur under overt oxidative stress.

3. The Role of ROS in Normal Haematopoiesis

There is significant evidence to support the role of ROS in regulating haematopoiesis (Figure 2).
Haemopoietic stem cells (HSCs) have the capacity for both self-renewal (give rise to identical daughter
cells) as well as being able to differentiate into all ten blood lineages: erythrocytes, platelets, neutrophils,
eosinophils, basophils, monocytes, T and B lymphocytes, natural killer cells, and dendritic cells.
They are found in relatively hypoxic environments within the bone marrow, known as osteoblastic
niches [41]. An in vitro study of HSCs isolated from mouse bone marrow samples cultured in 1%
oxygen suggested that a hypoxic environment inhibited proliferation and thus favoured quiescence in
HSCs [42]. This appeared to be mediated by increased expression of hypoxia inducible factor (HIF) 1
alpha (HIF1A), a key transcriptional regulator of cellular responses to oxygen variation [43] (Figure 2).
The knockdown of HIF1A and HIF2A has been shown to impede the long-term repopulating ability of
human CD34+ cord blood cells via increased ROS production [44].

The FoxO (Forkhead) family of transcription factors has also been shown to regulate HSC
self-renewal and survival (Figure 2). FoxO-deficient HSCs (FoxO1/3/4−/−) display defective long-term
repopulating activity correlating with increased cell cycling and apoptosis [45]. These changes were
associated with a marked increase in ROS as compared to wild-type HSCs. Anti-oxidant therapy with
N-acetyl-l-cysteine (NAC) was able to reverse this phenotype. This work was supported by Miyamoto
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et al., who showed that in FoxO3a−/− HSCs there was defective maintenance of quiescence with
an associated increase in ROS as well as increased phosphorylation of p38 mitogen-activated protein
kinase—p38MAPK (Mapk14) (involved in apoptotic pathways) [46] (Figure 2). Ataxia telangiectasia
mutated (Atm−/−) knockout mice (proposed as a model for oxidative stress in HSCs) developed
progressive bone marrow failure in another study due to a defect in HSC function mediated by
increased ROS that was again rescued by treatment with NAC [47]. The tuberous sclerosis complex
(TSC)-mammalian target of the rapamycin (mTOR) pathway is a key regulator of cellular metabolism.
It was reported that TSC1 deletion resulted in increased ROS levels in HSCs driving them from
quiescence to rapid cell cycling. Furthermore, reduced haematopoiesis and self-renewal of HSCs was
observed [48]. These studies taken together highlight the importance of a low ROS environment in
order to maintain HSC quiescence, self-renewal, and long-term survival. They also suggest a number
of potential regulators of ROS in HSCs including FoxO, Atm, and the TSC-mTOR pathway (Figure 2).

A seminal study by Jang and Sharkis identified two differing murine HSC populations designated
as ROSlow and ROShigh [49]. Both populations expressed the same surface markers but displayed
markedly different phenotypes. The ROSlow population displayed less activation with greater
self-renewal capacity and reduced phosphorylation of p38-MAPK (i.e., reduced apoptosis). The ROShigh

population displayed the opposite phenotype [49] (Figure 2). Using a serial transplantation model,
the authors were also able to demonstrate that ROSlow cells had a greater repopulating capacity than
ROShigh cells suggesting enrichment for long-term HSC within the ROSlow compartment. Beyond that,
the ROSlow cells showed a greater expression of calcium-sensing receptors (CaRs) and N-Cadherin,
both of which have been shown in previous studies to be found on HSCs residing within the
osteoblastic niche [50–52] (Figure 2). CaRs are important for HSC localisation to the osteoblastic niche,
whereas N-Cadherin, in conjunction with calcium ions, adheres HSCs to the niche. An anti-cancer
drug, 5-flourouracil, was shown to increase ROS in HSCs and decrease N-Cadherin expression,
thus detaching them from the osteoblastic niche [53]. Therefore, it appears that the ROSlow cells reside
in a relatively quiescent state in the osteoblastic niche, whereas the ROShigh cells reside in the vascular
niche, adjacent to peripheral blood, whereby they undergo differentiation (Figure 2).

There is evidence that ROS prime myeloid progenitors to differentiate. In vivo studies of Drosophilia,
multipotent haematopoietic progenitors (functionally akin to common myeloid progenitors) have
shown that increasing ROS prime these cells for differentiation into more mature myeloid cells.
ROS scavengers were shown to retard differentiation, whilst mutating SOD2 was shown to increase
the number of differentiated cells [54]. This is concordant with the work by Tothova et al., where FoxO
knockout mice displayed increased ROS in HSCs leading to myeloid differentiation [45] (Figure 2).
In mammalian cells, ROS have also been shown to regulate myeloid differentiation. Megakaryocyte
differentiation into mature platelets, for example, has been shown to be regulated by ROS [55–57].
In addition, mitochondrially derived ROS have been shown to trigger haematopoietic stem cell
differentiation through NOTCH1 degradation by autophagy in a murine model [58].

In summary, these studies highlight the important role that ROS play in maintaining HSC
quiescence, self-renewal, and long-term survival (Figure 2). In addition, they outline the role that ROS
plays in differentiation from haematopoietic stem cells to terminally differentiated myeloid progenitors.
What these studies also highlight is the sensitivity of HSCs to damage caused by oxidative stress and
the profound degree to which ROS levels must be regulated in HSCs and early progenitors.

As previously discussed, the “NOX family” of NADPH oxidases play a key role in intracellular ROS
generation. Within haematopoietic stem cells, the expression of NOX isoforms has not been uniformly
characterised. Piccoli et al. identified NOX1, 2, and 4 as well as their corresponding regulatory
subunits in CD34+ haemopoietic stem cells [59]. This is at odds with the work of Sanchez-Sanchez
et al., who identified all NOX isoforms in CD34+ cells except NOX 1 and 4. Their work further
identified NOX2 and NOX5 expression in CD33+ myeloid progenitors, whereas mature CD15+

myeloid cells expressed NOX2, NOX5, DUOX1, and DUOX2 suggesting that different NOX isoforms
may be functionally important at varying stages of myeloid cell maturation [60]. NOX2 is expressed
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on mature granulocytes and upon stimulation generates the respiratory burst required for killing
phagocytised microorganisms. Chronic granulomatous disease is caused by genetic mutations in any
of the four regulatory subunits of NOX2 and results in increased susceptibility to bacterial and fungal
infections, thus exemplifying the importance of this enzyme system to neutrophil function [61]. NOX2 is
universally expressed on macrophages (tissue-specific phagocytes), but there is also evidence of NOX4
expression [24,62]. Eosinophils, dendritic cells, and platelets all express NOX2 [63,64]. NOX2-derived
ROS maintains an alkaline pH in the phagasome of dendritic cells, which impairs antigen degradation,
thus enhancing cross-presentation. Dendritic cells lacking NOX2 have an impaired cross-presentation
of antigens to T lymphocytes as a consequence of increased antigen degradation [63]. Therefore,
in summary, there is evidence of expression of ‘NOX family’ members in myeloid cells ranging from
haemopoietic stem cells through to terminally differentiated cells of the myeloid lineage, with evidence
in some cases of functional consequences in knockout models and patients.

Figure 2. ROS-regulated haematopoietic stem cell (HSC) self-renewal and differentiation. (A) Within
the low oxygen osteoblastic or bone marrow niche, anaerobic metabolism drives HIF1 and FOXO
transcription to maintain quiescence and HSC self-renewal. (B) Following HSC release from the
low oxygen osteoblastic or bone marrow niche to the oxygenated vascular niche, oxygen drives the
activity of the NADPH oxidases, increasing ROS levels and promoting second messenger signalling,
which in turn contributes to HSC growth, proliferation, and differentiation. Red = increased activity
or expression. Green = decrease activity or expression. Blue = somatic mutation. Abbreviations
Ox = cysteine oxidation, P = phosphorylation, Ca2+ = Calcium.



Int. J. Mol. Sci. 2019, 20, 6003 7 of 20

4. ROS in AML

In recent years, it has become increasingly apparent that ROS are elevated in cancer cells [10]
(Figure 3). In myeloid neoplasms there is evidence for increased ROS in myelodysplastic syndrome [65],
chronic myelomonocytic leukaemia [66], chronic myeloid leukaemia [67], and myeloproliferative
neoplasms [68]. This is no different in AML, where the roles for ROS in driving leukaemogenesis
are ever expanding. Direct evidence for elevated ROS levels compared to normal myeloblasts comes
from a number of studies. Hole et al., identified increased extracellular superoxide production in
65% of primary AML blasts compared with controls [69]. In some samples, 100-fold greater levels
were measured, however, there did not appear to be any correlation with the underlying molecular
subtype of AML. A number of other studies have focused on the role of mutant receptor kinases in
driving ROS production in AML. Ras mutations occur in approximately 10–15% of AML cases and
do appear to have a significant impact on prognosis [70]. In further work by Hole et al., they used
murine (Sca+) and human (CD34+) myeloid progenitor cells retro-virally transduced with H-Ras and
N-Ras as a model to study ROS [71]. Activated Ras promoted increased ROS production as well as
growth factor independent proliferation without alteration in anti-oxidant expression. A murine K-Ras
myeloproliferative disease model was also shown to drive increased levels of ROS [72].

Mutations of the Fms-like tyrosine kinase 3 (FLT3) receptor occur in approximately 30–35% of
AML [2,9]. These mutations result in constitutive activation of the receptor in the absence of the
FLT3 ligand and include internal tandem duplications (ITDs) of the juxtamembrane domain [73] and,
less commonly, point mutations within the tyrosine kinase domain (TKD) [9]. FLT3 mutations are
now strongly implicated in driving increased ROS production in AML. A number of studies using
the mouse haematopoietic progenitor cell line 32D transduced to stably express human FLT3-ITD
mutations, produce high levels of endogenous ROS and increased oxidative DNA damage compared
to parental cells [74,75]. Additionally, similar findings were seen in Ba/F3 mouse progenitor cell lines
transfected with both the FLT3-ITD and FLT3-TKD (D835Y) constructs compared to parental cells,
as well as in primary AML cell lines with the FLT3-ITD mutation (MV4-11, MOLM-13) compared
to a wild-type FLT3 cell line REH. This was associated with evidence of increased DNA damage,
suggesting a mechanism by which FLT3-mutant AML drives genomic instability through increased
ROS production. FLT3 inhibition with CEP-701 resulted in reduced cellular ROS levels and a decrease
in the number of double-stranded DNA breaks. FLT3 inhibition with PKC412 reduced ROS levels
and double-stranded DNA breaks. Furthermore, oxygen consumption rates have been shown to be
higher in cells harbouring BCR-ABL, JAK2 V617F, and FLT3-ITD mutations than controls, abrogated
upon inhibition with tyrosine kinase inhibitors [76]. Hence, it is clear that oncogenic tyrosine kinases,
including the FLT3-ITD and FLT3-TKD mutations, as well as Ras GTPase mutations, drive increased
intracellular ROS levels in AML (Figure 3).

Another interesting subset of AML patients includes those harbouring mutations in the isocitrate
dehydrogenase genes (IDH1 and IDH2), seen in 10–15% of cases [2]. These mutations lead to the
production of an oncometabolite known as R-2-hydroxyglutarate (R-2HG), which blocks myeloid
differentiation through epigenetic modulation. Interestingly, there is also evidence that R-2HG increases
intracellular ROS, which, in turn, via an extracellular signal-regulated kinase (ERK)-dependent pathway,
phosphorylates NF-kB and stimulates proliferation of AML cells [77]. A study using primary AML bone
marrow samples compared ROS levels across molecular and cytogenetic subtypes [78]. They found
FLT3-ITD-positive and core binding factor AML samples had higher intracellular ROS levels compared
to FLT3-ITD-negative samples. Samples with nucleophosmin (NPM1) mutations, which occur in
up to 30% of AML cases, appeared to have lower levels of ROS even in the presence of co-existing
FLT3-ITD mutations. This is interesting based on clinical outcome data, which clearly demonstrates
that FLT3-ITD-mutant AML with a co-existing NPM1 mutations have a more favourable prognosis
that those with FLT3-ITD mutations and wild-type NPM1. The ROS production in AML promotes
second messenger signalling and drives transcription (STAT5), increased DNA damage, and lipid
peroxidation (Figure 3).
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Figure 3. The role of ROS in driving oncogenic signalling in acute myeloid leukaemia (AML). Recurring
somatic mutations to FLT3, cKIT, RAS, and IDH1/2 drive intracellular ROS production in AML.
High-level ROS production from NADPH oxidases drives second messenger signalling, through
activation of kinases and the inactivation of PTPS, increased FLT3 signalling, and increased lipid
peroxidation and genomic instability leading to chemotherapy treatment resistance. Red = increased
activity or expression. Green = decrease activity or expression. Blue = somatic mutation. Abbreviations:
PTP = protein tyrosine phosphatases, Ox = cysteine oxidation, P = phosphorylation.

4.1. NOX Family Enzymes in AML

As discussed in Section 2, the primary intracellular sources of ROS production are the mitochondria
and the “NOX family” of NADPH oxidases. The source of ROS within AML has been explored
in a number of studies and almost uniformly point to the ‘NOX family’ as the key source. In the
aforementioned study by Hole et al., higher levels of extracellular superoxide were observed in primary
AML blasts compared to normal bone marrow samples. In contrast, the AML samples had lower levels
of mitochondrial ROS. Further, NOX inhibitors significantly reduced superoxide generation as opposed
to electron transport chain inhibitors and mitochondrial ROS scavengers, which had little or no impact
on ROS levels, implicating NOX as the primary source of ROS in AML [69]. This work is supported
by a number of other studies showing significant reductions in intracellular ROS levels in vitro upon
NOX inhibition or knockout of NOX isoforms or subunits [75,79–81]. In contrast to this, Reddy et al.
did not observe any change in ROS levels after NOX2, NOX4, and p22phox knockdown in an FLT3-ITD
AML cell line (MOLM-13), although this does not seem to have been replicated in other studies [76].
There is also conjecture as to the specific NOX isoform present in AML. In primary AML blasts, NOX1,
NOX2, and NOX4 gene and/or protein expression have been identified [69,81]. In AML cell lines,
gene and/or protein expression of NOX2, NOX4, NOX5, p22phox, p40phox, p47phox, and p67phox have
all been reported [75,76,80,81]. Knockdown of p22phox and NOX4 have been shown to reduce levels of
ROS in AML cell lines [75,81]. Furthermore, ROS production was completely abolished in a Nox2−/−

mouse model of Ras-activated Cd34+ progenitor cells [71]. Hence, the data is somewhat conflicting,
with the strongest evidence supporting NOX2 and NOX4.

4.2. Anti-Oxidants in AML

There are a number of studies reporting dysregulation of anti-oxidants in AML. One of the earliest
studies indirectly linking ROS to AML pathogenesis reported that SOD2 levels were reduced in AML
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cells as compared to normal granulocytes [82]. A recent study compared blood levels of oxidative stress
markers and anti-oxidant level in healthy volunteers and patients with acute lymphoblastic leukaemia
(ALL) and AML. Interestingly, they also showed reduced levels of SOD, glutathione, and catalase
compared to healthy controls, with an expected increase in malondialdehyde, a well-defined marker of
oxidative stress [83]. Another study demonstrated increased levels of oxidised glutathione in CD34+

AML cells compared to normal bone marrow samples [84]. A proteomic analysis of primary AML blasts
observed increased protein expression of catalase and peroxiredoxin-2 with some variability across
FAB subtypes [85]. In acute promyelocytic leukaemia (APL) cell lines, increased catalase expression
has been shown to correlate with arsenic trioxide (ATO) resistance, consistent with ATO’s known
ROS-dependent cytotoxicity [86]. Therefore, it would appear that there is significant dysregulation
of anti-oxidant protein expression in AML compared to normal controls. The observed increased
catalase and peroxiredoxin expression would confer a protective mechanism to cells with high levels
of ROS production, whereas lower levels of SOD expression would lead to increased superoxide levels
and lead to intracellular oxidative stress. This stress, in turn, may create genomic instability and
promote resistance to therapy. The differential expression between disease state and normal provides
a therapeutic opportunity as will be discussed in Section 5.

4.3. ROS-Regulated Second Messenger Signalling in AML

4.3.1. Phosphatases

The emergent role of ROS in second messenger signalling has prompted research into the pathways
affected in many cancers, including AML. ROS have been shown to regulate protein function via
oxidation of the thiol functional groups in cysteine residues [87] (Figure 1). There is a wide range of
known oxidative post-translational modifications (reviewed in [88]), which ultimately lead to alteration
of protein structure and function (Figure 1). Protein tyrosine phosphatases (PTPs), for instance, contain
a conserved cysteine residue in their catalytic domain, which through reversible oxidation can lead to
phosphatase inactivation, halting its capacity to dephosphorylate target proteins [89]. In FLT3-ITD+

AML, there is evidence that NOX4-derived ROS lead to oxidative inactivation of protein tyrosine
phosphatase, receptor J—PTPRJ (PTPRJ) (Table 1), and that NOX4 knockdown restored phosphatase
activity [81]. PTPRJ has been shown to directly interact with the FLT3 receptor and to negatively regulate
its function. PTPRJ depletion leads to increased phosphorylation of FLT3 and enhanced activation of
ERK and cellular proliferation [90] (Figure 3). Although not reported in AML, NOX5-derived ROS have
been demonstrated to lead to inactivation of Src homology region 2 domain-containing phosphatase
1—SHP1 (PTPN6) (Table 1), another PTP, in a model of hairy cell leukaemia [91]. SHP1 negatively
regulates FLT3 signalling, and it is possible that a similar mechanism exists in AML.

The protein phosphatase 2A—PP2A—is a serine/threonine phosphatase inactivated in many
cancers including AML [92]. PP2A inhibition is essential for leukaemias driven by oncogenic mutant
c-KIT [93] and FLT3 [94], with the PP2A-C catalytic subunit (PPP2CA) oxidised at cysteine residues,
Cys266/269, contributing to the loss of the phosphatase activity under oxidative stress [95]. ROS-driven
nitration of Tyr289 on PP2A-B56δ subunits (PPP2R2B) has also been shown in Jurkat cells and clinical
human lymphomas to inhibit PP2A holoenzyme assembly and leading to enhanced S70 phosphorylation
of Bcl-2 and apoptotic resistance to anticancer drugs [96].
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Table 1. Proteins regulated by ROS-induced cysteine oxidisation.

Protein Function Activation/Inhibition Disease/Cell Assay

DUSP1, DUSP6,
DUSP10,
DUSP16

Phosphatase Inhibition Fibroblasts and HeLa
Cells [97]

Electrophoretic mobility shift and
phosphorylation screen

EGFR Kinase Activation Breast Cancer [98]
Lung Cancer [99,100]

2-Thiodimedone-specific IgG;
selective, cell-permeable probe for
detecting sulfenic acid

FLT3, FLT3-ITD Kinase Activation AML cell lines [101] Site-directed mutagenesis coupled
with immunoprecipitation

JAK2,
JAK3 Kinase Inhibition

Pro-B Cells [102]
Pancreatic β-Islet
Cell [103]

Autokinase, in situ
autophosphorylation, and
transphosphorylation assays

PP2A-C Phosphatase Inhibition
Epithelial colorectal
adenocarcinoma
cells [95]

Immunoprecipitation coupled to
antibody-based detection methods

PP2A-B56δ Phosphatase Inhibition
Jurkat cells and
clinical human
lymphomas [96]

Coimmunoprecipitation coupled to
site-directed mutagenesis

PTPRJ Phosphatase Inhibition AML [79] Antibody-based detection methods

SHP1 Phosphatase Inhibition Fibroblasts [104]
AML [105]

Antibody-based detection methods
Immunoprecipitation coupled to
phosphotyrosine screening

SHP2 Phosphatase Inhibition AML [105] Immunoprecipitation coupled to
phosphotyrosine screening

SRC Kinase Activation Platelets [106]
Fibroblasts [107]

Phosphotyrosine assessment,
immunoprecipitation, biotinylation,
and antibody-based detection
methods

4.3.2. Kinases and GTPases

Studies on signalling pathways regulated by ROS have primarily explored those downstream of
oncogenic tyrosine kinases including FLT3 and the Ras-GTPases. NOX inhibition and p22phox knockout
in FLT3-ITD models of AML lead to reduced phosphorylation of signal transducer and activator of
transcription 5 (STAT5), a master transcriptional regulator downstream of FLT3, accompanied by
reduced cellular growth and migration [79,80]. BCR-ABL-driven chronic myeloid leukaemia (CML)
and Janus kinase 2 (JAK2) V617F-mutated myeloproliferative neoplasm (MPN) cell lines showed
similar results, suggesting a role for NOX-derived ROS in myeloid neoplasms driven by oncogenic
tyrosine kinases more broadly [76]. Phosphorylated STAT5 has also been shown to co-localise with
Rac1, an activating component of the NOX complex, suggesting a mechanism in which FLT3-ITD
through phosphorylated STAT5 generates ROS from the NOX complex [74]. An autocrine mechanism
of increased ROS production also appears to potentiate the oncogenic signalling capacity of FLT3-ITD.
Emerging data shows that ROS themselves drive the activity of wild-type and mutant FLT3 through
oxidation of cys790 in FLT3 (Table 1) changing intramolecular interactions and promoting the activity
of STAT5 [101]. This may drive altered gene expression through the regulation of a number of other
transcription factors as a response to intracellular oxidative stress (Figure 3). This clearly makes sense
as an adaptive mechanism. Although not specifically reported in AML, the redox regulation of nuclear
factor kappa B (NFkB), redox-factor 1 (Ref-1), activator protein 1 (AP-1), p53, and hypoxia inducible
factor 1-alpha (HIF-1α) have all been described (reviewed in [18,108]). It is possible that increased gene
expression of anti-oxidant proteins modulated by elevated ROS, while facilitating genomic instability,
also confers a survival advantage in AML.

More directly, NOX2-derived ROS drive oxidation of active-site cysteines in tyrosine kinases such
as the epidermal growth factor receptor (EGFR) (Table 1) and enhance their activity [99]. Although
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the pharmacological inhibition of EGFR plays no role in the treatment of AML, chronic exposure
to oxidative stress drives resistance to EGFR-targeted therapies such as afatinib [100], providing
a mechanism by which ROS promote resistance to targeted therapies. Relevant to leukaemia, ten other
kinases harbouring catalytic cysteines localised in similar positions as the active-site cysteine 797 in
EGFR, include the tyrosine-protein kinases BTK and JAK3 [109]. Pharmacologic targeting of BTK
using ibrutinib inhibits AML blast proliferation and significantly augments cytotoxic activities of
standard of care AML chemotherapies; cytarabine, or daunorubicin [110]. Interestingly, murine
neutrophils lacking BTK (Btk−/−) produce more ROS and show hyperphosphorylation and activation of
phosphatidylinositol-3-OH kinase (PI3K) and protein tyrosine kinases (PTKs), a phenotype driven by
NOX2 [111]. Whether these hyperactivated kinases also harboured high-levels of cysteine oxidation
driving their activity remains to be determined. Mutations to JAK3 in myeloid [112] and lymphoid
malignancies [113] drive the activity of the STAT5 signalling axes. However, unlike what has been
shown in tyrosine kinases with conserved cysteine localised analogues to EGFR, oxidation of JAK3
(and JAK2) inhibits their autokinase activity (Table 1), a phenotype rescued using reducing agents [102].
As mentioned in Section 4.3.2, inhibition of NOX in FLT3-ITD AML cells suppresses STAT5 and
oncogenic transcription to repress growth and survival, whereas mediators of oxidative stress such as
nitric oxide and thiol redox reagents, through oxidation of crucial dithiols to disulphides within JAK2/3,
inhibit interleukin 3-triggered in vivo activation, a phenomenon that is correlated with inhibited
proliferation of lymphoid cells. This highlights the complexities of how oxidative stress regulates the
activity of key signalling proteins in AML, with what seems to be enzyme specific regulation. Whether
oxidative stress drives oxidation and activity of kinases such as EGFR / JAK in AML is yet to be
determined; however, the observation of increased kinase activity and synergy following loss of function
of BTK provides us with further clues into the complexities of signalling at a systems-based level.

4.4. ROS in the Microenvironment of AML

Modulation of the tumour microenvironment by ROS has also been described in AML.
NOX-derived ROS from tumour infiltrating macrophages/monocytes have been shown to impair the
function of T cells and natural killer (NK) cells. This process can be reversed with histamine that acts on
H2 receptors to indirectly inhibit NOX activity [114]. In a Phase 3 clinical trial, leukaemia-free survival
was observed in patients receiving interleukin 2 and histamine dihydrochloride as consolidation
therapy for AML [115]. The proposed mechanism suggests that by reducing ROS there is improved
functionality of the NK and T cells in the tumour microenvironment promoting activity against
residual leukaemic cells that are present post-intensive induction chemotherapy. Another interesting
pre-clinical study suggests a novel mechanism by which the NOX2-derived superoxide from AML
blasts leads to the bone marrow stromal cell-to-AML transfer of mitochondria via nanotubes [116]
(Figure 3). NOX2 inhibition was shown to reverse this process and lead to improved mouse survival
in a murine model of leukaemia. Given the reliance of AML blasts on oxidative phosphorylation
to generate ATP, this then confers a survival advantage. Therefore, ROS derived from AML blasts
appear to not only regulate intracellular signalling pathways but also appear to modulate cells in the
microenvironment in a paracrine manner to promote leukaemogenesis

5. ROS Modulation as a Therapeutic Target in AML?

Given the evidence for ROS promoting leukaemogenesis in AML, we sought to review the current
support for modulation of ROS as a therapeutic intervention. Inadvertently, increasing ROS levels have
been used therapeutically for some time now with traditional chemotherapeutic agents. Given the
higher levels of ROS associated with AML, the hypothesis of increasing ROS to ‘tip leukaemic blasts
over the edge’ makes sense. In APL, ATO has been shown to both increase intracellular ROS production
and gene expression of proteins comprising the NOX2 subunit [117]. Further, synergistic cytotoxicity
has been observed by combining ATO with phorbol myristate acetate (PMA), a known activator of
NOX2. ATO-derived ROS have also been shown to promote degradation of the PML-RARA fusion
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protein [118]. Both cytarabine and daunorubicin, part of the standard ‘7 + 3’ induction regimen
for AML, have been shown to induce increased ROS production in cell line models of AML [119].
In addition, many experimental drugs have been tested in pre-clinical models of AML, in which
ROS are implicated in promoting apoptosis and cell death [120–124]. The downside of ROS-inducing
agents is the potential for creating genomic instability and driving resistance [125], as well as oxidative
damage to bystanding cells, with complications including cardiac and neurotoxicity.

The alternative approach is to use agents that inhibit ROS production or function as ROS scavengers
in treating AML. Using anti-oxidants to prevent or treat cancer is not a new concept. There are vast
numbers of trials that have explored the use of anti-oxidants in cancer prevention and treatment.
Despite this, a systematic review failed to demonstrate a benefit for anti-oxidant supplementation
in preventing cardiovascular disease and cancer [126]. In addition, there is some evidence that
anti-oxidant therapy actually promotes cancer progression when combined with a standard of care
chemotherapeutics in the treatment of various cancers [127]. In the case of AML, there does not
appear to be any literature in which anti-oxidants supplements have been specifically used to treat
AML alone or in combination with standard therapies. Treatments targeting the source of ROS
production have not been reported in clinical trials. Indirectly, histamine dihyodrochloride was used to
reduce ROS secretion into the tumour microenvironment as a means of reactivating NK and T cells as
previously described [115]. Drugs inhibiting oxidative phosphorylation, such as metformin [128,129]
and tigecycline [130,131], have been explored in preclinical models and human trials of AML without
any great success to date, as the data would suggest that the NOX family are the primary drivers of ROS
production in AML, which may partly explain this. Given that the primary function of the NOX family
is to produce ROS, any clinical benefit of NOX inhibitors can be more readily attributed to decreasing
ROS levels. There have been no reported clinical trials with NOX inhibitors used in AML despite
emerging pre-clinical evidence that would suggest a potential benefit. This is likely due to the lack of
isoform-specific NOX inhibitors with good in vivo pharmacokinetic data available [132]. Nevertheless,
targeting NOX2 appears promising, particularly in FLT3-mutant AML, based on pre-clinical in vitro
data available; however, ongoing efforts are required to assess if this will translate into a meaningful
clinical benefit.

6. Concluding Remarks

There is now conclusive evidence that ROS are elevated in AML. It is likely that there are multiple
sources of ROS including the mitochondria, NOX complex, and other metabolic sources; however,
most evidence to date supports the NOX complex, particular NOX2, as the primary driver of ROS
production in AML. ROS appear to confer a survival advantage to leukaemic blasts through modulation
of oncogenic signalling pathways via the oxidation of critical cysteine residues in key proteins such as
protein tyrosine phosphatases, oncogenic kinases, and anti-oxidant proteins (Table 1 and Figure 3).
Targeting ROS in AML have already proven effective with ROS induction through the actions of
chemotherapeutic agents and novel drugs such as arsenic trioxide, despite the potential for creating
treatment-resistant AML clones. ROS scavengers and anti-oxidants have not been proven effective in
preventing or treating cancer, and there is no evidence to support this approach in AML. Targeting
the drivers of ROS production in AML is yet to be tested in vivo but provides a novel therapeutic
approach with promising pre-clinical data.
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Abbreviations

7 + 3 7 days of cytarabine, 3 days of an anthracycline antibiotic
ALL Acute lymphoblastic leukaemia
AML Acute myeloid leukaemia
APL Acute promyelocytic leukaemia
ATM Ataxia telangiectasia mutated
ATO Arsenic trioxide
BCL2 B-cell lymphoma 2
CD34+ Marker of human HSC
CML chronic myeloid leukaemia
DUOX Dual Oxidase
FDA Food and Drug Administration
FLT3 Fms-like tyrosine kinase 3
GSH Glutathione
H2O2 Hydrogen peroxide
HIF Hypoxia inducible factor
HO•- hydroxyl radical
HSC Haematopoietic stem cells
IDH Isocitrate dehydrogenase
IDH1/2 Isocitrate Dehydrogenase
ITD Internal tandem duplications
JAK Janus kinases
MAPK Mitogen-activated protein kinase
MPN Myeloproliferative neoplasms
mTOR Mammalian target of rapamycin
NAC N-acetyl-L-cysteine
NADPH Nicotinamide adenine dinucleotide phosphate (reduced form)
NOX NADPH Oxidase
NPM1 Nucleophosmin 1
O2
•- Superoxide

Prdxs Peroxiredoxins
PTM Posttranslational modifications
PTP Protein tyrosine phosphatase
PTPRC Protein tyrosine phosphatase, receptor C
PTPRJ Protein tyrosine phosphatase, receptor J
RacRNS Ras-related C3 botulinum toxin substrateReactive nitrogen species
ROS Reactive oxygen species
SHP1 Src homology region 2 domain-containing phosphatase 1 (SHP-1)
SOD Superoxide dismutase
STAT5 Signal transducer and activator of transcription 5
TKD Tyrosine kinase domain
TSC Tuberous sclerosis complex
TKD Tyrosine kinase domain
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