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Abstract: Macrophages synthesize active vitamin D (1,25-dihydroxy-vitamin D) and express the vita-
min D receptor in the nucleus; however, vitamin D metabolism in relation to macrophage polarization
and function is not well understood. We studied monocyte-derived macrophages (MDMs) from
human buffy coats polarized into M0, M1 (LPS + IFNγ), M2a (IL4 + IL13) and M2c (IL10) macrophage
subtypes stimulated with 25-hydroxy-vitamin D (1000 and 10,000 nanomolar). We measured vitamin
D metabolites (25-hydroxy-vitamin D, 1,25-dihydroxy-vitamin D, 24,25-dihydroxy-vitamin D and
3-epi-25-hydroxy-vitamin D) in cell media with liquid chromatography-mass spectrometry-mass
spectrometry. The mRNA expression (CYP27B1, CYP24A1 and CYP24A1-SV) was measured with
qPCR. We found that reparative MDMs (M2a) had significantly more 1,25-dihydroxy-vitamin D
compared to the other MDMs (M0, M1 and M2c). All MDMs were able to produce 3-epi-25-hydroxy-
vitamin D, but this pathway was almost completely attenuated in inflammatory M1 MDMs. All
MDM subtypes degraded vitamin D through the 24-hydroxylase pathway, although M1 MDMs
mainly expressed an inactive splice variant of CYP24A1, coding the degrading enzyme. In conclusion,
this study shows that vitamin D metabolism is highly dependent on macrophage polarization and
that the C3-epimerase pathway for vitamin D is active in macrophages.

Keywords: inflammation; immune system; monocyte-derived macrophages; 3-epi-25-hydroxy-
vitamin D; qPCR; liquid chromatography-mass spectrometry

1. Introduction

It has been known for several years that vitamin D has other functions besides the
regulation of calcium and bone homeostasis. One of these important functions is the role
of vitamin D in regulating the immune system. Overall, vitamin D is believed to have an
anti-inflammatory effect, but its actions are complex [1,2]. Whereas the majority of human
cells, including macrophages, have the vitamin D receptor (VDR) in their nucleus, CYP27B1
activity and the production of active vitamin D (1,25-dihydroxy vitamin D) outside the
kidney are restricted to macrophages and a few other cell types [2,3]. This extra-renal
production of active vitamin D is believed to be crucial for many of the local effects of
vitamin D, allowing autocrine and paracrine signaling with high levels of active vitamin D
in target tissues.

1,25-dihydroxy-vitamin D is also known to affect macrophage polarization and in-
duce switching from inflammatory macrophages (M1 macrophages) toward reparative
macrophages (M2 macrophages) [4,5]. This polarization is believed to be a continuum
and the cells have a great plasticity and are able to polarize according to the microen-
vironment [6]. Regulation of local vitamin D activity also relies on the degradation of
1,25-dihydroxy-vitamin D and its precursor 25-hydroxy-vitamin D. The main degrading
pathway through the 24-hydroxylase (CYP24A1) has been proposed to be compromised in
macrophages, since human macrophages have been suggested to partly express a nonfunc-
tional splice variant of the degrading enzyme (CYP24A1-SV) [7]. A less well understood
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metabolic pathway of vitamin D is the C3-epimerase pathway, where an unknown enzyme
(C3-epimerase) alters the orientation of the hydroxy-group on the carbon in the third posi-
tion of the vitamin D molecule [8]. Cell studies have shown that the C3-epimerase is active
in human hepatocytes, keratinocytes, osteoblasts, intestine cells and kidney cells [9–11].
The function of this pathway is unknown.

Since the local concentration of the active 1,25-dihydroxy-vitamin D is important
for macrophage function and polarization, and since it has been suggested that the main
degrading pathway of 25-hydroxy-vitamin D and 1,25-dihydroxy-vitamin D, by the 24-
hydroxylase, is altered in macrophages, we found it important to investigate if macrophage
polarization affected vitamin D metabolism and whether the C3-epimerase pathway
is active in macrophages or not. We used the following human polarized monocyte-
derived macrophages (MDMs): undifferentiated (M0), inflammatory (M1, stimulated with
LPS + IFNγ), reparative (M2a, stimulated with IL4 + IL13) and deactivated (M2c, stimu-
lated with IL10). We studied the effect of 25-hydroxy-vitamin D on secreted vitamin D
metabolites and mRNA expression of the known enzymes for synthesis of 1,25-dihydroxy-
vitamin D (CYP27B1) and for 24,25-dihydroxy-vitamin D (CYP24A1).

2. Results
2.1. Baseline and Cell Phenotype

We found no detectable vitamin D metabolites (25-hydroxy-vitamin D, 3-epi-25-
hydroxy-vitamin D, 24,25-dihydroxy-vitamin D or 1,25-dihydroxy-vitamin D) in any of
the cell media not stimulated with 25-hydroxy-vitamin D (LCMSMS analysis on cell me-
dia, n = 10). Furthermore, we analyzed cell media from all donors 5 min after stimula-
tion with 25-hydroxy-vitamin D and found no detectable 3-epi-25-hydroxy-vitamin D,
24,25-dihydroxy-vitamin D or 1,25-dihydroxy-vitamin D (LCMSMS analysis on cell media,
n = 10). Based on these results, we concluded that there were no significant vitamin D
metabolites in the cell cultures or added stripped sera before stimulation with 25-hydroxy-
vitamin D, and that the stimulation did not include any 3-epi-25-hydroxy-vitamin D. The
polarization of the MDM cells was carried out using commonly used growth factors [6]. To
evaluate whether this polarization protocol did indeed result in the expected cell pheno-
types, we measured surface markers on separate cells. As expected, CD80 was upregulated
in M1 MDMs, CD206 was upregulated in M2a MDMs, and CD163 was upregulated in M1
and M2c MDMs (Figure 1).
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Figure 1. Flow cytometry measures of MDM surface markers. MDMs were polarized into M0, M1,
M2a and M2c. Cells were harvested and the surface markers CD80 (A), CD206 (B) and CD163 (C)
were measured with flow cytometry. The numbers above the horizontal lines indicate the different
p-values.
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2.2. MDMs Are Able to Synthesize 3-Epi-25-Hydroxy-Vitamin D from 25-Hydroxy-Vitamin D

In Donor 1-4, we found that M0 MDMs synthesized and secreted 3-epi-25-hydroxy-
vitamin D in response to stimulation with either 1000 nM or 10,000 nM 25-hydroxy-vitamin
D in three out of the four donors (Table 1). The 3-epi-25-hydroxy-vitamin D metabolite
was found in the media after 24 and 48 h of stimulation, and the concentration of 3-epi-25-
hydroxy-vitamin D appeared linear to the substrate, with 1000 nM 25-hydroxy vitamin
D leading to concentrations of 3-epi-25-hydroxy-vitamin D around 40 nM and 10,000 nM
25-hydroxy-vitamin D leading to 3-epi-25-hydroxy-vitamin D around 400–500 nM after
24 h. In three donors (donor 2–4), we also measured 3-epi-25-hydroxy-vitamin D in the
media after 48 h. In media from two donors (donors 3 and 4), we observed increasing
concentrations, while no 3-epi-25-hydroxy-vitamin D was measured in media from the
third donor (donor 2).

Table 1. Concentrations of 3-epi-25-hydroxy-vitamin D 24 h after stimulation with 25-hydroxy-
vitamin D in media from M0 MDMs.

25-Hydroxy-Vitamin D Stimulation Donor 1 Donor 2 Donor 3 Donor 4

0 nM <4 <4 <4 <4

100 nM <4 No data No data No data

1000 nM 39 No data 37 43

10,000 nM 353 <4 547 489
Donor 1–4 represent four different cell studies with human MDMs. The cells were stimulated with the given con-
centrations of 25-hydroxy-vitamin D for 24 h and concentrations of 3-epi-25-hydroxy-vitamin D were afterwards
measured in the media with LCMSMS. Our limit of detection was 4 nM. All concentrations are in nM.

2.3. Vitamin D Metabolism Is Dependent on MDM Polarization

After showing that human M0 MDMs were able to produce 3-epi-25-hydroxy-vitamin
D, we analyzed vitamin D metabolites in subtypes of MDMs (M0, M1, M2a and M2c) from
Donor 5–10. All these cells were stimulated with 1000 nM 25-hydroxy-vitamin D for 24 h.
These data are shown in Figure 2. The M1 MDMs showed little metabolism of the added
25-hydroxy-vitamin D, having almost the same level of 25-hydroxy-vitamin D in the media
after 24 h (significantly higher than all 3 other MDM subtypes). The M1 MDMs secreted
small amounts of 1,25-dihydroxy-vitamin D (significantly lower than M2a MDMs) and
24,25-dihydroxy-vitamin D (significantly lower than M0 and M2c MDMs), and almost
no 3-epi-25-hydroxy-vitamin D (significantly lower than all 3 other MDM subtypes). In
contrast, the M2a MDMs produced the highest amount of active 1,25-dihydroxy-vitamin D
(significantly higher than all 3 other MDM subtypes) and showed relatively low concen-
trations of both 24,25-dihydroxy-vitamin D (significantly lower than M0 and M2c MDMs)
and 3-epi-25-hydroxy-vitamin D (significantly lower than M0 and M2c MDMs). The M2c
MDMs did not differ significantly from the M0 MDMs in the concentrations of any vitamin
D metabolites.
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Figure 2. Vitamin D metabolites in polarized MDMs after vitamin D stimulation. MDMs were
polarized into M0, M1, M2a and M2c MDMs and stimulated with 1000 nM 25-hydroxy-vitamin D.
Concentrations of vitamin D metabolites in the different subtypes of MDMs were measured in the
media after 24 h: 25-hydroxy-vitamin D (A), 1,25-dihydroxy-vitamin D (B), 24,25-dihydroxy-vitamin
D (C) and 3-epi-25-hydroxy-vitamin D (D). * Indicates statistically significant differences between
groups (subtypes) on each graph.

2.4. The mRNA Expression of CYP27B1, CYP24A1 and CYP24A1-SV

The mRNA expression data for CYP27B1 are shown in Figure 3a,b. The CYP27B1
enzyme (1α-hydroxylase) is responsible for conversion of 25-hydroxy-vitamin D into 1,25-
dihydroxy-vitamin D. CYP27B1 mRNA was expressed in M0, M2a and M2c MDMs, both
with and without the presence of its substrate (25-hydroxy-vitamin D). M1 MDMs had
very low or no expression of CYP27B1 mRNA, and in these cells, it was not induced by the
presence of 25-hydroxy-vitamin D.

In contrast to CYP27B1, we found no mRNA expression of CYP24A1 and CYP24A1-SV
without stimulation of 25-hydroxy-vitamin D. The mRNA expression data after stimulation
with 25-hydroxy-vitamin D of CYP24A1 and CYP24A1-SV are shown in Figure 4a,b. The
mRNA expression of CYP24A1 in response to 25-hydroxy-vitamin D did not differ between
subtypes of MDMs, but the expression of the splice variant (CYP24A1-SV) was strongly
induced in M1 MDMs compared to the other three subtypes.
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Figure 3. Expression of CYP27B1 in polarized MDMs with and without vitamin D stimulation.
MDMs were polarized into M0, M1, M2a and M2c MDMs and stimulated with either 0 nM (A) or
1000 nM (B) 25-hydroxy-vitamin D for 24 h. The mRNA expression of CYP27B1 is shown relative to
the household gene (YWHAZ). * Indicates a statistically significant difference between groups.
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Figure 4. Expression of CYP24A1 and CYP24A1-SV in polarized MDMs after vitamin D stimulation.
MDMs were polarized into M0, M1, M2a and M2c MDMs and stimulated with 1000 nM 25-hydroxy-
vitamin D for 24 h. The mRNA expression of CYP24A1 is shown in (A) and the mRNA expression of
its splice variant, CYP24A1, is shown in (B). Both expressions are shown relative to a household gene
(YWHAZ). * Indicates a statistically significant difference between groups.

3. Discussion

The main finding of our study was that macrophage polarization clearly altered the
cell response to vitamin D. The reparative M2a macrophages in our study secreted more
1,25-dihydroxy-vitamin D than both inflammatory cells (M1 MDMs), undifferentiated cells
(M0 MDMs), and deactivated cells (M2c MDMs). Vitamin D degradation showed almost
the opposite pattern, as the highest concentrations of 24,25-dihydroxy vitamin D were in
the undifferentiated cells (M0 MDMs) and deactivated cells (M2c MDMs). The mRNA
expression for the activating enzyme (CYP27B1) was continuously expressed with or
without the vitamin D substrate present in all polarized cells except the inflammatory cells
(M1). This was in contrast to the mRNA expression for the degrading enzyme (CYP24A1),
which was only expressed after stimulation with vitamin D.
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The inflammatory MDMs in our study (M1) responded very differently to vitamin D
stimulus compared to the reparative M2a cells. They showed almost no mRNA expression
of the enzyme converting 25-hydroxy-vitamin D to the active metabolite 1,25-dihydroxy-
vitamin D (CYP27B1), either after stimulation with 25-hydroxy-vitamin D. Nevertheless, we
found 1,25-dihydroxy-vitamin D in the media after stimulation with 25-hydroxy-vitamin
D, but in lower concentrations compared to the reparative MDMs (M2a). A recent study
found a similar increase in 1,25-dihydroxy-vitamin D production in M1 cells. However, in
that study, the M1 cells showed a strong upregulation of the CYP27B1 gene in response
to 25-hydroxy-vitamin D, which is in contrast to the very low expression levels in our
study [12]. We have no explanation for this difference. The “M2 cells”, in that study, were
stimulated with LPS and not comparable to the high producing 1,25-dihydroxy-vitamin D
M2a cells presented here.

We found the 24-hydroxylase pathway to be active in all subtypes of MDMs with secre-
tion of 24,25-dihydroxy-vitamin D. We also confirmed that MDMs express a splice variant of
CYP24A1, as described earlier, in macrophage-like cells (THP-1) [7]. Interestingly, we found
that the splice variant of CYP24A1 was especially upregulated in inflammatory MDMs
(M1). This CYP24A1-SV has been suggested to be a potent attenuator of CYP27B1 [7,13]
which could explain the combination of high CYP24A1-SV expression and low CYP27B1
expression in our M1 MDMs.

In human circulation, 3-epi-25-hydroxy vitamin D is found with very high inter-
individual variation [14–16], and it has been shown that this metabolite of vitamin D can be
synthesized in vivo [9–11]. To our knowledge, we are the first to show that human MDMs
are able to synthesize 3-epi-25-hydroxy-vitamin D. Furthermore, this pathway was also
found to be affected by MDM polarization, as it was almost absent in the inflammatory M1
MDMs. The implications of these findings are unclear since the function of this metabolic
pathway is still unknown. However, it has been shown that the 3-epi-1,25-dihydroxy-
vitamin D maintains some affinity for the vitamin D receptor [8], suggesting that the
function of this pathway may not only be degradation [5].

Overall, our findings are in compliance with vitamin D’s known role as an anti-
inflammatory agent in the immune system. Reparative macrophages will react to vitamin
D, secrete the active form of vitamin D and continue anti-inflammatory signaling. How-
ever, our data suggest that vitamin D does not have the same effect on inflammatory
macrophages. In vivo, macrophages are believed to be plastic, and a given tissue may
harbor a continuum of polarized macrophages. The microenvironment of these cells may
determine their properties, which can change over time [6]. Vitamin D also plays a role in
determining this polarization, as several studies have shown that 1,25-dihydroxy-vitamin
D can promote switching from M1 macrophages to M2 macrophages [4,17,18]. This switch
from M1 macrophages to M2 macrophages is central to an inflammatory response. If
the M1 response does not change over time to an M2 response, the inflammation will
become chronic, and this mechanism is believed to contribute to the pathogenesis of many
major inflammatory diseases, such as atherosclerosis, diabetes and inflammatory bowel
disease [19,20]. Our data suggest that increased circulating 25-hydroxy-vitamin D might
not be sufficient to push macrophages from an inflammatory state to a reparative state,
since the M1 macrophages do not seem to respond well to 25-hydroxy-vitamin D stimulus.
Therefore, 1,25-dihydroxy-vitamin D from surrounding cells in the inflammatory response,
and other signaling molecules, may be important for switching from inflammatory to repar-
ative macrophages. This could also explain why vitamin D supplementation in general has
failed to treat chronic inflammation in randomized studies [21,22]. The supra-physiological
concentration of 25-hydroxy-vitamin D (1000 nM) used in this study to stimulate the MDMs
is a limitation. This concentration was used to be certain not to miss any 3-epi-25-hydroxy
vitamin D induction. It is always difficult to mimic physiological conditions in in vitro
experiments, especially with vitamin D. It is difficult to know which concentration the cells
“see” in vivo (the total concentration of protein-bound vitamin or the free concentration).
However, we cannot be certain that the regulatory mechanisms shown in this study are
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exactly the same in vivo. Another limitation of this study is that our mRNA data were
not confirmed by protein data or gene-silencing experiments. The amount of mRNA at a
certain point in time cannot be taken as a measure of protein levels or activity. However, it
can be used as an indicator of which genes are being activated in different cells.

4. Methods and Materials

We obtained buffy coats (about 50 mL) from 10 anonymous donors provided by the
Department of Clinical Immunology, Aarhus University Hospital, Denmark (Project no.
0094). According to Danish law, the use of anonymized buffy coats does not require specific
ethical approval. Monocytes from four donors (D1–D4) were polarized into undifferentiated
(M0) MDMs, with the main focus to investigate if 3-epi-25-hydroxy-vitamin D could be
detected after stimulation with 25-hydroxy-vitamin D. Monocytes from another six donors
(D5–D10) were polarized into M0, M1, M2a and M2c MDMs for the purpose of observing
the pattern of vitamin D metabolism in different macrophage subtypes. Figure 5 shows an
overview of the cell isolation and polarization protocol.
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Figure 5. This figure shows the cell isolation and polarization protocol. First, we performed monocyte
isolation (A), then macrophage differentiation (B), then macrophage polarization (C) and last the
actual experiments (D). The figure was created using Biorender.com (accessed on 25 August 2022).
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4.1. Monocyte-Derived Macrophages (MDMs)

Buffy coats were diluted 1:1 with 0.9% NaCl and peripheral blood mononuclear
cells (PBMCs) were isolated using density centrifugation (400× g at RT for 30 min) on
a Histopaque®-1077 gradient (Sigma Aldrich, Munich, Germany). After isolation, the
PBMCs were washed and re-suspended in phosphate-buffered saline (PBS) with 2% fetal
calf serum (FCS) (Thermo Fisher Scientific, Waltham, MA, USA) and 1 mM ethylene-
diamine tetraacetic acid (EDTA) (Merck Millipore, Burlington, MA, USA) and the cell
concentration was adjusted to 5 × 107 cells/mL. Monocytes were isolated with negative
selection using EasySep™ Human Monocyte Isolation Kit (Stemcell Technologies, Van-
couver, BC, Canada) according to the manufacturer’s protocol. The PBMC suspension
was incubated with 50 µL/mL isolation cocktail and 50 µL/mL platelet removal cocktail.
Magnetic RapidSpheres (50 µL/mL) were added to the cell suspension and after incuba-
tion, the tube containing PBMCs was placed in the “Big Easy” (StemCell Technologies)
magnet, allowing magnetically labeled non-monocyte cells to attach to the sides of the
tube and the monocytes to be poured off. After incubation, the purified monocytes were
poured into a tube and centrifuged. The supernatant was discarded, and the pellet was
resuspended in 10 mL PBS with 1% FCS and centrifuged. The cells were resuspended in
RPMI1640 (ThermoFisher Scientific, Waltham, MA, USA) with 10% FCS. Lastly, the mono-
cytes were counted on NucleoCounter® NC250™ using Solution 18 (ChemoMetic A/S,
Allerod, Denmark), and the medium was added to a concentration of 1 × 106 cells/mL.
For MDM polarization, the purified monocytes were matured for five days in RPMI1640,
10% FCS and 100 U/100 µg/mL penicillin/streptomycin (ThermoFisher Scientific) with
10 ng/mL macrophage colony-stimulating factor (M-CSF) (Peprotech, Stockholm, Sweden)
and 1ng/mL granulocyte-macrophage colony-stimulating factor (GM-CSF) (Peprotech).
Media were changed every 2–3 days. At day six, the cells were harvested using a de-
tach buffer and the MDMs were seeded and stimulated with either lipopolysaccharide
(LPS) (100 ng/mL) and interferon-gamma (IFN-γ) (20 ng/mL) for M1 polarization, IL-4
(10 ng/mL) and IL-13 (10 ng/mL) for M2a polarization, IL-10 (10 ng/mL) for M2c polariza-
tion or left untreated for M0 polarization, for 24 h. This protocol for macrophage isolation
and polarization is routinely used in our laboratory. We have previously published data on
surface markers and informative biomarkers in these cells [23].

4.2. Flow Cytometry

Flow cytometry measures were carried out on separate cells in order to describe the
surface markers and cell phenotypes following this protocol. Cells were treated as described
in the previous section and following 48 h of polarization, the MDMs were harvested,
washed in PBS with 0.5% BSA, and resuspended in stain buffer (PBS with 0.5% BSA and
0.09% NaN3) at approximately 1 × 107 cells/mL. For each sample, 250,000 cells (25 µL) were
used, and staining was performed in a final volume of 34.5 µL. Unspecific antibody binding
was blocked by incubation for 15 min at 4 ◦C with 100 µg/mL human IgG (Beriglobin, CSL
Behring, King of Prussia, PA, USA). Antibody stains were added at the concentrations listed
in Table 2 and incubated for 30 min at 4 ◦C. The antibody panel was based on an established
panel at our laboratory and includes various markers; however, only CD80, CD206 and
CD163 were analyzed for the purposes of this study. Live/dead fixable dye near IF (Thermo
Fisher Scientific) was included in all samples to allow for gating on viable cells. Following
staining, cells were washed in stain buffer, fixed in PBS with 0.9% formaldehyde and data
were acquired using a CytoFLEX S Flow Cytometer (Beckman Coulter, Brea, CA, USA)
with CytExpert software version 2.1 (Beckman Coulter). Compensation was performed
using single-stained beads (ArC™ Amine Reactive Compensation Bead Kit from Thermo
Fisher Scientific #A10346, and BD™ CompBead Plus from Becton Dickinson #560497), and
data were analyzed in FlowJo software version 10.8.1 (Becton Dickinson, Franklin Lakes,
NJ, USA). The full gating strategy used is presented in Supplementary Figure S1.
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Table 2. Antibodies Used in Flow Cytometry Panel.

Specificity Fluorophore Manufacturer Clone Catalog No. Concentration

CD80 Brilliant Violet 510 BD Biosciences, Minneapolis, MN, USA L307.4 563084 0.906 µg/mL

CD206 Alexa Fluor 700 BioLegend, San Diego, CA, USA 15-2 321132 1.359 µg/mL

CD163 PE BioLegend, San Diego, CA, USA GHI/61 333606 1.812 µg/mL

4.3. Stimulation of MDMs with 25-Hydroxy-Vitamin D

After polarization into M0, M1, M2a and M2c MDMs, the cells were stimulated with
25-hydroxy-vitamin D. Before stimulation, the media was removed, and cells were washed
carefully with 10 mL PBS. 25-hydroxy-vitamin D (Cayman Chemical. Item no: 9000683. Mw
400.6) was added in a concentration of 0, 100, 1000 or 10,000 nanomolar (nM) (see Table 1).
All vitamin D stimulations were performed in RPMI1640 with 10% charcoal stripped FCS
(Thermo Fisher). After 5 min, 1 mL of the media was removed, centrifuged and stored
at −80 ◦C until further analysis. Cells and media were placed in an incubator (5% CO2,
37 ◦C) for 24 or 48 h. After incubation, the media was removed and centrifuged, and the
supernatant was stored at −80 ◦C until further analysis.

4.4. Liquid Chromatography-Mass Spectrometry-Mass Spectrometry (LCMSMS) Measurement of
Vitamin D Metabolites

For analyses of 25-hydroxy-vitamin D3 and 3-epi-25-hydroxy-vitamin D3, 100 µL of
cell media and 300 µL of acetonitrile containing stable isotope-labeled internal standards
were added to an Impact protein precipitation plate (Phenomenex, Torrance, CA, USA).
After five minutes of orbital mixing, the supernatant was pulled into a collection plate
using a vacuum manifold. The collection plate was then heat sealed and placed for
analysis on an LCMSMS system consisting of a Nexera (Shimadzu, Kyoto, Japan) HPLC
system in front of a 6500 QTRAP mass spectrometer (Sciex, Framingham, MA, USA).
The compounds were separated by a 0.1% formic acid/methanol gradient on a Kinetex
F5 column (Phenomenex). The mass spectrometer was operated in positive mode using
Atmospheric Pressure Chemical Ionization (APCI) and the analytes were monitored via the
transitions: m/z 383.3 -> 257.2 for 25-hydroxy-vitamin D3 and 3-epi-25-hydroxy-vitamin
D3, and m/z 389.3 -> 263.6 for the internal standard. The run time was six minutes, and the
limits of detection were 4 nM for both compounds.

For analyses of 1,25-dihydroxy-vitamin D3 and 24,25-dihydroxy-vitamin D3, 150 µL
of cell media and 500 µL of acetonitrile containing stable isotope-labeled internal standards
were added to a protein precipitation plate, mixed and the supernatant was transferred
to a collection plate as described above. The supernatant was then evaporated to dryness
by heated nitrogen and after addition of 4-Phenyl-1,2,4-triazoline-3,5-dione (PTAD) in
acetonitrile, 10 min of shaking and addition of water, the plate was sealed and placed on
the same LCMSMS system as described above for analysis. For practical reasons, the two
compounds were analyzed using two separate methods but sharing the exact same setup.
The samples were chromatographed on a Kinetex XB-C18 column (Phenomenex) using
0.1% methylamine and methanol as mobile phases. The mass spectrometer was operated
in positive mode using electrospray ionization (ESI), and the analytes were monitored
via transitions:

• m/z 623.3 -> 314.2 for 1,25-dihydroxyvitamin D3, and m/z 629.3 -> 314.2 for the
internal standard. Run-time was four minutes, and the limit of detection was 25 M.

• m/z 623.3 -> 298.2 for 24,25-dihydroxyvitamin D3, and m/z 629.3 -> 298.2 for the
internal standard. Run-time was four minutes, and the limit of detection was 100 nM.

4.5. RNA Isolation and cDNA Preparation for qPCR

Cells used for qPCR analysis were lysed in RLT buffer (Qiagen, Sollentula, Sweden)
and mixed with 70% ethanol. Cell samples were then transferred to a QIAamp spin column
(Qiagen) centrifuged and washed (RW1 buffer (Qiagen)), then treated with DNase (15 min,
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room temperature), washed and centrifuged. Samples were resuspended in H2O and
the RNA concentration was measured by NanoDrop 2000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA). cDNA was synthesized with the High-capacity
cDNA reverse transcription kit (Thermo Fisher Scientific) according to the supplier’s
recommendations. For the generation of cDNA, 0.1 µg of RNA was used in a total reaction
volume of 10 µL using random hexamer priming.

4.6. qPCR Analysis

qPCR was conducted on a Lightcycler 480 II PCR instrument (Roche, Basel, Switzer-
land) with Sybr Green for quantification. The reaction took place in a total volume of 10 µL
of the 480 Sybr Green Master Mix Buffer, 250 nM of each primer (Eurofins Genomics, Lux-
embourg) and 1 µL cDNA prepared as described above. A standard curve was generated
for each qPCR reaction based on serial dilutions of the sample with the highest amount of
the specific target. The mRNA concentrations were calculated from the standard curve. All
samples were run in duplicate, and the mean value was used for analysis.

The primer sequences and annealing temperatures are presented in Table 3. The
primer sequences for CYP27B1 and CYP24A1 are from the literature [7,24]. The correct
identity of all PCR products was confirmed by sequencing.

Table 3. Primers for qPCR.

Forward Primer Reverse Primer Annealing Temp.

CYP27B1 TTGCTATTGGCGGGAGTGG TGCCGGGAGAGCTCATACAG 60

CYP24A1 AGGGGGTCTCAAGAAACAGC GGCCTTCCACGGTTTGATCT 60

CYP24A1 SV GGACACCTCAAAATCCCTGAACCCAA CCATAAAATCGGCCAAGACCTCATTG 60

YWHAZ ACTTTTGGTACATTGTGGCTTCAA CCGCCAGGACAAACCAGT 59

The household gene YWHAZ was found to be constantly expressed in all groups, and
target genes are therefore presented relatively to the expression of this gene in the results.

4.7. Statistics

Groups (M0, M1, M2a and M2c) were compared using a one-way ANOVA. For
flow cytometry data, a one-way ANOVA with repeated measures was used. When a
significant effect of groups was found, individual groups were compared using Tukey’s
multiple comparisons test. A p-value < 0.05 was considered significant. Statistic tests and
graphs were performed using Graph Pad Prism version 9 (GraphPad Software, San Diego,
CA, USA).

5. Conclusions

In conclusion, the metabolism of vitamin D in human MDMs was found to be highly
dependent on macrophage polarization. When MDMs are polarized in a reparative direc-
tion, the cells have a continuous mRNA expression of CYP27B1 for synthesizing active
vitamin D, and they have decreased vitamin D degradation together, resulting in high
1,25-dihydroxy-vitamin D secretion. When the MDMs are polarized in an inflammatory
direction, the cells produced a small amount of active vitamin D, secreted almost no 3-epi-
25-hydroxy-vitamin D and upregulated the non-functioning mRNA splice variant for the
main degrading enzyme (CYP24A1-SV), together resulting in almost no metabolism of the
added 25-hydroxy-vitamin D. Furthermore, we showed that human reparative, but not
inflammatory, MDMs are able to synthesize 3-epi-25-hydroxy-vitamin D. We believe that
these findings have many interesting perspectives on how vitamin D can affect the balance
of macrophage polarization and the other way around.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms231810943/s1.
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https://www.mdpi.com/article/10.3390/ijms231810943/s1


Int. J. Mol. Sci. 2022, 23, 10943 11 of 12

Author Contributions: Conceptualization, R.H.N. and H.J.M.; methodology, M.C.N., K.W.A., C.S.H.
and B.S.S.; validation, R.H.N. and H.J.M.; formal analysis, R.H.N., M.C.N., K.W.A., C.S.H. and B.S.S.;
investigation, R.H.N., M.C.N., K.W.A., C.S.H., B.S.S. and H.J.M.; resources, H.J.M.; writing—original
draft preparation, R.H.N.; writing—review and editing, M.C.N., K.W.A., C.S.H., B.S.S. and H.J.M.;
visualization, R.H.N. and M.C.N.; project administration, H.J.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Central Region of Denmark.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Colotta, F.; Jansson, B.; Bonelli, F. Modulation of inflammatory and immune responses by vitamin D. J. Autoimmun. 2017, 85,

78–97. [CrossRef] [PubMed]
2. Vanherwegen, A.-S.; Gysemans, C.; Mathieu, C. Regulation of Immune Function by Vitamin D and Its Use in Diseases of

Immunity. Endocrinol. Metab. Clin. N. Am. 2017, 46, 1061–1094. [CrossRef] [PubMed]
3. Adams, J.S.; Modlin, R.L.; Diz, M.M.; Barnes, P.F. Potentiation of the Macrophage 25-Hydroxyvitamin D1-Hydroxylation Reaction

by Human Tuberculous Pleural Effusion Fluid. J. Clin. Endocrinol. Metab. 1989, 69, 457–460. [CrossRef] [PubMed]
4. Zhang, X.; Zhang, X.; Zhou, M.; Guo, Y.; Song, Z.; Liu, B. 1,25-Dihydroxyvitamin D3 Promotes High Glucose-Induced M1

Macrophage Switching to M2 via the VDR-PPARγ Signaling Pathway. BioMed Res. Int. 2015, 2015, 157834.
5. Zhu, X.; Zhu, Y.; Li, C.; Yu, J.; Ren, D.; Qiu, S.; Nie, Y.; Yu, X.; Xu, X.; Zhu, W. 1,25-Dihydroxyvitamin D regulates macrophage

polarization and ameliorates experimental inflammatory bowel disease by suppressing miR-125b. Int. Immunopharmacol. 2019, 67,
106–118. [CrossRef]

6. Mantovani, A.; Sica, A.; Sozzani, S.; Allavena, P.; Vecchi, A.; Locati, M. The chemokine system in diverse forms of macrophage
activation and polarization. Trends Immunol. 2004, 25, 677–686. [CrossRef]

7. Ren, S.; Nguyen, L.; Wu, S.; Encinas, C.; Adams, J.S.; Hewison, M. Alternative splicing of vitamin D-24-hydroxylase: A novel
mechanism for the regulation of extrarenal 1,25-dihydroxyvitamin D synthesis. J. Biol. Chem. 2005, 280, 20604–20611. [CrossRef]

8. Al-Zohily, B.; Al-Menhali, A.; Gariballa, S.; Haq, A.; Shah, I. Epimers of Vitamin D: A Review. Int. J. Mol. Sci. 2020, 21, 470.
[CrossRef]

9. Astecker, N.; Reddy, G.S.; Herzig, G.; Vorisek, G.; Schuster, I. 1α,25-dihydroxy-3-epi-vitamin D3 a physiological metabolite of
1α,25-dihydroxyvitamin D3: Its production and metabolism in primary human keratinocytes. Mol. Cell. Endocrinol. 2000, 170,
91–101. [CrossRef]

10. Masuda, S.; Kamao, M.; Schroeder, N.J.; Makin, H.L.; Jones, G.; Kremer, R.; Rhim, J.; Okano, T. Characterization of 3-epi-1α,25-
dihydroxyvitamin D3 involved in 1α,25-dihydroxyvitamin D3 metabolic pathway in cultured cell lines. Biol. Pharm. Bull. 2000,
23, 133–139. [CrossRef]

11. Rehan, V.T.J.; Peleg, S.; Gennaro, L.; Vouros, P.; Padbury, J.; Rao, D.; Reddy, G. 1α,25-dihydroxy-3-epi-vitamin D3, a natural
metabolite of 1α,25-dihydroxy vitamin D3: Production and biological activity studies in pulmonary alveolar type II cells. Mol.
Genet. Metab. 2002, 76, 46–56. [CrossRef]

12. Lopez, D.V.; Al-Jaberi, F.A.; Woetmann, A.; Ødum, N.; Bonefeld, C.M.; Kongsbak-Wismann, M.; Geisler, C. Macrophages Control
the Bioavailability of Vitamin D and Vitamin D-Regulated T Cell Responses. Front. Immunol. 2021, 12, 722806. [CrossRef]
[PubMed]

13. Adams, J.S.; Chen, H.; Chun, R.; Ren, S.; Wu, S.; Gacad, M.; Nguyen, L.; Ride, J.; Liu, P.; Modlin, R.; et al. Substrate and Enzyme
Trafficking as a Means of Regulating 1,25-Dihydroxyvitamin D Synthesis and Action: The Human Innate Immune Response. J.
Bone Miner. Res. 2007, 22, V20–V24. [CrossRef]

14. Goldman, M.M.; Viec, K.V.; Caulfield, M.P.; Reitz, R.E.; McPhaul, M.J.; Clarke, N.J. The Measurement of 3-Epimer 25-
Hydroxyvitamin D by Mass Spectrometry in Clinical Specimens Detects Inconsequential Levels in Adult Subjects. J. Investig. Med.
2014, 62, 690–695. [CrossRef] [PubMed]

15. Singh, R.J.; Taylor, R.L.; Reddy, G.S.; Grebe, S.K.G. C-3 Epimers Can Account for a Significant Proportion of Total Circulating
25-Hydroxyvitamin D in Infants, Complicating Accurate Measurement and Interpretation of Vitamin D Status. J. Clin. Endocrinol.
Metab. 2006, 91, 3055–3061. [CrossRef] [PubMed]

16. Lensmeyer, G.; Poquette, M.; Wiebe, D.; Binkley, N. The C-3 Epimer of 25-Hydroxyvitamin D3Is Present in Adult Serum. J. Clin.
Endocrinol. Metab. 2012, 97, 163–168. [CrossRef] [PubMed]

17. Das, L.M.; Binko, A.M.; Traylor, Z.P.; Peng, H.; Lu, K.Q. Vitamin D improves sunburns by increasing autophagy in M2
macrophages. Autophagy 2019, 15, 813–826. [CrossRef]

http://doi.org/10.1016/j.jaut.2017.07.007
http://www.ncbi.nlm.nih.gov/pubmed/28733125
http://doi.org/10.1016/j.ecl.2017.07.010
http://www.ncbi.nlm.nih.gov/pubmed/29080635
http://doi.org/10.1210/jcem-69-2-457
http://www.ncbi.nlm.nih.gov/pubmed/2502557
http://doi.org/10.1016/j.intimp.2018.12.015
http://doi.org/10.1016/j.it.2004.09.015
http://doi.org/10.1074/jbc.M414522200
http://doi.org/10.3390/ijms21020470
http://doi.org/10.1016/S0303-7207(00)00330-0
http://doi.org/10.1248/bpb.23.133
http://doi.org/10.1016/S1096-7192(02)00022-7
http://doi.org/10.3389/fimmu.2021.722806
http://www.ncbi.nlm.nih.gov/pubmed/34621269
http://doi.org/10.1359/jbmr.07s214
http://doi.org/10.2310/JIM.0000000000000067
http://www.ncbi.nlm.nih.gov/pubmed/24583901
http://doi.org/10.1210/jc.2006-0710
http://www.ncbi.nlm.nih.gov/pubmed/16720650
http://doi.org/10.1210/jc.2011-0584
http://www.ncbi.nlm.nih.gov/pubmed/22013102
http://doi.org/10.1080/15548627.2019.1569298


Int. J. Mol. Sci. 2022, 23, 10943 12 of 12

18. Liang, S.; Cai, J.; Li, Y.; Yang, R. 1,25-Dihydroxy-Vitamin D3 induces macrophage polarization to M2 by upregulating T-cell
Ig-mucin-3 expression. Mol. Med. Rep. 2019, 19, 3707–3713. [CrossRef]

19. Lissner, D.; Schumann, M.; Batra, A.; Kredel, L.-I.; Kühl, A.A.; Erben, U.; May, C.; Schulzke, J.-D.; Siegmund, B. Monocyte and
M1 Macrophage-induced Barrier Defect Contributes to Chronic Intestinal Inflammation in IBD. Inflamm. Bowel Dis. 2015, 21,
1297–1305. [CrossRef]

20. Landis, R.C.; Quimby, K.R.; Greenidge, A.R. Greenidge, M1/M2 Macrophages in Diabetic Nephropathy: Nrf2/HO-1 as Thera-
peutic Targets. Curr. Pharm. Des. 2018, 24, 2241–2249. [CrossRef]

21. Autier, P.; Mullie, P.; Macacu, A.; Dragomir, M.; Boniol, M.; Coppens, K.; Pizot, C.; Boniol, M. Effect of vitamin D supplementation
on non-skeletal disorders: A systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol. 2017, 5,
986–1004. [CrossRef]

22. Hu, C.; Wu, X. Effect of Vitamin D Supplementation on Vascular Function and Inflammation in Patients with Chronic Kidney
Disease: A Controversial Issue. Ther. Apher. Dial. 2019, 24, 265–274. [CrossRef] [PubMed]

23. Nielsen, M.C.; Andersen, M.N.; Møller, H.J. Monocyte isolation techniques significantly impact the phenotype of both isolated
monocytes and derived macrophages in vitro. Immunology 2019, 159, 63–74. [CrossRef] [PubMed]

24. Pinzone, M.R.; Di Rosa, M.; Celesia, B.M.; Condorelli, F.; Malaguarnera, M.; Madeddu, G.; Martellotta, F.; Castronuovo, D.;
Gussio, M.; Coco, C.; et al. LPS and HIV gp120 modulate monocyte/macrophage CYP27B1 and CYP24A1 expression leading to
vitamin D consumption and hypovitaminosis D in HIV-infected individuals. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 1938–1950.

http://doi.org/10.3892/mmr.2019.10047
http://doi.org/10.1097/MIB.0000000000000384
http://doi.org/10.2174/1381612824666180716163845
http://doi.org/10.1016/S2213-8587(17)30357-1
http://doi.org/10.1111/1744-9987.13428
http://www.ncbi.nlm.nih.gov/pubmed/31400089
http://doi.org/10.1111/imm.13125
http://www.ncbi.nlm.nih.gov/pubmed/31573680

	Introduction 
	Results 
	Baseline and Cell Phenotype 
	MDMs Are Able to Synthesize 3-Epi-25-Hydroxy-Vitamin D from 25-Hydroxy-Vitamin D 
	Vitamin D Metabolism Is Dependent on MDM Polarization 
	The mRNA Expression of CYP27B1, CYP24A1 and CYP24A1-SV 

	Discussion 
	Methods and Materials 
	Monocyte-Derived Macrophages (MDMs) 
	Flow Cytometry 
	Stimulation of MDMs with 25-Hydroxy-Vitamin D 
	Liquid Chromatography-Mass Spectrometry-Mass Spectrometry (LCMSMS) Measurement of Vitamin D Metabolites 
	RNA Isolation and cDNA Preparation for qPCR 
	qPCR Analysis 
	Statistics 

	Conclusions 
	References

