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Abstract

Brief Report

Introduction

Diffuse large B‑cell lymphoma  (DLBCL) is the most 
common type of non‑Hodgkin’s lymphoma, accounting for 
approximately 30% of all cases.[1] The improvement in the 
prognosis of patients observed over the past two decades 
was due not only to increasingly effective therapies but 
also to clearer definitions of disease and prognostic factors, 
stemming from more robust diagnostic and staging techniques. 
One of the most significant discoveries was the definition of 
distinct disease entities based on gene expression patterns. 
As originally described by Alizadeh, DLBCL can be divided 
into subgroups with germinal center B‑cell  (GCB)‑like, 
activated B‑cell  (ABC)‑like, and type  3 gene expression 
profiles  (GEPs), adding fundamental information to the 
previously suspected biological diversity of this disease.[2] In 
fact, these subgroups differ by the expression of more than 
1000 genes, which is comparable to the difference between 
acute lymphoid and myeloid leukemias.[3] More importantly, 

this model defines subgroups with different prognoses, 
where the ABC gene signature is an independent adverse 
prognostic factor, even in the era of combination therapy with 
Rituximab, Cyclophosphamide, Doxorubicin, Vincristine and 
Prednisolone (R‑CHOP).[2,4,5]

Despite the implementation of GEP into clinical practice 
in recent years, DNA‑ and RNA‑based prognostic methods 
remain expensive and technically challenging. Thus, 
alternative and simpler IHC techniques have been explored. 
Among the earliest described, the Hans algorithm allowed 
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the distinction between GCB and non‑GC DLBCL subtypes 
using a set of measurable proteins that included CD10, BCL‑6, 
and MUM1/IRF4.[6] It retained prognostic significance for 
patients treated with CHOP, but the concordance with GEP 
was only 71% for GCB and 88% for non‑GC lymphomas. 
More importantly, it was developed in the prerituximab era 
and its application to patients treated with R‑CHOP led to 
variable results and may have lost its prognostic value in 
this setting.[7,8] Subsequently, several other algorithms based 
on immunohistochemical (IHC) stains and tissue microarray 
techniques were developed to overcome these limitations.
[4,5,9,10] These new, more accurate, algorithms have introduced 
new proteins into the set of relevant attributes, with significant 
discriminant and prognostic powers  (FOXP1, GCET1, 
and LMO2). The rationale used to design these algorithms 
was mostly based on trial and error approaches, technical 
considerations related to tissue staining, and a certain number 
of biological assumptions that, despite their relevance, lack 
mathematical validity. One could take as an example the 
Visco‑Young algorithm, a 3‑marker signature that uses CD10, 
FOXP1, and BCL‑6. It has a 92.6% concordance with GEP 
and retains a strong independent prognostic value in patients 
treated with R‑CHOP.[4] These authors argue that CD10 
should have a prominent role because it is part of the initial 
diagnostic staining panel in most practices and shows the 
best concordance in different studies performed in different 
laboratories. Oppositely, a minor role is given to BCL‑6 due 
to the high variability obtained in staining, which might be 
related both to the avidity of the antibodies used in this IHC 
analysis and the natural variability of this epitope.[11] The 
remaining algorithm transposes the known B‑cell maturation 
steps at the germinal center to the classification flow. 
Despite their clinical validity, these technical and biological 
assumptions may introduce a significant bias into the rationale 
of the classifier and lead to an under‑ or overestimation of 
the role of each of these markers. Moreover, these methods 
do not account for aberrant differentiation pathways which 
one could expect to encounter in such diseases. Furthermore, 
in the Visco‑Young algorithm, the cutoff values for each 
marker were determined using the Youden index from 
receiver‑operator characteristic  (ROC) curves determined 
for each marker individually. Although commonly used, this 
method might fail to provide a robust basis for the multivariate 
nature of the proposed algorithm. Moreover, as others before 
them and for practical reasons, the authors deliberately used 
cutoffs for GCET1 and FOXP1 that were different from those 
given by the Youden index. Still, they found out that this did 
not change the sensitivity and specificity of these markers. 
While this may be valid for each marker individually, it may 
introduce a significant bias into a multifactor analysis, which 
highlights the relevance of an independent validation.

Machine learning comprises a group of techniques that allow 
the use of large, complex datasets to build classification models 
and can provide the basis to address the issues identified above. 
Several data mining and analysis software packages are available 

for academic use, each comprising several algorithms for data 
analysis. For this classification problem, the WEKA (University 
of Waikato, New Zealand) software and the C4.5 statistical 
classifier were used. This algorithm is based on the concept of 
information entropy and generates decision trees in a recursive 
way, where each node splits data as effectively as possible in 
terms of enrichment of the resulting branches in any one of the 
categories being studied.

In this article, I present a DLBCL IHC classification algorithm 
obtained through machine learning classification methods 
whereby ignoring any pre‑assumptions (beyond the limited set 
of markers available), I expect to provide additional validity 
to the results that emerge and most importantly, raise new 
hypotheses.

Methods

Patient data were obtained from the Visco and Young dataset, 
which is kindly available as supplementary materials to their 
original article.[4] The data of all 475  patients used in the 
design of their algorithm were also used in this work. These 
data were processed and analyzed using the machine learning 
WEKA package, v. 3.6.11. To design the new algorithm, the 
GEP‑unclassifiable (UC) cases were removed from the dataset. 
For the remaining 431 cases, a new algorithm was obtained using 
the J48 classification method, a derivation of the C4.5 method 
implemented in WEKA.[12] To obtain a simplified classification 
tree with significant groups, a minimum of 20  cases were 
imposed into each class. A  ten‑fold cross‑validation method 
was used. The resulting classification tree was then applied to 
the entire original dataset including GEP‑UC cases. To evaluate 
the performance of the classifier, ROC curves were obtained 
and the area under the curve was used as an overall measure of 
sensitivity and specificity. Survival curves for GCB and non‑GC 
groups were obtained using the Kaplan–Meier method and 
compared by the log‑rank test. The classification results were 
included in a Cox proportional hazards model for multivariate 
analysis for prognosis. The level of significance used to justify 
a statistically significant effect was 0.05.

Results

The resulting algorithm is shown in Figure 1. Similarly, to the 
Visco‑Young algorithm, it includes CD10 as stem marker, and 
subsequently, the classification tree branches out to include 
MUM1, FOXP1, and BCL‑6 markers. The performance of 
this algorithm in terms of efficacy of classification is similar to 
that of the Visco‑Young and Choi methods and superior to the 
Hans method: 395 cases were correctly classified, achieving 
a 95.7% true positive rate for GCB and 87% true positive rate 
for ABC, with overall 91.6% correctly classified cases. This 
corresponds to a kappa statistic of 0.83 and a ROC area under 
the curve of 0.934. A total of 231 cases were classified as GCB 
and 200 cases were classified as non‑GC. The vast majority of 
misclassified cases have a ABC GEP (21/27 cases) but entered 
the IHC category for GCB.
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By applying the new classification to the original clinical data, 
it was possible to compare progression‑free survival  (PFS) 
and overall survival (OS) among GCB and non‑GC patients 
as classified by the new algorithm. The Kaplan–Meier plots 
shown in Figure 2 exclude GEP‑UC patients and demonstrate 
significant statistical differences among subgroups (P = 0.024 
and P = 0.017 for PFS and OS, respectively).

One of the potential advantages of IHC methods is the ability 
to classify the previously GEP‑UC cases and derive prognostic 
information from them. Figure 3 depicts the Kaplan–Meier 
plots obtained after applying the new classification algorithm 
to all the cases, including GEP‑UC. Median OS and PFS 
are, respectively, 60 and 61.2 months for non‑GC and not 
reached for GCB subgroups. Differences between subgroups 
are statistically significant and because these results were 
maintained after inclusion of the GEP‑UC patients, suggest 
that this algorithm might have intrinsic prognostic properties, 
independently of the correlation with GEP.

When analyzing the correspondence between the new 
algorithm and the Visco‑Young in terms of classification of 
GEP‑UC cases (n = 44), only one out of 21 GCB cases are 
not a match, but among non‑GC cases, 6 out of 23  (26%) 
cases disagree in terms of IHC classification [Figure 4]. This 
relates to the fact that a higher proportion of GEP‑UC cases 
are classified as GCB by the new algorithm (26/44) compared 
to the Visco‑Young algorithm (21/44). The reclassification did 
not have an apparent impact on survival.

On a multivariate analysis, an IPI score of 3 or more, lack of 
complete response, non‑GC class as predicted class by the new 
classifier, and LDH above normal were significantly associated 
with worse survival. Both gender and a poor performance 
status did not reach statistical significance. These results are 
summarized in Table 1.

Figure  1: Algorithm for immunohistochemical classification obtained 
by applying a classification tree method to the Visco‑Young dataset 
after removing the unclassifiable cases. The numbers below the boxes 
indicate the number of cases correctly classified and the total number 
of cases classified in the category identified in the corresponding box. 
GCB: germinal center B‑cell, non‑GC: non‑germinal center

Figure 2: PFS and OS among GCB and non‑GC patients, as classified by the new algorithm, excluding GEP‑unclassifiable cases. PFS: P =0.024 
(median 61.9 months for non‑GC vs. not reached). OS: P =0.017 (median 60 months for non‑GC vs. not reached). GCB: germinal center B‑cell, 
non‑GC: non‑germinal center, OS: Overall survival, PFS: progression‑free survival

Figure 3: PFS and OS among GCB and non‑GC patients, as classified by the new algorithm, including GEP‑unclassifiable cases. PFS: P =0.017 
(median 61.9 months for non‑GC vs. not reached). OS: P =0.007 (median 60 months for non‑GC vs. not reached). PFS: progression‑free survival, 
OS: Overall survival
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original biological assumptions. Furthermore, FOXP1 is placed 
immediately before BCL‑6 in the classification flow, again 
adding to the validity of the original biological rationale used 
by this and other previous algorithms where the steps of B‑cell 
maturation are recalled. However, this algorithm discards 
GCET1 (used in both the 4‑marker Visco‑Young, Tally and 
Choi algorithms) and uses MUM1 at a 5% cutoff point. Below 
this value, most cases are classified as GCB (43/52, 82.6%), 
which implies that even small expression levels of MUM1 
are significantly associated with a non‑GC‑like phenotype. 
Furthermore, the proposed algorithm indicates that most of 
MUM1 positive cases have high levels of FOXP1, and both 
are associated with the non‑GC phenotype. This may indicate 
a biological rationale for an interplay between the pathways 
involved, but such inference is out of the scope of this work, 
despite the known role of PPAR‑alpha in the expression of 
both FOXP1 and MUM1.[13]

Compared to GEP, this new classification algorithm correctly 
classified 91.6% cases. Most of the misclassified cases have 
an ABC GEP. This is contrary to other previous analyses, 
where the proportion of misclassified cases by IHC compared 
with GEP was higher when defining the GCB subtype.[5,14] 
Although the reason for these differences remains elusive, one 
possible explanation could be the generally poor performance 
of BCL‑6 as a GCB marker.[11] High levels of BCL‑6 mRNA 
are associated with a good prognosis, but BCL‑6 staining 
and analysis is known to be highly variable and has a poor 
correlation with mRNA levels.[15] In this work, BCL‑6 ≥30% 
is associated with a GCB‑like phenotype in a minority of the 
MUM1+ cases with lower levels of FOXP1+. This suggests 
that BCL‑6 could be a weaker marker of phenotype compared 
to FOXP1 and MUM1, which might also help explain the 
variable results obtained earlier in terms of the prognostic 
significance of the BCL‑6 immunophenotype.[16,17] Previously, 
different algorithms suggest diverse weights for BCL‑6 in 
terms of the number of patients discriminated according to 
this marker, and it has been shown to be associated with both 
GCB and non‑GC markers.[18] If BCL‑6 is removed from the 
dataset, a new algorithm can be derived, which is similar 
to the one presented above but incorporates GCET1 in the 

Discussion

The new algorithm described was obtained by applying the 
machine learning method J48, a derivation of C4.5, to the 
Visco‑Young dataset and includes CD10, MUM1, FOXP1, and 
BCL‑6 into an IHC classification tree that can be applied to 
DLBC lymphoma. Reference algorithms and their respective 
concordance with GEP are summarized in Table 2. No other 
previously described algorithm uses such a combination of 
markers and cutoffs. Another relevant aspect of this result, 
unlike previous algorithms, is that it was obtained without 
any a priori assumptions. This is most relevant because 
it avoids technical preconceptions  (such as in the case of 
BCL‑6, as discussed in the introduction, but also CD10) and 
methodological shortcuts (as in the case of the simplified cutoff 
values, also discussed in the introduction), both of which may 
introduce bias into a classifier. Moreover, this method avoids 
any kind of biological presumptions which, from a more 
conceptual perspective is very relevant, as recapitulating the 
physiological differentiation pathways to explain malignant 
phenotypes may fail to take into account aberrant pathways 
involved in pathological states. Interestingly, both the stem and 
the terminal markers of this new algorithm coincide with the 
Visco‑Young algorithm, aiding to the validation of some of the 

Table 1: Multivariate analysis of risk factors for progression‑free survival and overall survival

PFS OS

Significant HR 95.0% CI for HR Significant HR 95.0% CI for HR

Lower Upper Lower Upper
Gender 0.067 1.337 0.98 1.824 0.53 1.109 0.803 1.531
ECOG ≥3 0.868 0.958 0.579 1.586 0.268 0.758 0.463 1.238
IPI high 0.002 0.568 0.399 0.809 0.003 0.575 0.4 0.827
CR 0 5.853 4.201 8.157 0 6.596 4.667 9.324
Prediction 0.024 0.691 0.501 0.952 0.011 0.653 0.469 0.908
LDH 0.078 0.839 0.69 1.02 0.047 0.813 0.662 0.997
ECOG≥3: ECOG performance status grades 3 or 4, PFS: Progression‑free survival, OS: Overall survival, HR: Hazard ratio, CI: Confidence interval, IPI high: 
International Prognostic Index of 4 or 5, CR: Complete response, Prediction: Predicted class by the proposed model, LDH: Lactate dehydrogenase, ECOG: 
Eastern Cooperative Oncology Group

Figure 4: Correspondence between the Visco‑Young and the new algorithm 
described (“prediction”) when applied exclusively to GEP‑unclassifiable 
cases. GEP: Gene expression profiles
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same terminal position, at a 5% cutoff point. This model has 
a worse discriminant capacity, with only 378 (87%) correctly 
classified cases. The reason why GCET1 was not included 
in the algorithm now described is that its role as a classifier 
superimposes that of BCL‑6 but with an inferior accuracy, 
making the algorithm less robust.

If the algorithm presented were to be applied using the 30% 
cutoff for every input variable (as done in the Hans model), the 
accuracy would fall to 86.5%. This illustrates that input order 
and weighting are important aspects of this and every other 
algorithm. However, the most relevant feature of an algorithm 
such as this is expressed by its prognostic significance in terms 
of OS and PFS, even for the GEP‑UC cases. This adds to the 
validity of this algorithm, which seems to have prognostic 
capabilities beyond its correspondence to GEP. This is an 
important point in favor of IHC methods, which, despite their 
variable results, do not leave any cases unclassified while 
retaining independent significance in multivariate analysis 
for both OS and PFS.

Comparing with the Visco‑Young algorithm, the cutoff values 
obtained with the new algorithm are similar for BCL‑6 (30%) 
and FOXP1 (60%) but different for CD10 (50% vs. 30%) and 
for MUM1  (5% vs. 30%). Both FOXP1 and MUM1 were 
used also in the Choi algorithm (both at 80% cut‑off point), 
and Hans described the use of MUM1, CD10, and BCL‑6 at 
the 30% cutoff value. The differences among these and other 
previously published algorithms stems from variable staining 
performances, different visual analyses and demonstrates 
the disparate interpretations of apparently similar data. This 
calls for the development of robust staining methods as well 
as mathematical methods that can define an accurate, valid 
algorithm. I  believe that machine learning methods fulfill 
part of this task and could provide a generalizable method to 
approach new classification efforts. The relatively superior 
performance of this new algorithm in terms of classification 
of GCB (vs. non‑GC) lymphomas is an interesting feature 
with potential utility in trials dedicated to this subgroup of 
DLBCL. The similarities between the results described here 
and the Visco‑Young algorithm validates it in terms of clinical 
utility and biological logic. Future analysis could make use 

other classification methods. Beyond J48, Bayesian methods 
were also experimented, but the results were not superior to 
J48 in terms of accuracy (data not shown).

Conclusion

In this article, a new DLBCL classification model based on 
IHC stains is described, obtained using the machine learning 
algorithm J48 that has both high correspondence to GEP and 
prognostic significance. This is a novel approach to the IHC 
classification of lymphomas. Unlike prior models, the new 
algorithm lacks any a priori biological assumptions (beyond the 
limited set of markers), but its similarities to some of the prior 
models seem to support those. This includes the potential 
association between MUM1 and FOXP1 in non‑GC cells 
and the minor role of BCL‑6 in GCB cases. In a multivariate 
analysis, the new model is an independent predictor of survival. 
Compared to gene expression profiling, IHC algorithms such as 
the one described here have an easier, cheaper implementation, 
and allow clinicians to classify GEP‑UC cases and derive 
prognostic information from them. In our case, the prognostic 
significance of the algorithm was shown to be preserved after 
the inclusion of the UC cases, which means that the model 
has prognostic power beyond the correspondence with GEP. 
Future work might aim at developing an IHC model that 
maximizes prognostic performance. The use of machine 
learning algorithms provides robust tools to process large 
amounts of data and define new classification models. The 
consequent clinical and biological insights obtained should 
be further explored and validated. Using these methods in 
other contexts may offer novel insights into the biological 
foundations of disease and drive future research.
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