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Introduction
Brugada syndrome (BrS) is an inherited cardiac arrhythmia
syndrome associated with electrocardiography (ECG)
patterns characterized by incomplete right bundle branch
block and ST segment elevation in the anterior precordial
leads, correlated to an increased risk of sudden cardiac death.
Genetic substrate, ECG manifestation, and risk of arrhythmia
in patients with BrS vary considerably. A new strategy for
the treatment of BrS patients with recurrent episodes of
ventricular tachycardia (VT) or ventricular fibrillation (VF)
is based on the catheter ablation of the arrhythmogenic
substrate in the right ventricular outflow tract (RVOT),
identified by invasive cardiac mapping.1,2 A promising
alternative to catheter-based cardiac mapping is a non-
invasive electrocardiographic imaging (ECGI).3,4 The cur-
rent case study demonstrates the use of ECGI for diagnosis
of a patient with BrS.
Case Report
We evaluated members of a family with asymptomatic BrS.
Consistent spontaneous coved-type ST segment elevation up
to 2 mV as well as T-wave inversion in V1 and V2 leads were
diagnosed in a 5-year-old male proband during ECG screen-
ing. His 40-year-old mother had isolated syncopes during
childhood and slight stress-induced dizziness during the last
year. She had no documented heart rhythm disorders or
cardiac arrest history. No significant changes were registered
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in 12-lead ECG as well as during 24-hour Holter monitoring.
Cascade familial genetic screening revealed that the pro-
band’s mother and 3 siblings carry mutation c.1233del in
SCN5A gene.

An ajmaline challenge was performed for the proband’s
mother with intravenous administration of 1 mg per kg
bodyweight in 10 minutes. Starting at a dosage of 0.6 mg per
kg bodyweight, the patient gradually developed a typical
diagnostic ECG pattern of coved-type ST elevation up to 6
mV above baseline with inverted T-waves in leads V1 and V2

(Figure, a). During electrophysiology (EP) study polymor-
phic VT was induced using standard pacing protocol with
double extrastimuli (550/280/220 ms) from the right
ventricular apex.

Recording of local unipolar electrograms (EG) was
performed using the AMYCARD 01C system (EP Solutions
SA, Yverdon-les-Bains, Switzerland). This procedure
included the following steps: (1) 224 body surface mapping
electrodes were applied to the torso of the patient; (2) the
patient underwent computed tomography (CT) imaging of
the heart and torso (Somatom Definition Flash, Siemens AG,
Germany); (3) body surface ECG was recorded at rest,
during ajmaline challenge, in the EP laboratory; and finally
(4) a CT-based 3D heart model was reconstructed and
epicardial/endocardial local unipolar EGs were calculated
at rest, during ajmaline challenge, and during EP study.
In addition, phase maps of induced polymorphic VT were
analyzed.

Despite a normal ECG pattern with standard 12-lead ECG
at rest, we observed fractionated EG with ST segment
elevation (42 mV) in the epicardium and ST elevation
without fractionation in the endocardium of the RVOT.
After ajmaline was administered intravenously, EG changes
were augmented, reflecting an expansion of the area with
abnormal EG and also the appearance of fragmentation in the
right ventricular endocardium, which were not present under
resting conditions (Figure, b). The area of EG with the
elevated ST segment expanded from 2.7 cm2 to 22.5 cm2 and
from 1.8 cm2 to 17.4 cm2 on the epicardium and endocar-
dium, respectively. The area of fractioned EG expanded from
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KEY TEACHING POINTS

� Specific electrogram (EG) abnormalities may be
identified by electrocardiographic imaging (ECGI)
in the right ventricular outflow tract (RVOT) in
Brugada syndrome (BrS) patients even with normal
surface electrocardiography.

� Fractioned EG and ST segment elevation were found
in the epicardium while only ST segment elevation
was found in the endocardium of the RVOT.

� Phase mapping based on ECGI showed that the
excitation pattern underlying polymorphic
ventricular tachycardia in BrS can be represented
by a single epicardial reentrant wave, which later
split into multiple wavelets.
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6.7 cm2 to 16.3 cm2 on the epicardium and was 12.5 cm2 on
the endocardium.

Induced VT lasted 17 seconds and was terminated by
electrical cardioversion. The phase mapping showed the
following results. The primary vortex movement of the phase
front emerged in the anterior aspect of the RVOT. Immedi-
ately after the initiation of tachycardia the core of the first
rotor rotating counterclockwise (CCW) was located
stationary at the RVOT for 1 cycle. The core of the second
rotor, rotating clockwise (CW), drifted toward the posterior
Figure A: Electrocardiography (ECG) in V1–V3 leads in the patient with B
Reconstructed epicardial and endocardial electrogram before and at sixth minute o
ventricular tachycardia. D: Phase maps of ventricular activation matching the A, B
part of the left ventricle (LV). Then the CCW rotor moved to
the apex and the CW rotor took a position at the basal
posteroseptal zone of the LV, and rotation of the phase front
around the axis of the heart was observed. The phase
singularity points were not identified at the endocardium
because the filament connecting phase singularity points was
located in the ventricular septum. These sequences were
maintained during the 4 cycles of tachycardia (pattern A)
(see supplementary material, Video 1). After that, the core of
the CCW rotor drifted in the direction of the RVOT and the
CW rotor drifted to the lateral wall of the LV. One to 3
secondary vortex waves appeared and the collision of wave
fronts was observed (pattern C) (see supplementary material,
Video 2). On the eighth second the process became more
organized again. The cores of the CCW and CW rotors
occupied stable positions at the lateral wall of the RV and the
LV, and the rotation axis became perpendicular to the
interventricular septum. The points of the phase singularity
at the epicardium corresponded to phase singularity points at
the endocardium (pattern B) (see supplementary material,
Video 3). This pattern was maintained during the 14 cycles
of tachycardia. After that, until the VT termination, the
multi-wavelet process (pattern C) was observed.

Pattern A corresponded to high-amplitude periodic
activity on ECG and cycle length was 176 ms; pattern B
corresponded to medium-amplitude periodic activity and
cycle length was 168 ms; and pattern C matched low-
amplitude, irregular ECG activity (Figure, c and d).
rugada syndrome before and at sixth minute of ajmaline challenge. B:
f ajmaline challenge. C: A, B, and C ECG patterns of induced polymorphic
, and C ECG patterns.
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A single-chamber implantable cardioverter-defibrillator
(Teligen VR; Boston Scientific, Marlborough, MA) was
implanted in accordance with clinical guidelines (IIb class).5
Discussion
Recent studies provided evidence that cellular electrophy-
siological changes leading to ECG abnormalities and ven-
tricular arrhythmias are located in the RVOT. A number of
studies including epicardial and endocardial invasive map-
ping of the RVOT were performed to identify the electro-
physiological substrate of BrS patients.1,2,6–9 Epicardial
ablation of those abnormal EG zones led to 12-lead ECG
normalization and reduced VF recurrences.1,8,9 Yakul and
colleagues2 found abnormal late activation zones at the
RVOT based on noncontact endocardial mapping. Endocar-
dial catheter ablation of these zones normalized 12-lead ECG
and suppressed VT storm.

In the presented case we found significantly modified EG
in the RVOT for a patient with normal surface ECG. The
noninvasively revealed EG abnormalities at the RVOT
corresponded with data described in the above publications.
Additionally, EG changes, although less pronounced, were
present not only on the epicardium but also in the endocar-
dium. It is concluded that ECGI can visualize the EP
substrate of BrS even in patients with normal surface ECG
and would be helpful to recognize the potential target for
catheter ablation as well.

Two hypotheses were discussed for the underlying
mechanism of polymorphic VT and VF: the “mother rotor”
and the multi-wavelet hypotheses.10–12 This observation
suggests that there is evidence for both mechanisms of
polymorphic VT and VF in BrS patients and these mecha-
nisms are not mutually exclusive. ECGI provides several
tools to study cardiac arrhythmias, including analysis of
reconstructed local unipolar EG at the cardiac surface and
activation mapping of the ventricles. In addition, ECGI
supports phase mapping of the reentrant arrhythmias.
Rendered phases of EG represent the phases of the electrical
activation-recovery cycle of cardiac tissue and can be used
for identification of reentry. Moreover, phase mapping
allows identification and tracking of the phase singularity
point, which corresponds to the center of rotation of the
vortex waves (“rotors”).13

In general, the observed patterns of polymorphic VT
looked similar to those described in human studies,10–12 but
the observed reentry process was more organized. It is
noteworthy that the vortex wave first appeared in the center
of the abnormal EG zone of the RVOT. But the rotors’ cores
stayed in the RVOT for not more than 20% of the
polymorphic VT event duration. From this observation we
may draw the conclusion that in patients with BrS the RVOT
arrhythmogenic substrate plays an important role for the
induction of triggered arrhythmia, but after the ventricular
arrhythmia becomes a self-sustaining process that does not
depend on the RVOT substrate.
Limitations
ECGI methodology was extensively validated in a series of
animal and human studies.3,4,14 The combination of optical
mapping and phase analysis of optical action potentials has thus
become a well-established technique for this kind of experimen-
tal investigation of reentrant arrhythmias.13 However, phase
mapping based on unipolar EG is a relatively new approach that
requires additional validation. It should also be noted that there
was no direct comparison between ECGI and intracardiac
mapping during pharmacologic testing and VT or VF.

Conclusions
The application of ECGI in addition to conventional
diagnostic technique allows the assessment of pathologic
EG abnormalities in the endocardium and epicardium of the
RVOT in patients with BrS, which are not acquirable in
standard 12-lead ECG. Furthermore, this method allows for
panoramic phase mapping of VT and VF.

Appendix
Supplementary data
Supplementary material cited in this article is available
online at http://dx.doi.org/10.1016/j.hrcr.2015.04.009.
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