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Image-based navigation is widely considered the next frontier of minimally invasive surgery.
It is believed that image-based navigation will increase the access to reproducible, safe,
and high-precision surgery as it may then be performed at acceptable costs and effort.
This is because image-based techniques avoid the need of specialized equipment and
seamlessly integrate with contemporary workflows. Furthermore, it is expected that
image-based navigation techniques will play a major role in enabling mixed reality
environments, as well as autonomous and robot-assisted workflows. A critical
component of image guidance is 2D/3D registration, a technique to estimate the
spatial relationships between 3D structures, e.g., preoperative volumetric imagery or
models of surgical instruments, and 2D images thereof, such as intraoperative X-ray
fluoroscopy or endoscopy. While image-based 2D/3D registration is a mature technique,
its transition from the bench to the bedside has been restrained by well-known challenges,
including brittleness with respect to optimization objective, hyperparameter selection, and
initialization, difficulties in dealing with inconsistencies or multiple objects, and limited
single-view performance. One reason these challenges persist today is that analytical
solutions are likely inadequate considering the complexity, variability, and high-
dimensionality of generic 2D/3D registration problems. The recent advent of machine
learning-based approaches to imaging problems that, rather than specifying the desired
functional mapping, approximate it using highly expressive parametric models holds
promise for solving some of the notorious challenges in 2D/3D registration. In this
manuscript, we review the impact of machine learning on 2D/3D registration to
systematically summarize the recent advances made by introduction of this novel
technology. Grounded in these insights, we then offer our perspective on the most
pressing needs, significant open problems, and possible next steps.
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1 INTRODUCTION

1.1 Background
Advances in interventional imaging, including the
miniaturization of high-resolution endoscopes and the increased
availability of C-arm X-ray systems, have driven the development
and adoption of minimally invasive alternatives to conventional,
invasive and open surgical techniques across a wide variety
of clinical specialities. While minimally invasive approaches
are generally considered safe and effective, the indirect
visualization of surgical instruments relative to anatomical
structures complicates spatial cognition and the more confined
room for maneuvers requires precise command of the surgical
instruments. It is well known that due to the aforementioned
challenges, among others, outcomes after minimally invasive
surgery are positively correlated with technical proficiency,
experience, and procedural volume of the operator (Birkmeyer
et al., 2013; Pfandler et al., 2019; Hafezi-Nejad et al., 2020; Foley
and Hsu, 2021). To mitigate the impact of experience on
complication risk and outcomes, surgical navigation
solutions that register specialized tools with 3D models of
the anatomy using additional tracking hardware are now
commercially available (Mezger et al., 2013; Ewurum et al.,
2018). Surgical navigation promotes reproducibly good
patient outcomes, and when combined with robotic
assistance systems, may enable novel treatment options and
improved techniques (van der List et al., 2016). Unfortunately,
navigation systems are not widely adopted due to, among other
things, high purchase price despite limited versatility,
increased procedural time and cost, and potential for
disruptions to surgical workflows due to line-of-sight
occlusions or other system complications (Picard et al., 2014;
Joskowicz and Hazan, 2016). While frustrations induced by
workflow disruption affect every operator equally, the
aforementioned limitations regarding cost particularly inhibit
the adoption of surgical navigation systems in geographical
areas with less specialized healthcare providers with lower
volumes for any procedure; areas where routine use of
navigation would perhaps be most impactful.

To mitigate the challenges of conventional surgical navigation
systems that introduce dedicated tracking hardware and
instrumentation as well as workflow alterations, the computer-
assisted interventions community has contributed purely image-
based alternatives to surgical navigation, e.g., (Nolte et al., 2000;
Mirota et al., 2011; Leonard et al., 2016; Tucker et al., 2018).
Image-based navigation techniques do not require specialized
equipment but rely on traditional intra-operative imaging that
enabled the minimally invasive technique in the first place.
Therefore, these techniques do not introduce economic trade-
offs. Further, because image-based navigation techniques are
designed to seamlessly integrate into conventional surgical
workflows, their use should—in theory—not cause frustration
or prolonged procedure times (Vercauteren et al., 2019). A
central component to many if not most image-guided
navigation solutions is image-based 2D/3D registration, which
estimates the spatial relationship between a 3D model of the

scene (potentially including anatomy and instrumentation) and
2D interventional images thereof (Markelj et al., 2012; Liao et al.,
2013). Two examples of using 2D/3D registration for intra-
operative guidance are shown in Figure 1: Image-guidance
of periacetabular osteotomy (left, and discussed in greater
detail in Section 3.3) and robot-assisted femoroplasty (right).
One may be tempted to assume that after several decades of
research on this topic, image-based 2D/3D registration is a
largely solved problem. While, indeed, analytical solutions
now exist to precisely recover 2D/3D spatial relations
under certain conditions (Markelj et al., 2012; Uneri et al.,
2013; Gao et al., 2020b; Grupp et al., 2020b), several hard
challenges prevail.

1.2 Problem Formulation
Generally speaking, in 2D/3D registration we are interested in
finding the optimal geometric transformation that aligns a
(typically pre-operative) 3D representation of objects or
anatomy with (typically intra-operative) 2D observations
thereof. For the purposes of this review, we will assume that
the reduction in dimensionality originates from a projective, not
an affine, transformation.

Given a set of 3D data xi and 2D observations yv, where
subscripts i, v suggest that there may be multiple objects and
multiple 2D observations, respectively, a generic way of writing
the optimization problem for the common case of a single object
but multiple views is:

K ̂
v ,

vT ̂
x, ω̂D{ } � arg min

Kv , vTx ,ωD

∑
v

S P Kv,
vTx( )◦DωD( )(x), yv( ) + R(·).

(1)

In Eq. 1, DωD is a 3D non-rigid deformation model with
parameters ωD ∈ RND , P(Kv, vTx) is a rigid projection operation
using a camera with intrinsic parameters Kv ∈ R3×3 and pose
vTx ∈ SE(3) with respect to the 3D data x, and S(·, ·) is a cost
function (in case of images often a similarity metric). We use the
composite function P◦D(·) to capture the variability, including
their order, with which these operations may be applied. Finally,
R(·) is a regularizing term that can act and/or depend on any
combination of variables and parameters; its choice most often
depends on the specific application since regularization can
represent “common sense” or prior knowledge, which tends to
vary with the problem domain.

2D/3D registration then amounts to estimating the 5 + 6 + ND

degrees of freedom (DoFs) for {K ̂
v,

vT ̂
x, ω̂D}, respectively, that

minimize the optimization objective. Clearly, there are special
cases to Eq. 1, e.g., for rigid registration where only K ̂

v,
vT ̂

x must
be estimated and DωD is known, or vice versa.

In traditional image-based 2D/3D registration, this
optimization is usually performed iteratively where parameters
are initialized with some values {Kv, vTx,ωD}0 and then adjusted
incrementally. The updates δ{Kv , vTx,ωD} are derived from Eq. 1
using gradient-based or gradient-free methods, such as BFGS (Liu
and Nocedal, 1989; Berger et al., 2016) or CMA-ES (Hansen et al.,
2003) and BOBYQA (Powell, 2009), respectively. In certain cases
when 2D and 3D data representations are not pixel or voxel grid-
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based but sparse, e.g., keypoints, analytic solutions to Eq. 1, such
as the perspective n point (PnP) algorithm (Lepetit et al.,
2009), exist.

The above traditional approach to solving 2D/3D image
registration has spawned solutions that precisely recover the
desired geometric transformations under certain conditions
(Markelj et al., 2012; Uneri et al., 2013; Gao et al., 2020b;
Grupp et al., 2020b). Unfortunately, despite substantial efforts
over the past decades, 2D/3D registration is not yet enjoying wide
popularity as a workhorse component in image-based navigation
platforms at the bedside. Rather, it is shackled to the bench top
because several hard open challenges inhibit its widespread
adoption. They include:

• Narrow capture range of similarity metrics: Conventional
intensity-based methods mostly use hand-crafted similarity
metrics between yv and its current best estimate
y ̂v � (P(Kv, vTx)◦DωD)(x)fx1 as loss function. Common
choices for the similarity metric are Normalized Cross
Correlation (NCC), gradient information (Berger et al.,
2016), or Mutual Information (MI) (Maes et al., 1997).
While these metrics are positively correlated with pose
differences when the perturbations in {K ̂

v,
vT

̂
x, ω̂D} are

small, they are generally non-convex and fail to accurately
represent pose offsets when perturbations are large. Thus,
without proper initialization, the optimization is prone to
get stuck in local minima, returning wrong registration

FIGURE 1 | (A) A high-level overview of the workflow proposed by Grupp et al. (2019), which uses 2D/3D registration for estimating the relative pose of a
periacetabular osteotomy (PAO) fragment. By enabling intra-operative 3D visualizations and the calculation of biomechanical measurements, this pose information
should allow surgeons to better assess when a PAO fragment requires further adjustments and potentially reduce post-operative complications. The utility of the
proposed workflow is diminished by the traditional registration strategy’s requirement for manual annotations, which are needed to initialize the pelvis pose and
reconstruct the fragment shape. (B): Image-based navigation for robot-assisted femoropalsty by Gao et al. (2020a). The intra-operative poses of the robot and the femur
anatomy are estimated using X-ray-image based 2D/3D registration. The robot-held drilling/injection device is positioned according to the pre-planned trajectory that is
propageted intra-operatively using pose estimates from 2D/3D registration. Image-based navigation is less invasive than fiducial-based alternatives and simplifies the
procedure.
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results. The initial estimate of the target parameters
{K ̂

v,
vT ̂

x, ω̂D} must hence be close enough to the true
solution in order for the optimization to converge to the
global minima. Estimating good initial parameters is
commonly achieved using some manual interaction,
which is cumbersome and time consuming, or—in
research papers—neglected all-together. The magnitude
by which the initial parameter guesses may be incorrect
for the downstream algorithm to still produce a successful
registration is referred to as the capture range (Markelj et al.,
2012; Esteban et al., 2019). Its magnitude depends, among
other things, on the similarity function as well as the
optimizer, and it can be stated quantitatively as the mean
target registration error (mTRE) between 3D keypoints at
initialization1.

The resulting challenges are two-fold: On the one hand, it is
important to develop robust and automated initialization
strategies for the existing image-based 2D/3D registration
algorithms to succeed. On the other hand, there is interest in
and opportunity for the development of better similarity metrics
that better capture the evolution of image (dis)similarity. Doing
so is challenging, however, because of the complexity of the task
including various contrast mechanisms, imaging geometries, and
inconsistencies.

• Ambiguity: The aforementioned complexity also leads to
registration ambiguity, which is most pronounced in single-
view registration (Otake et al., 2013; Uneri et al., 2013).
Because the spatial information along the projection line is
collapsed onto the imaging plane, it is hard to precisely
recover the information in the projective direction. A well-
known example is the difficulty of accurately estimating the
depth of 3D scene from the camera center using a single 2D
image. These challenges already exist for rigid 2D/3D
registration and are further exacerbated in rigid plus
deformable registration settings.

• High dimensional optimization problems: Even in the
simplest case, 2D/3D registration describes a non-convex
optimization problem with at least six DoFs to describe a
rigid body transform. In the context of deformable 2D/3D
registration, the high dimensional parameterωD that describes
the 3D deformation drastically increases the optimization
search space. However, since the information within the
2D and 3D images remains constant, the optimization
problem may easily become ill-posed. Although statistical
modeling techniques exist to limit the parameter search
space, the registration accuracy and sensitivity to key
features remain an area of concern (Zhu et al., 2021).

• Verification and uncertainty: As a central component of
image-based surgical navigation platforms, 2D/3D
registration supplies critical information to enable
precise manipulation of anatomy. To enable users to

assess risk and make better decisions, there is a strong
desire for registration algorithms to verify the resulting
geometric parameters or supply uncertainty estimates.
Perhaps the most straightforward way of verifying a
registration result is to visually inspect the 2D overlay
of the projected 3D data—this approach, however, is
neither quantitative nor does it scale since it is based on
human intervention.

These open problems can be largely attributed to the variability in
the problem settings (e.g., regarding image appearance and contrast
mechanisms, pose variability, . . .) that cannot easily be handled
algorithmically because the desired properties cannot be formalized
explicitly. Machine learning methods, including deep neural networks
(NNs), have enjoyed a growing popularity across a variety of image
analysis problems (Vercauteren et al., 2019), precisely because they do
not require explicit definitions of complex functional mappings.
Rather, they optimize parametric functions, such as convolutional
NNs (CNNs), on training data such that the model learns to
approximate the desired mapping between input and output
variables. As such, they provide opportunities to supersede heuristic
components of traditional registration pipelines with learning-based
alternatives that were optimized for the same task on much larger
amounts of data. This allows us to expand Eq. 1 into:

K ̂
v,

v T ̂
x, ω̂D{ }

� argmin
Kv , vTx ,ωD

∑
v

SθS P Kv ,
vTx( )◦DθD

ωD
( )(Gθx

x (x)),Gθy
y (yv)( )

+ RθR(·), (2)

where we have introduced parameters θ to several components of
the objective function to indicate that they may now be machine
learning models, such as CNNs. Similarly, the registration may
not rely on the original 3D and 2D data itself but some higher-
level representation thereof, e.g., anatomical landmarks, that are
generated using some learned function Gθ(·).

In this manuscript, first we summarize a systematic review
of the recent literature on machine learning-based techniques
for image-based 2D/3D registration, and explain how they
relate to Eq. 2. Based on those observations, we identify the
impact that the introduction of contemporary machine
learning methodology has had on 2D/3D registration for
image-guided interventions. Concurrently, we identify open
challenges and contribute our perspective on possible
solutions.

2 SYSTEMATIC REVIEW

2.1 Search Methodology
The aim of the systematic review is to survey those machine
learning-enhanced 2D/3D registration methods in which the 3D
data and 2D observations thereof are related through one or
multiple perspective projections (and potentially some non-rigid
deformation). This scenario arises, for example, in the
registration between 3D CT and 2D X-ray, 3D magnetic
resonance angiography (MRA) and 2D digital subtraction

1It should be noted that the definition of capture range is by nomeans standardized
or even similar across papers, which we will also comment on in Section 3.
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angiography (DSA), or 3D anatomical models and 2D endoscopy
images. 3D/3D registration methods (such as between 3D CT and
intra-operative CBCT) or 2D/3D slice-to-volume registration (as
it arises, among others, in ultrasound to CT/MR registration) are
beyond the scope of this review. Because we are primarily
interested in surveying the impact of contemporary machine
learning techniques, such as deep CNNs, on 2D/3D registration,
we limit our analysis to records that appeared after January 2012,
which pre-dates the onset of the ongoing surge of interest in
learning-based image processing (Krizhevsky et al., 2012).

To this end, we conducted a systematic literature review in
accordance with the Preferred Reporting Items for Systematic
reviews and Meta-Analyses (PRISMA) method (Moher et al.,
2009) (cf. Figure 2). We searched PubMed, embase, Business
Source Ultimate, and Compendex to find articles pertinent to
machine learning for 2D/3D image registration. The following
search terms were used to screen titles, abstracts, and keywords
of all available records from January 2012 through February
2021:

(“2D3D registration” OR “2D 3D registration” OR “3D2D
registration” OR “3D 2D registration” OR “2D/3D registration”
OR “3D/2D registration” OR “2D-3D registration” OR “3D-2D
registration” OR “two-dimensional/three-dimensional registration”
OR “three-dimensional/two-dimensional registration”) AND
(“learning” OR “training” OR “testing” OR “trained” OR
“tested”)

The initial search resulted in 559 records, and after removal
of duplicates, 495 unique studies were included for screening.
From those, 447 were excluded because they either did not
describe a machine learning-based method for 2D/3D
registration, or considered a slice-to-volume registration
problem (e.g., as in ultrasound or magnetic resonance
imaging). The remaining 48 articles were included for an in-

depth full text review, analysis, and data extraction, which was
performed by five of the authors (MU, CG, MJ, YH, and RG).
Initially, every reviewer analyzed five articles to develop and
refine the data extraction template and coding approach. The
final template involved the extraction of the following
information: 1) A brief summary of the method including
the key contribution; 2) modalities and registration phase
(including the 3D modality, 2D modality, the registration
goal, whether the method requires manual interactions,
whether the method is anatomy or patient-specific, and the
clinical speciality), 3) the spatial transformation to be recovered
(including the number of objects to be registered, the number of
views used for registration, and the transformation model used),
4) information on the machine learning model and training
setup (including the explicit machine learning technique, the
approach to training data curation as well as to data labeling and
supervision, and the application of domain generalization or
adaptation techniques), 5) the evaluation strategy (including the
data source used for evaluation as well as its annotation, the
metrics and techniques used for quantitative and qualitative
assessment, and most importantly the deterioration of
performance in presence of domain shift), and finally, 6) a
more subjective summary of concerns with respect to the
experimental or methodological approach or the assumptions
made in the design or evaluation of the method.

Every one of the 48 articles was analyzed and coded by at least
two of the five authors and one author (MU) merged the
individual reports into a final consensus document.

2.2 Limitations
Despite our efforts to broaden the search terms regarding 2D/
3D registration, we acknowledge that the list may not be
exhaustive. Newer or less popular terminology, such as

FIGURE 2 | PRISMA flow chart illustrating the screening and inclusion process. Duplicate studies were the result of searching multiple databases. Exclusion
screening was performed individually with each study’s abstract with assistance of Covidence tool. Additional twelve studies excluded after full-text review, resulting in a
pool of 48 studies included for full review.
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“pose regression”, were not used. We also did not use modality
specific terms, such as “video to CT registration”, which may
have excluded some manuscripts that focus on endoscopy or
other RGB camera-based modalities. The search included
terms like “learning”, “training”, or “testing” as per our
interest in machine learning methods for 2D/3D image
registration. This search may have excluded some studies
that do not explicitly characterize their work as machine or
deep “learning” and do not describe their training and testing
approach, neither in their title nor abstract. The terminology
used in the search may also have resulted in the exclusion of
relevant work from the general computer vision literature.
Finally, the review is limited to published manuscripts.
Publication bias may have resulted in the exclusion of
works relevant to this review.

2.3 Concise Summary of the Overall Trends
We first summarize the general application domain and problem
setting of the 48 included papers and then review the role that
machine learning plays in those applications. The specific
characteristics of all included papers are summarized in
Tables 1 and 2, respectively. We state the number of papers
either in the running text or in parentheses.

The vast majority of papers (34) considers the 2D/3D
registration between X-ray images and CT or cone-beam CT
(CBCT) volumes, with the registration of X-ray images and 3D
object models being a distant second (10). Other modality
combinations included 2D RGB to 3D CT (2) and 3D MR (1),
or did not specify the 3D modality (1). The clinical applications
that motivate the development of those methods include
orthopedics (19), with a focus on pelvis and spine,
angiography (9), and radiation therapy (7), e.g., for tracking of
lung or liver tumors, and cephalometry (4). We observe that
eleven methods are explicitly concerned with finding a good
initial parameter set to begin optimization, while 37 papers (also)
describe approaches to achieve high fidelity estimates of the true
geometric parameters. Further, four methods consider
verification of the registration result. Resulting from the
clinical task and registration phase distributions, most
methods only perform rigid alignment (36), while nine
methods consider non-rigid registration only and two
approaches address both, rigid and non-rigid registration. To
solve the alignment problem, 38 papers relied on a single 2D view,
seven approaches used multiple views onto the same constant 3D
scene, and twomethods assumed the same view but used multiple
images of a temporally dynamic 3D scene. Perhaps the most
striking observation is that all but three (45) included studies only
consider the registration of a single object. Two other studies that
deal with multiple objects, however, are limited to object
detection (Doerr et al., 2020) and inpainting (Esfandiari et al.,
2021), respectively, and do not report registration results. The
remaining study (Grupp et al., 2020c) performs a 2D
segmentation of multiple bones, but does not apply any
additional learning to perform the registration. While there are
three methods that do, in fact, describe the 2D/3D registration of
multiple objects, i.e., vertebral bodies (Varnavas et al., 2013;
2015b) and knee anatomy (Wang et al., 2020), the individual

registrations are solved independently which inhibits information
sharing to ease the optimization problem.

The focus of this review is the impact that machine learning
has had on the contemporary state of 2D/3D registration and we
will briefly introduce the five main themes that we identified here
and then discuss them in greater detail in subsequent sections.
From a high-level perspective of abstracting 2D/3D registration
problems, they follow the flow of acquiring Data, fitting Model
and solving the Objective. The five themes which we categorize
logically aim at improving certain aspects of this flow. The
themes are:

• Contextualization (Section 2.4): Instead of relying solely on
the images themselves, the 14 methods in this theme use
machine learning algorithms to extract semantic
information from the 2D or 3D data, including landmark
or object detection, semantic segmentation, or data quality
classification. Doing so enables automatic initialization
techniques, sophisticated regularizers, as well as
techniques that handle inconsistencies between 2D and
3D data.

• Representation learning (Section 2.5): Principal component
analysis (PCA), among other techniques, are a common way
to reduce the dimensionality of highly complex data—in
this case, rigid and non-rigid geometric transformations.
Twelve papers used representation learning techniques as
part of the registration pipeline.

• Similarity modeling (Section 2.5): Optimization-based
image registration techniques conventionally rely on
image similarity metrics that ideally should capture
appearance differences due to both large and very fine
scale geometric misalignment. Ten studies describe
learning-based approaches to improve on similarity
quantification.

• Direct parameter regression (Section 2.7): In contrast to iterative
methods, direct parameter regression techniques seek to infer
the correct geometric parameters for 2D/3D alignment (either
absolute with respect to a canonical 3D coordinate frame, or
relative between a source and a target coordinate frame) directly
from the 2D observation. A total of 22 manuscripts reported
such approaches for either rigid or non-rigid registration.

• Verification (Section 2.8): Four studies used machine
learning-based techniques to assess whether the estimated
geometric parameters should be considered reliable.

High-level depictions of these themes are shown in Figure 3
and the respective sections below provide details for each, along
with references to the individual studies. Refer to Table 3 for a
summary of themes attributed to each included study.

2.4 Contextualization
Studies summarized in this theme use machine learning
techniques to increase the information available to the 2D/3D
registration problem by extracting semantic information from the
2D or 3D data (Lin andWiney, 2012; Varnavas et al., 2013, 2015b;
Bier et al., 2018; Chen et al., 2018; Bier et al., 2019; Luo et al., 2019;
Yang and Chen, 2019; Grupp et al., 2020c; Doerr et al., 2020;
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TABLE 1 | Parameters defining the registration problems described in the studies included for review. Registration purpose refers to the registration stage being addressed,
such as initialization (init.), precise retrieval of geometric parameters (fine regis.), or others.

Study ID 3D Modality 2D Modality Regis. Action Regis. Purpose Speciality Rigid/Non-rigid No. Views

Brost et al. (2012) Catheter Model X-ray Pre-proc fine regis Catheter R 1
Lin and Winey (2012) CT X-ray Pre-proc fine regis Radiotherapy R 2
Chou and Pizer
(2013)

CT (3D + t) X-ray Deformable regr fine regis Lung tumors NR 1

Chou et al. (2013) CBCT, s-NST X-ray Pose updates fine regis Head-and-neck, lungs Both R: 4, NR: 2
Varnavas et al.
(2013)

CT X-ray Pre-proc init., verif Spine/Vertebrae R 1

Chou and Pizer
(2014)

CT X-ray Deformable regr fine regis Lung NR 1

Mitrovi et al. (2014) CT X-ray N/A verif Spine/Vertebra R 1
Zhao et al. (2014) CT X-ray Deformable regr fine regis Abdomen NR 1
Baka et al. (2015) CTA XA Pre-proc fine regis Coronary artery Both 1

(temporal)
Mitrovi et al. (2015) DSA DSA Pose regr.,

updates
init., fine regis Angiography R 1

Varnavas et al.
(2015a)

CT X-ray Pre-proc init., verif Spine R 1

Wu et al. (2015) mdl X-ray Pose regr init Knee R 1
Miao et al. (2016b) Tool Model X-ray Pose regr fine regis Implants R 1
Miao et al. (2016a) Implant and TEE mdl X-ray Pose regr fine regis Implants/TEE

transducer
R 1

Tang and Scalzo
(2016)

MRA DSA cost func fine regis Angiography R 1

Wu et al. (2016) CT X-ray N/A verif Skull/Head R 2
Hou et al. (2017) CT X-ray Pose regr init Thorax R 1
Pei et al. (2017) CT X-ray Deformable regr fine regis Skull NR 1
Xie et al. (2017) CTA X-ray Pose regr fine regis Angiography R 1
Bier et al. (2018) CT X-ray Pre-proc init Pelvis R 1
Chen et al. (2018) CT X-ray Pre-proc feat. extract Spine R 1
Hou et al. (2018) CT X-ray Pose regr init Thorax R 1
Miao et al. (2018) CBCT X-ray Pose regr.,

updates
fine regis Spine R 2

Toth et al. (2018) Left ventr mdl X-ray Pose regr.,
updates

fine regis Heart R 1

Zhang et al. (2018) PCA Deformation
Field

X-ray Deformable regr init., fine regis Skull NR 1
(temporal)

Zheng et al. (2018) CT, implant mdl X-ray Domain
adaptation

Pose regr.,
updates

Spine and TEE
transducer

R 1

Bier et al. (2019) CT X–ray Pre-proc init Pelvis R 1
Foote et al. (2019) CT X-ray Deformable regr fine regis Lung NR 1
Guan et al. (2019) Vasc mdl. (CT) DSA Pose regr fine regis Cardiovascular R 1
Liao et al. (2019) CT or CBCT X-ray cost func fine regis Thorax R 1
Luo et al. (2019) CT Broncho - scopy Pre-proc fine regis Bronchoscopy R 1
Schaffert et al. (2019) CBCT X-ray cost func fine regis Spine R 1
Yang and Chen
(2019)

CT/MRI Stereo RGB Pre-proc feat. extract Head/face R 2

Doerr et al. (2020) N/A X-ray Pre-proc init Spine, pedicle screws R 1
Francois et al. (2020) MRI Laparo - scopy Pre-proc, cost

func
fine regis Uterus N/A N/A

Gao et al. (2020c) CT X-ray Pose regr Pose updates Pelvis R 1
Grupp et al. (2020c) CT X-ray Pose regr Pose updates Pelvis R 1
Gu et al. (2020) CT X-ray cost func Pose updates Pelvis R 1
Guan et al. (2020) Aorta mdl DSA (synth) Deformable regr fine regis Cardiovascular NR 1
Karner et al. (2020) CT/MR RGB face img Pre-proc fine regis Face R 1
Li et al. (2020) CBCT X-ray Deformable regr fine regis Skull NR 1
Neumann et al.
(2020)

MRA DSA cost func fine regis Angiography R 1

Schaffert et al.
(2020a)

CBCT X-ray cost func fine regis Spine R 1

Schaffert et al.
(2020b)

CBCT X-ray cost func fine regis Spine, head R 1–2

Wang et al. (2020) CT Bi - plane
Fluoroscopy

Pre-proc init Knee R 2

(Continued on following page)
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Francois et al., 2020; Karner et al., 2020; Wang et al., 2020;
Esfandiari et al., 2021).

Using the notation of Eq. 2, these methods specify
G
θy
y (y),Gθx

x (x), or RθR (·) although not all methods are
necessarily integrated in the iterative optimization procedure.
Perhaps the most prevalent approach here is the detection of
anatomical landmarks on 2D images (Bier et al., 2018, 2019; Yang
and Chen, 2019; Grupp et al., 2020c; Wang et al., 2020) to define
correspondences with the respective 3D locations, which allows
for either, explicit determination of ̂yv � {Kv , vTx} using PnP
(Bier et al., 2019, 2018) or stereo-reconstruction following 3D-3D
matching (Yang and Chen, 2019; Wang et al., 2020), or for the
introduction of soft re-projection constraints as a regularizing
term (Grupp et al., 2020c). Another way of benefiting
initialization through contextualization is object detection (Lin
and Winey, 2012; Varnavas et al., 2013, 2015b; Chen et al., 2018;
Doerr et al., 2020). While all methods for landmark detection rely
on deep CNNs, object detection achieved satisfactory results
already using less complex learning models, i.e., templates in
(Lin and Winey, 2012), PCA over object contours in (Chen et al.,
2018), and the Generalized Hough Transform in (Varnavas et al.,
2013; 2015b). The drawback, however, is that most of these less
complex approaches require patient-specific training since the
models are unable to generalize beyond a single shape. Doerr et al.
(2020) describe a deep learning-based alternative, where the Fast
R-CNN object detector is re-trained to return bounding boxes of
30 different screw types in varied poses.

A complementary trend is the identification of image regions
(Francois et al., 2020; Esfandiari et al., 2021) or whole images
(Luo et al., 2019) that should not contribute to the optimization
problem because of inconsistency. Francois et al. (2020) use a
U-net-like fully convolutional NN (FCN) to segment occluding
contours of the uterus to reject regions while Luo et al. (2019)
identify and reject poor quality frames in bronchoscopy.
Esfandiari et al. (2021) consider mismatch introduced by
intra-operative instrumentation. They contribute a non-blind
image inpainting method using a FCN that seeks to restore
the background anatomy after image regions corresponding to
instruments were identified.

It is undeniable that the introduction of machine learning to
contextualize 2D and 3D data enables novel techniques that quite
substantially expand the tools one may rely on when designing a
2D/3D registration algorithm, and as such, are likely to become
impactful. However, a general trend that we observed in most of
these studies was that the impact of the contextualization
component on the downstream registration task was not, in
fact, evaluated. For example, while (Bier et al., 2019) report

quantitative results on real data of cadaveric specimens, it
remains unclear whether the performance would be sufficient
to actually initialize an image similarity-based 2D/3D
registration algorithm. There are, of course, positive
examples including (Varnavas et al., 2015b; Luo et al., 2019;
Grupp et al., 2020c) that demonstrate the benefit of
contextualization on overall pipeline performance—Empirical
demonstrations should strongly be preferred over arguments
from authority.

2.5 Representation Learning
As highlighted in Section 1.2, 2D/3D registration, especially in
deformable scenarios, suffers from high dimensional parameter
spaces and changes in any one of those parameters are not easily
resolved due to limited information which creates ambiguity. In
our review we found that unsupervised representation learning
techniques are a widely adopted technique to reduce the
dimensionality of the parameter space while introducing
implicit regularization by confining possible solutions to the
principal modes of variation across population- or patient-
level observations. We identified 12 studies that propose such
techniques or use them as part of the registration pipeline (Brost
et al., 2012; Lin and Winey, 2012; Chou and Pizer, 2013, 2014;
Chou et al., 2013; Zhao et al., 2014; Baka et al., 2015; Pei et al.,
2017; Chen et al., 2018; Zhang et al., 2018; Foote et al., 2019; Li
et al., 2020; Zhang et al., 2020).

PCA is by far the most prevalent method for representation
learning and is used in all but one study. This specific study,
however, used by far the most views v � 20 for initial estimation of
a low resolution vector field, which was then regularized by
projection onto a deep learning-based population model
(Zhang et al., 2020). We found that methods designed for
cephalometry were distinct from all other approaches as their
primary goal is not generally 2D/3D registration, but 3D
reconstruction of the skull given a 2D X-ray. Among the
papers included in this review, this problem is often
formulated as the deformable 2D/3D registration between a
lateral X-ray image of the skull and a 3D atlas using a PCA
deformation model, the principal components ωD of which are
estimated via a prior set of 3D/3D registrations (Pei et al., 2017;
Zhang et al., 2018; Li et al., 2020). Consequently, these methods
rely on population-level models and are thus different from
methods used for radiation therapy (Chou et al., 2013; Chou
and Pizer, 2013, 2014; Zhao et al., 2014; Foote et al., 2019) and
angiography (Brost et al., 2012; Baka et al., 2015), which rely on
patient-specific models that are built pre- and intra-operatively,
respectively. It is worth mentioning that, while most methods rely

TABLE 1 | (Continued) Parameters defining the registration problems described in the studies included for review. Registration purpose refers to the registration stage being
addressed, such as initialization (init.), precise retrieval of geometric parameters (fine regis.), or others.

Study ID 3D Modality 2D Modality Regis. Action Regis. Purpose Speciality Rigid/Non-rigid No. Views

Xiangqian et al.
(2020)

CT X-ray Pose regr fine regis Pelvis R 1

Zhang et al. (2020) CT X-ray Post-proc fine regis Liver tumors NR 20
Esfandiari et al.
(2021)

CT X-ray Pre-proc fine regis Spine, pedicle screws R 2
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TABLE 2 | A summary of the training and testing details for each study reviewed.

Network Training Testing

Study ID Architecture Data Domain Transfer Object Number Anatomy Specificity Technique Data

Brost et al. (2012) PCA Real Segmentation Single N/A Unsupervised Real
Lin and Winey
(2012)

N/A N/A N/A Single Patient Unsupervised N/A

Chou et al. (2013) Linear
Regression

Synthetic N/A Single Anatomy Supervised Synthetic

Chou and Pizer
(2013)

PCA Synthetic and
Real

N/A Single Anatomy Supervised Synthetic and Real

Varnavas et al.
(2013)

GHT Real N/A Single Anatomy and Patient Unsupervised Real

Chou and Pizer
(2014)

Random Forest Synthetic Gaussian
Normalization

Single Patient Supervised Synthetic and Real

Mitrovi et al. (2014) N/A Synthetic N/A Single Patient Supervised Real
Zhao et al. (2014) Linear

Regression
Synthetic N/A Single Patient Supervised Real and Synthetic

Baka et al. (2015) N/A Real N/A Single Patient N/A Real
Mitrovi et al. (2015) N/A N/A N/A Single Patient N/A Synthetic and Real
Varnavas et al.
(2015a)

GHT Synthetic N/A Single Anatomy and Patient Unsupervised Real

Wu et al. (2015) PCA Synthetic N/A Single Anatomy Unsupervised Synthetic and Real
Miao et al. (2016a) Siamese CNNs Synthetic Realism Tuning Single Anatomy Supervised Real
Miao et al. (2016a) Siamese CNNs Synthetic N/A Single Anatomy Supervised Real
Tang and Scalzo
(2016)

Spectral
Regression

Real Abstraction Single Anatomy Supervised Real

Wu et al. (2016) MLP Real N/A Single N/A Supervised Real
Hou et al. (2017) CaffeNet Synthetic N/A Single Anatomy Supervised Synthetic
Pei et al. (2017) CNNs Real N/A Single Anatomy Supervised Synthetic
Xie et al. (2017) CNNs Synthetic N/A Single Anatomy Supervised Synthetic
Bier et al. (2018) Sequential

CNNs
Synthetic Domain Generalization Single Anatomy Supervised Synthetic

Chen et al. (2018) PCA Synthetic N/A Single N/A Supervised Real
Hou et al. (2018) N/A Synthetic N/A Single Anatomy Supervised Synthetic
Miao et al. (2018) Dilated CNNs Synthetic N/A Single Anatomy Supervised Real
Toth et al. (2018) CNNs Synthetic N/A Single Anatomy Supervised Synthetic
Zhang et al. (2018) VGG Synthetic N/A Single Anatomy Supervised Synthetic
Zheng et al. (2018) DA Module Pairwise

Synthetic and
Real

Domain Adaptation Single Anatomy Unsupervised Real

Bier et al. (2019) Sequential
CNNs

Synthetic Domain Generalization Single Anatomy Supervised Synthetic and
Cadaver

Foote et al. (2019) DenseNet Synthetic Equalization methods Single Patient Supervised Synthetic
Guan et al. (2019) CNNs Synthetic Retrain on patient data Single Anatomy Supervised Synthetic
Liao et al. (2019) U-Net Real N/A Single Anatomy Supervised Real
Luo et al. (2019) Instance

Learning
Real N/A Single Anatomy Supervised Real

Schaffert et al.
(2019)

PointNet Real N/A Single Anatomy Supervised Real

Yang and Chen
(2019)

Stacked
Hourglass

Real N/A Single Anatomy Supervised Synthetic

Doerr et al. (2020) Fast R-CNN Synthetic N/A Multiple Patient Supervised Synthetic
Francois et al.
(2020)

U-Net Real N/A Single Anatomy Supervised Real

Gao et al. (2020c) Spatial
Transformer

Synthetic Realistic Simulation Single Anatomy Supervised Synthetic and Real

Grupp et al. (2020c) U-Net Real N/A Single Anatomy Supervised Real
Gu et al. (2020) DenseNet Synthetic Realistic Simulation Single Anatomy Supervised Synthetic and Real
Guan et al. (2020) CNNs Synthetic Refine on patient data Single Anatomy Supervised Synthetic
Karner et al. (2020) Face-to-3D N/A N/A Single Anatomy N/A Real
Li et al. (2020) ResNet Synthetic N/A Single Anatomy Self-supervised Synthetic and Real
Neumann et al.
(2020)

Siamese
ResNet

Synthetic N/A Single Anatomy Supervised Synthetic

Schaffert et al.
(2020a)

PointNet Real N/A Single Anatomy Supervised Real

(Continued on following page)
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on PCA to condense deformable motion parametrizations, it has
also been found useful to identify and focus on the primarymodes
of variation in rigid registration (Brost et al., 2012).

We note that most studies in this theme do not consider rigid
alignment prior to deformable parameter estimation, e.g., by

assuming perfectly lateral radiographs of the skull for
cephalometry or perfectly known imaging geometry in
radiation therapy. Except for few exceptional cases with
highly specialized instrumentation, for example (Chou and
Pizer, 2013) that relied on on-board CBCT imaging,

TABLE 2 | (Continued) A summary of the training and testing details for each study reviewed.

Network Training Testing

Study ID Architecture Data Domain Transfer Object Number Anatomy Specificity Technique Data

Schaffert et al.
(2020b)

FlowNet-S Real N/A Single Anatomy Supervised Real

Wang et al. (2020) VGGs Real Domain Adaptation Multiple Anatomy Supervised Real
Xiangqian et al.
(2020)

GoogleNet Synthetic Histogram Matching Single Anatomy Supervised Real

Zhang et al. (2020) U-Net Real N/A Single Anatomy Supervised Real
Esfandiari et al.
(2021)

PConvS Synthetic Heavy Augmentation Single Anatomy Supervised Synthetic

FIGURE 3 | Illustrations of the main themes of machine learning in 2D/3D registration. The logic relationships of these themes are shown on top. We use a spine CT
volume and a spine X-ray image as an example to show the generic 2D/3D projection geometry. Machine learning models are represented with a neural network icon.
Key labels and parameters are presented and map to Eqs. 1, 2.
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TABLE 3 | A summary of each study’s relation with the five themes of Contextualization, Representation learning, Direct parameter regression, Similarity modeling, and
Verification.
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assumptions around rigid alignment seem to be unjustified,
which may suggest that the performance estimates need to be
interpreted with care. This is further emphasized by the fact that
many studies are only evaluated on synthetic data (which we
fear may have sometimes been generated by sampling the PCA
model also used for registration, introducing inverse crime) and
may not have paired 3D data for extensive quantitative
evaluation.

2.6 Similarity Modeling
As we established in Section 1.2 for optimization-based 2D/3D
registration algorithms, the cost function—or similarity
metric—S(·, ·) is among the most important components
since it will determine parameter updates. It is well known
that most commonly used metrics fail to accurately represent
the distances in geometric parameter space that generate the
mismatch between the current observations. It is thus not
surprising that ten studies describe methods to better model
and quantify the similarity between the source and target images
to increase the capture range, and thus, the likelihood of
registration success (Tang and Scalzo, 2016; Liao et al., 2019;
Schaffert et al., 2019, 2020b; Schaffert et al., 2020a; Gao et al.,
2020c; Grupp et al., 2020c; Francois et al., 2020; Gu et al., 2020;
Neumann et al., 2020).

Some studies propose novel image similarity functions SθS (·, ·)
that, analogous to traditional similarity metrics, accept as input
the source and target image and return a scalar or vector that is
related to the mismatch in parameter space (Francois et al., 2020;
Gu et al., 2020; Tang and Scalzo, 2016; Neumann et al., 2020;
Grupp et al., 2020c; Gao et al., 2020b). Among those, two
methods rely on regularization: Grupp et al. (2020c) detect
anatomical landmarks to expand an analytic similarity
function with landmark-reprojection constraints to enhance
the capture range of an intensity-based strategy, while
Francois et al. (2020) segment occluding contours to constrain
similarity evaluation to salient regions. The other four methods
use machine learning models to approximate a geometric
parameter distance function based on the input images. To
this end, Gu et al. (2020) and Gao et al. (2020b) estimate the
geodesic in Riemannian tangent space between the source and
target camera poses, which in an ideal case results in a convex
similarity function. Tang and Scalzo (2016) learn a more
expressive feature descriptor to better quantify the mismatch
in vasculature registration, and for a similar application,
Neumann et al. (2020) regress the disparity between
corresponding points in source and target images to quantify
image dissimilarity. Both methods rely on concepts that are
limited to sparse objects, such as vessels. Different to image-
based similarity metrics, four studies describe methods for
keypoint matching to compute image similarity (Schaffert
et al., 2019, 2020a,b; Liao et al., 2019). To this end, Liao et al.
(2019) train a network to establish keypoint correspondences
between the source and target images. Because the geometric
parameters of the source image are known, the unknown target
parameters can be recovered relative to the source image using
PnP-like methods. Finally, a series of three papers (Schaffert et al.,
2019, 2020a,b) characterizes a learning-based method to

adaptively weight point correspondences that are established
to quantify the degree of misalignment.

As methods in this theme have primarily focused on
expanding the capture range of contemporary similarity
metrics, the potential shortcomings of other components of
the registration pipeline, such as the optimizers, remain
unaffected. While we introduced (Gao et al., 2020b) in the
context of similarity learning, the method also describes a fully
differentiable 2D/3D registration pipeline that addresses
optimization aspects. This enables both, end-to-end learning
of G

θy
y (y),Gθx

x (x) and/or SθS (·, ·) during training as well as
analytic gradient-based optimization using backpropagation
during application. Further, we found that most emphasis was
given on increasing the capture range of the registration
pipeline and very little, if any, attention is paid to
increasing the resolution and precision of these metrics.
Especially in single-view registration scenarios, which we
have identified to be most prevalent, it is well known that
certain DoFs cannot be resolved with high accuracy. Therefore,
developing methods that not only increase the capture range
but also the precision of 2D/3D registration pipelines should
be of high priority.

2.7 Direct Parameter Regression
So far and especially in the context of Section 2.6, 2D/3D
registration was motivated as an optimization-based process
that compares the source image, generated using the current
geometric parameter estimate, with the desired target yv using
some cost function. However, this problem can also be
formulated in the context of regression learning, where a
machine learning algorithm directly predicts the desired
geometric parameters Kv, vTx , and/or ωD from yv, or from
both yv and y ̂v . Such methods partially or completely skip the
step of precise modeling of image formation or similarity, and
instead build up the knowledge in a data-driven manner.We have
identified 22 studies that describe methods for direct parameter
regression (Chou and Pizer, 2013, 2014; Chou et al., 2013; Zhao
et al., 2014; Mitrovi et al., 2015; Wu et al., 2015; Miao et al., 2016a;
Miao et al., 2016b; Hou et al., 2017; Pei et al., 2017; Xie et al., 2017;
Hou et al., 2018; Miao et al., 2018; Toth et al., 2018; Zhang et al.,
2018; Zheng et al., 2018; Guan et al., 2019, 2020; Foote et al., 2019;
Gao et al., 2020c; Li et al., 2020; Xiangqian et al., 2020).

Relying on parameter regression solely based on the target
image yv is particularly prevalent for radiation therapy, where the
main application is the regression of the principal components of
a patient-specific PCA motion model (Zhao et al., 2014; Chou
et al., 2013; Chou and Pizer, 2014, 2013; Foote et al., 2019). The
importance of regression learning is primarily attributed to the
substantially decreased run-time that enables close to real-time
tumor tracking in 3D.Methods directed at cephalometry (Li et al.,
2020; Zhang et al., 2018; Pei et al., 2017) are identical in
methodology to the radiation therapy methods. As noted in
Section 2.5, most methods here limit themselves to shape
estimation and assume that a global rigid alignment is either
performed prior or unnecessary. The remaining 14 methods
consider rigid parameter regression, and we differentiate
methods that infer pose directly from the target yv (Xiangqian
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et al., 2020; Wu et al., 2015; Hou et al., 2017, 2018; Xie et al., 2017;
Guan et al., 2019, 2020), and methods that process both yv and y

̂
v

(Toth et al., 2018; Miao et al., 2016a,b, 2018; Zheng et al., 2018;
Gao et al., 2020c; Mitrovi et al., 2015), and therefore, can run
iteratively. Methods that rely on the target image only are
relatively straight-forward and generally train a standard feed-
forward CNN architecture to regress pose on large datasets
comprising of multiple independent objects or anatomies.
While the simplicity of these approaches is appealing, a
general concern is that poses are absolute which requires the
definition of a canonical 3D coordinate system. This challenge is
mitigated for applications that consider an instrument or tool,
because such a canonical system can be readily defined; however,
establishing this reference frame is considerably more effortful for
patient anatomy and may require (group-wise) 3D/3D
registrations. Unfortunately, none of the studies reviewed here
describes a dedicated effort to establish such a canonical reference
frame, suggesting that those methods will eventually hit a
performance ceiling that is determined by the misalignment
within the reference coordinate systems in the training data.
Methods that regress pose between yv and ̂yv avoid the
aforementioned concern because poses are relative rather than
absolute, however similarly to conventional techniques, they
require an initialization. There is some flexibility in how the
information from source and target images is combined. (Miao
et al., 2016a,b, 2018; Zheng et al., 2018). use the image residual
between yv and y

̂
v in a region of interest around the projected tool

model. Because only a small part of the target image is used, the
initialization must be sufficiently close. Toth et al. (2018) extract
features using a CNN from both source and target image
independently and then concatenate them for pose regression
using fully connected layers. Rather than regressing pose directly,
Gao et al. (2020c) introduce a fully differentiable 2D/3D pipeline
and compare G

θy
y (y) and G

θy
y (y

̂
) using a simple L2 distance as the

similarity function S(·, ·). The parameters θy and θx are then
optimized using a double backward pass on the computational
graph, such that the gradient zS/z vTx aligns with the geodesic
between the current pose estimate and the desired target pose.

Pose regression directly from images is appealing because
it may result in substantially faster convergence, potentially
with a single forward pass of a CNN. We found that all
methods included in this review are limited to registration of
a single object and it remains unclear how these methods
would apply to multiple objects, in part, because of the
combinatorial explosion of relative poses. Further,
methods that solely rely on the target image never involve
neither the 3D data nor the source images created from it.
This may be problematic, because it is unclear how these
methods would verify that this specific 2D/3D registration
data satisfy, among other things, the canonical coordinate
frame assumption.

2.8 Verification
We identified four studies that leverage machine learning
techniques for verifying whether a registration process
produced satisfactory geometric parameter estimates (Wu
et al., 2016; Mitrovi et al., 2014; Varnavas et al., 2013, 2015b).

An interesting observation is that none of the included
methods make use of the resulting images or overlays, but
rather rely on low-dimensional data. Varnavas et al. (2013,
2015b), for example, rely on the cost function value and the
relative poses of multiple objects that are registered
independently as input to a support vector machine classifier.
Similarly, Wu et al. (2016) train a shallow NN to classify
registration success based on hand-crafted features of the
objective function surface around the registration estimate.
Finally, Mitrovi et al. (2014) compare a registration estimate
to known local minima and thresholds to determine success/
failure, which worked well but may be limited in practice as the
approach seems to assume knowledge of the correct solution.

Some studies included in this theme stand out, in that they are
certainly mature and were demonstrated to work well on
comparably large amounts of real clinical data, such as
(Varnavas et al., 2015b) and (Wu et al., 2016); unfortunately
however, these methods are not general purpose as they rely on
the registration of multiple objects and the availability of two
orthogonal views, respectively. Compared to the other four
themes and maybe even in general, there has been very little
emphasis on and innovation in the development of more robust
and general purpose methods for the verification of 2D/3D
registration results, which we perceive to be a regrettable
omission.

3 PERSPECTIVE

The introduction of machine learning methodology to the 2D/3D
registration workflow was partly motivated by persistent
challenges, which were not yet satisfactorily addressed by
heuristic and purely algorithmic approaches. Upon review of
the recent literature in Section 2, perhaps the most pressing
question is: Has machine learning resolved any of those open
problems? We begin our discussion using the categorization of
Section 1.2:

• Narrow capture range of similarity metrics: We identified
many methods that quantitatively demonstrate increased
capture range of 2D/3D registration pipelines. The means to
accomplishing this, however, are diverse. Several methods
describe innovative learning-based similarity metrics that
better reflect distances in geometric parameter space, while
other studies present (semi-)global initialization or
regularization techniques which may rely on contextual
data. The demonstrated improvements are generally
significant, suggesting huge potential for machine
learning in regards to this particular challenge.
Contextualization, such as landmark detection and
segmentation, can mimic user input to enable novel
paradigms for initialization while also providing a clear
interface for human-computer interaction (Amrehn et al.,
2017; Du et al., 2019; Zapaishchykova et al., 2021).
Similarity modeling using learning-based
techniques—potentially combined with contextual
information—is a similarly powerful concept that finds
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broad application also in slice-to-volume registration, e.g.,
for ultrasound to MRI (Hu et al., 2018), which was beyond
this review.

• Ambiguity: While several methods report an overall
improved registration performance when using their
novel, machine learning-enhanced algorithms, we did not
register any method with a particular focus on reducing
ambiguity. Because performance is usually reported as a
summary statistic over multiple DoFs and instances, it is
unclear to what extent performance increases should be
attributed to 1) registering individual instances more
precisely (which would suggest reduced ambiguity) or 2)
succeeding more often (which would rather emphasize the
importance of the capture range).

• High dimensional optimization problems: We found that
representation learning techniques, currently dominated by
PCA, are a clearly established tool to reduce the
dimensionality of deformable 2D/3D registration
problems, and may even be useful for rigid alignment. In
those lower dimensional spaces, e.g., the six parameters of a
rigid transformations or the principal components of a PCA
model, direct pose regression from the target and/or source
images is a clearly established line of research. These
approaches supersede optimization with a few forward
passes of a machine learning model, which makes them
comparably fast. This is particularly appealing for
traditionally time critical applications, such as tumor
tracking in radiation therapy. Complementary approaches
that seek to enable fully differentiable 2D/3D registration
pipelines for end-to-end training and analytical
optimization of geometric parameters, such as (Gao
et al., 2020c; Shetty et al., 2021), combine elements of
optimization and inference. While these methods are in a
development stage, their flexibility may prove a great
strength in developing solutions that meet clinical needs.

Certainly, some of the above ideas will become increasingly
important in the quest to accelerate and improve 2D/3D
registration pipelines. This is because image-based navigation
techniques (Sugano, 2003; Hummel et al., 2008; Tucker et al.,
2018) as well as visual servoing of surgical robots (Yi et al., 2018;
Gao et al., 2019; Unberath et al., 2019) will also require high-
precision 2D/3D registration at video frame-rates.

• Verification and uncertainty: Compared to the other
challenges and themes, very few studies used machine
learning to benefit verification of registration results. The
studies that did, however, reported promising performance
even with rather simple machine learning techniques on low
dimensional data, i.e., cost function properties rather than
images themselves. Quantifying uncertainty in registration
slowly emerges as a research thrust in 2D/2D and 3D/3D
registration (Pluim et al., 2016; Sinha et al., 2019). It is our
firm belief that the first generally applicable methods for
confidence assignment and uncertainty estimation in 2D/
3D registration will become trend-setting due to the nature
of the clinical applications that 2D/3D registration enables.

Despite this positive prospect on the utility of machine
learning for 2D/3D registration, we noted certain trends and
recurring shortcomings in our review that we will discuss next. As
was done before, we either specify the number of studies
satisfying a specific condition in the text or state it in parentheses.

3.1 Preserving Improvements Under
Domain Shift From Training to Deployment
An omnipresent concern in the development of machine
learning-based components for 2D/3D registration, but
everywhere really, is the availability of or access to large
amounts of relevant data. In some cases, the data problem
amounts to a simple opportunity cost, e.g., for automation of
manually performed tasks such as landmark detection. It should
be noted, however, that even for this “simple” case to succeed,
many conditions must be met including ethical review board
approval, digital medicine infrastructure, and methods to reliably
annotate the data. In many other—from a research perspective
perhaps more exciting—cases, this retrospective data collection
paradigm is infeasible because the task to be performed with a
machine learning algorithm is not currently performed in clinical
practice. The more obvious examples are visual servoing of novel
robotic surgery platforms (Gao et al., 2019) or robotic imaging
paradigms that alter how data is acquired (Zaech et al., 2019;
Thies et al., 2020). Despite the fact that most studies included in
this review address use-cases that fall under the “opportunity
cost” category, we found that only 16 out of the 48 studies used
real clinical or cadaveric data to train the machine learning
algorithms. All remaining papers relied on synthetic data,
namely digitally reconstructed radiographs (DRRs), that were
simulated from 3D CT scans to either replace or supplement
(small) real datasets.

Training on synthetic data has clear advantages because large
datasets and corresponding annotations can be generated with
relatively little effort. In addition, rigid pose and deformation
parameters are perfectly known by design thus creating an
unbiased learning target. Contemporary deep learning-based
techniques enable the mapping of very complex functions
directly from high-dimensional input data at the cost of
heavily over-parameterized models that require as much data
as possible to learn sensible associations. These unrelenting
requirements, especially with respect to annotation, are not
easily met with clinical data collection. Indeed, of the 32
studies that describe deep learning-based methods, 24 trained
on synthetic data (seven trained on real data, and one did not
train at all but used a pre-trained network). It is evident that data
synthesis is an important idea that enables research on creative
approaches that contribute to the advancement of 2D/3D
registration.

Unfortunately, there are also substantial drawbacks of
synthetic data training. Trained machine learning algorithms
approximate the target function only on a compact domain
(Zhou, 2020), and their behaviour outside this domain is
unspecified. Because synthesized data is unlikely to capture all
characteristics of data acquired using real systems and from real
patients, the domains defined by the synthetic data used for
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training and the real data used during application will not, or only
partially, overlap. This phenomenon is known as domain shift.
Therefore, applying a synthetic data-trained machine learning
model to real data is likely to result in substantially deteriorated
performance (Unberath et al., 2018, 2019). While this problem
exists for all machine learning algorithms, it is particularly
prevalent for modern deep learning algorithms as they operate
on high-resolution images directly, where mismatch in
characteristics (such as noise, contrast, . . . ) is most
pronounced.2 Indeed, among the seven studies that trained
deep CNNs on synthetic data and evaluated in a way that
allowed for comparisons between synthetic and real data
performance, we found quite substantial performance drops
(Miao et al., 2018; Bier et al., 2019; Gao et al., 2020c; Doerr
et al., 2020; Gu et al., 2020; Guan et al., 2020; Li et al., 2020).
Worse, three studies used different evaluationmetrics in synthetic
and real experiments so that comparison was not possible (Miao
et al., 2016a; Toth et al., 2018; Esfandiari et al., 2021), and perhaps
worst, ten studies that trained on synthetic data never even tested
(meaningfully) on real data (Hou et al., 2017, 2018; Pei et al.,
2017; Xie et al., 2017; Bier et al., 2018; Foote et al., 2019; Guan
et al., 2019; Yang and Chen, 2019; Neumann et al., 2020; Zhang
et al., 2020). To mitigate the negative impact of domain shift,
there is growing interest in domain adaptation and generalization
techniques. Several methods do, in fact, already incorporate some
of those techniques (Zheng et al. (2018); Wang et al. (2020) use
domain adaptation to align feature representations of real and
synthetic data: Gu et al. (2020); Esfandiari et al. (2021); Foote et al.
(2019) use heavy pixel-level transformations that approximate
domain randomization, and Xiangqian et al. (2020); Bier et al.
(2018, 2019); Gu et al. (2020); Gao et al. (2020c); Miao et al.
(2016a) rely on realistic synthesis to reduce domain shift, e.ġ.,
using open-source physics-based DRR engines (Unberath et al.,
2018, 2019)). However, as we have outlined above their impact is
not yet strongly felt. For the new and exciting 2D/3D registration
pipelines reviewed here to impact image-based navigation, we
must develop novel techniques to increase the robustness under
domain shift to preserve the method’s level of performance when
transferring from training to deployment domain.

3.2 Experimental Design, Reporting, and
Reproducibility
Quantitatively evaluating registration performance is clearly
important. The error metrics that were used included the
standard registration pose error (commonly separated into
translational and rotational DoFs), keypoint distances (Chou
and Pizer, 2014; Zhang et al., 2020), and the mean target
registration error (mTRE) in 3D, and varied other metrics in
2D, such as reprojection distances (Bier et al., 2019),
segmentation or overlap DICE score (Zhang et al., 2020), or

contour differences (Chen et al., 2018). Other metrics that are not
uniquely attributable to a domain include the registration capture
range (Schaffert et al., 2019; Esfandiari et al., 2021) and the
registration success rate (Varnavas et al., 2013; Mitrovi et al.,
2014; Miao et al., 2016b; Yang and Chen, 2019; Schaffert et al.,
2020a). There are no standard routines to define the successful
registrations.

The wealth of evaluation strategies and metrics can, in part, be
attributed to the fact that different clinical applications necessitate
different conditions to be met. For example, in 2D/3D deformable
registration for tumor tracking during radiation therapy,
accurately recovering the 3D tumor shape and position
(quantified well using, e.g., the DICE score of true and
estimated 3D position over time) is much more relevant than
a Euclidean distance between the deformation field parameters,
which would describe irrelevant errors far from the region of
interest. We very clearly advocate for the use of task-specific
evaluation metrics, since ultimately those metrics are the ones
that will distinguish success from failure in the specific clinical
application. However, we also believe that the lack of universally
accepted reporting guidelines, error metrics, and datasets is a
severe shortcoming that has unfortunate consequences, such as a
high risk of duplicated efforts and non-interpretable performance
reporting. We understand the most pressing needs to be:

• Standardizing evaluation metrics: An issue that appears to
have become more prevalent with the introduction of
machine learning methods that are developed and trained
on synthetic data is the lack of substantial results on
clinically relevant, real data. While experimental
conditions, including ground truth targets, are perfectly
known for simulation, they are much harder to obtain
for clinical or cadaveric data. A common approach to
dealing with this situation is to provide detailed
quantification of mTRE, registration accuracy, etc. on
synthesized data where the algorithm will perform well
(cf. Section 3.1) while only providing much simpler, less
informative, and sometimes purely qualitative metrics for
real data experiments. Clearly, this practice is undesirable
because 1) synthetic data experiments now cannot serve as a
baseline (since they use different metrics and are thus
incomparable), and 2) the true quantities of interest
remain unknown (for example, a 3D mTRE is more
informative than a 2D reprojection TRE since it can
adequately resolve depth).

While it is evident that not all evaluation paradigms that are
easily available on synthetic data can be readily transferred to
clinical data, the reverse is not true. If real data experiments
require simplified evaluation protocols because some gold
standard quantities cannot be assessed, then these simplified
approaches should at a minimum also be implemented on
synthetic data to further complement the evaluation. While
this approach may still leave some questions regarding real data
performance unanswered, it will at least provide reliable
information to assess the deterioration from sandbox to real
life.

2Non-deep learning techniques usually operate on lower dimensional data that is
abstracted from the images (such as cost function values (Wu et al., 2016) or
centerlines (Tang and Scalzo, 2016)) such that domain shift is handled elsewhere in
the pipeline, e.ġ., in a segmentation algorithm.
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• Reporting problem difficulty: A confounding factor that
needs to be considered even when consistent metrics are
being used is the fact that different datasets are likely to posit
2D/3D registration problems of varied difficulty. For
example, evaluation on synthetic data may include data
sampled from a broad range of viewpoints or deformations
that are approximately uniformly distributed. Real data, on
the other hand, is not uniformly sampled from such a
distribution, but rather, will be clustered around certain
viewpoints (see (Grupp et al., 2020c) for a visualization of
viewpoints used during a cadaveric surgery vs the synthetic
data for the samemachine learning task in (Bier et al., 2019).
Because those viewpoints are optimized for human
interpretation, they are likely to contain more easily
interpretable information which suggests that algorithmic
assessment is also more likely to succeed. Then, in those
cases, even if the quantitative metrics reported across those
two datasets would suggest similar performance, in reality
there is degradation due to evaluation on a simpler problem.

One way to address this challenge would be to attempt the
harmonization of problem complexity by recreating the real
dataset synthetically. Another, perhaps more feasible approach
would be to develop reporting guidelines that allow for a more
precise quantification of problem complexity, e.g., by more
carefully describing the variation in the respective datasets.

• Enabling reproduction: The recent interest in deep
learning has brought about a transformational move
towards open science, where large parts of the
community share their source code publicly and
demonstrate the performance of their solutions on public
benchmarks, which allows for fair comparisons. While a too
strong focus on “winning benchmarks” is certainly
detrimental to the creativity of novel approaches, we feel
that the lack of public benchmarks for 2D/3D registration

and related problems is perhaps an even greater worry. In
addition to the use of different metrics for validation
purposes discussed above, studies may even use different
definitions of the same quantity (such as the capture range,
that is defined, e.g., using the decision boundary of an SVM
classifier in (Esfandiari et al., 2021) and using mTRE in
(Schaffert et al., 2020a). Further, most code-bases and more
importantly datasets are kept private which inhibits
reproduction, since re-implementation is particularly
prone to biased conclusions. Consequently, creating
public datasets with well-defined and standardized testing
conditions should be a continued and reinforced effort, and
wherever possible, the release of source code should be
considered.

To this end, our group has previously released a relatively large
dataset of CTs and >350 X-rays across multiple viewpoints of six
cadaveric specimens prior to undergoing periacetabular
osteotomy (cf. Figure 4) (Grupp et al., 2020). Further, we
have made available the core registration components of our
intensity-based framework, xReg, as well as our open-source
framework for fast and physics-based synthesis of DRRs from
CT, DeepDRR, which may allow for the creation of semi-realistic
but very large and precisely controlled data. Increasing the rate
with which we share code and data will likely result in research
that truly advances the contemporary capabilities since the
baselines are transparent and much more clearly defined.

These challenges clearly restrict research, but even more
dramatically inhibit translational efforts, simply because we
cannot reliably understand whether a specific 2D/3D
registration problem should be considered “solved” or what
the open problems are. Finding answers to the posited
questions will become especially important as 2D/3D
registration technology matures and is integrated in image-
based navigation solutions that are subject to regulatory
approval. Then, compelling evidence will need to be provided

FIGURE 4 | Fluoroscopic images of chiseling performed during a cadaveric periacetabular osteotomy procedure. A cut along the ischium of the pelvis is shown by
the oblqiue view in (A). Due to the difficulty with manually interpreting lateral orientations of the tool in an oblique view, the very next fluoroscopy frame was collected at an
approximate anterior-posterior (AP) view, shown in (B). Although the osteotome location was confirmed by changing view points, the process of adjusting the C-arm by
such a large offset can potentially increase operative time or cause the clinician to lose some context in the previous oblique view. Another oblique view is shown in
(c), where the flat osteotome is used to complete the posterior cut, resulting in the creation of two bone fragments from the pelvis. In (C), the angled osteotome was left in
the field of view and used as a visual aid for navigating the flat chisel and completing the osteotomy.
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on potential sources and extent of algorithmic bias as well as
reliable estimates of real world performance (US Food and Drug
Administration, 2021). Adopting good habits around
standardized reporting will certainly be a good first step to
translate research successes into patient outcomes through
productization.

3.3 Registration of Multiple Objects,
Compound or Non-rigid Motion, and
Presence of Foreign Objects
Image-guidance systems often need to process and report
information regarding the relative poses between several
objects of interest, such as bones, organs and surgical
instruments. We found that only three studies in our review
register multiple objects through learning-based approaches
(Varnavas et al., 2013, 2015b; Wang et al., 2020), and
moreover, these studies independently registered single objects
in order to obtain relative poses. Although combining the results
of two distinct single object registrations is perhaps the most
straight-forward approach for obtaining the relative pose between
two objects, it fails to leverage the combined information of their
relative pose during any optimization process, which could have
potentially yielded a less-challenging search landscape. As an
example, consider the case of two adjacent objects whose
independent, single view, depth estimates are erroneous in
opposite directions. The relative pose computed from these
two independent poses will have an exacerbated translation
error resulting from the compounding effect of the
independent depth errors. A multiple object registration
strategy could alternatively parameterize the problem to
simultaneously solve for the pose of one object with respect to
the imaging device and also for the relative pose between the
objects. This approach partially compounds motion of the objects
during registration and completely eliminates the possibility of
conflicting depth estimates.

Despite the small number of learning-based multiple object
registration strategies, traditional intensity-based registration
methods are now routinely employed to solve compound,
multiple object, registration problems across broad
applications, such as: kinematic measurements of bone
(Chen et al., 2012; Otake et al., 2016; Abe et al., 2019), rib
motion and respiratory analysis (Hiasa et al., 2019), intra-
operative assessment of adjusted bone fragments (Grupp et al.,
2019, 2020b; Han et al., 2021), confirmation of screw implant
placement during spine surgery (Uneri et al., 2017) and the
positioning of a surgical robot with respect to target anatomy
(Gao et al., 2020a). We believe that the lack of new multiple
object registration learning-based strategies is indicative of the
substantial challenges involved with their development, rather
than any perceived lack of the problem’s importance by the
community. In order to better understand this “gap” between
learning-based and traditional intensity-based methods in the
multiple object domain, we first revisit (1) and update it to
account for N 3D objects. For i � 1, . . . , N, let ω(i)D denote the
deformation parameters of the ith object and let vT

x(i)
denote

it’s pose with respect to the vth view. Since the vast majority of

studies examined concern 2D X-ray images, we also assume
that 2D view modality is X-ray. This allows us to take
advantage of the line integral nature of X-ray projection
physics and represent the synthetic X-ray images formed
from multiple objects as the sums of independent synthetic
images created from each individual object, yielding the
updated registration objective function:

K ̂
v ,

vT ̂
x(i) , ω̂

(i)
D{ }� argmin

Kv , vTx(i) ,ω
(i)
D

∑
v

S ∑
i

P Kv,
vTx(i)( )◦Dω(i)

D
( ) x(i)( )[ ], yv⎛⎝ ⎞⎠

+ R(·).
(3)

Solving this optimization becomes more challenging as
objects are added and the dimensionality of the search
space grows. These challenges are somewhat mitigated by
the compositional nature of the individual components of
(Eq. 3). Indeed, updating an intensity-based registration
framework to compute (3) instead of (Eq. 1) is relatively
straight forward from an implementation perspective:
compute N synthetic radiographs instead of one and
perform a pixel-wise sum of the synthetic images together
before calculating the image similarity metric, S(·, ·). The
compositional structure of (Eq. 3) also enables the high-
dimensional problem to be solved by successively solving
lower-dimensional sub-problems. For example, the pose of a
single object may be optimized while keeping the poses of all
other objects fixed at their most recent estimates. After this
optimization of a single object is complete, another object’s pose
is optimized and all other’s are kept constant. This process is cycled
until all objects have been registered once or some other termination
criteria is met.

Extending (3) to the ML case, requires new per-object model
parameters to be introduced: θ(i)D and θ(i)x for i � 1, . . . , N. The
updated ML-based objective function for multiple objects is
written as:

̂Kv , v ̂Tx(i) , ̂ω(i)
D{ } � argmin

Kv , vTx(i) ,ω
(i)
D

×∑
v

SθS ∑
i

P Kv,
vTx(i)( )◦Dθ(i)D

ω(i)
D

( ) Gθ(i)x
x x(i)( )( )[ ],Gθy

y yv( )⎛⎝ ⎞⎠ + RθR(·).

(4)

When considering the Gθ
(i)
x
x (x(i)) terms in (Eq. 4), it appears

that contextualization methods are able to isolate some object-
dependent parameters from other components of the
registration problem. However, we found that each of the
contextualization studies which considered multiple objects
(Grupp et al., 2020c; Doerr et al., 2020; Wang et al., 2020;
Esfandiari et al., 2021) did not explicitly isolate the parameters
corresponding to each object, but instead used a single NN
with data in the output layer indexed according to the
appropriate object. This is likely effective for very specific
and simple applications as the NN is able to learn the relative
spatial relationships of the objects. For more complex
applications, it may be more appropriate to learn separate,
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well-trained, models which may be composed together. As an
example, consider two separate models, one trained to identify
contextual information of the hip joint and the other trained to
produce contextual information of a robotic device. Although
these two models may be used in conjunction, or combined
through “fine-tuning,” for the application of robotic hip
surgery, the models may also be composed with models
developed for other applications, such as measuring hip
biomechanics or robotic shoulder surgery. However, a
singular model trained to jointly contextualize hip and
robot features would most likely fail to generalize to any
additional applications. We anticipate that the development
of independent and robust contextualization models, capable
of composition, shall accelerate the number learning-based
methods applied to the multiple object problem.

Although representation learning methods may function in
the presence of multiple objects without additional
modification, better performance is usually obtained by
adding structure to account for the known spatial
relationships between objects (Yokota et al., 2013). We
anticipate that methods relying on representation learning
shall migrate away from PCA, towards auto-encoder style
approaches, with embedded rigid transformer modules so
that all spatial and shape relationships may be learned. As
representation learning methods have the potential to
reconstruct the bony anatomy of joints from a sparse
number of 2D views, these could potentially become very
popular by enabling navigation to a 3D anatomical model
with substantially reduced radiation exposure.

Similarity modeling approaches are implicitly affected by
the introduction of additional objects due to the inputs of
SθS(·, ·) having a dependence on Gθ

(i)
x
x (x(i)) and θ(i)D . None of the

studies reviewed in this paper used multiple objects as part of
similarity modeling. Although Grupp et al. (2020c) registered
multiple objects, the regularization function employed
learned landmark annotations from a only a single object.
We envision several challenges with extending these methods
to properly accommodate multiple objects. Obtaining
convexity of the learned similarity models in the ideal case
for (Gao et al., 2020c; Gu et al., 2020) is most likely not
attainable when using a weighted sum of rotation and
translation components of each object’s pose offset,
especially as the number of objects increases. Methods
which model 2D/3D correspondences (Schaffert et al., 2019,
2020a,b; Liao et al., 2019) will require an additional dimension
to handle the assignment of points to various obejcts, adding
complexity and potentially increasing the challenges associated
with training.

Probably most handicapped by the introduction of
multiple objects to the registration problem, are methods
relying on the direct regression of pose parameters, as they
attempt to model the entire objective function. One may
be tempted to solve this problem by simply adding
additional model outputs for each object’s estimated pose,
but this does not guarantee that the limitations of independent
single object pose regression are addressed. Therefore, direct

multiple object pose regression methods should attempt to
model the relative poses between objects in addition to a
single absolute pose (or single pose relative to some
initialization). Another limitation of regression approaches
lies in the combinatorial explosion which occurs as new
objects are added to the registration problem, making
training difficult in the presence of large fluctuations of the
loss function.

Although not unique to learning-based methods, multiple
object registration verification also becomes a much more
complex problem as the number of objects considered
increases. Questions arise, such as: should verification be
reported on each relative pose or should an overall pass/fail
be reported? The three verification studies examined in this
paper only considered verification of a single object’s pose
estimate. As single object verification methods mature, their
issues when expanding to multiple objects will likely become
more apparent.

In light of these challenges associated with learning-based
approaches, it is easy to see how contemporary intensity-based
methods currently dominate the multiple object domain
given their relative ease of implementation and reasonable
performance. However, there are multiple object registration
problems which remain unsolved since multiple object
intensity-based methods continue to suffer from the
limitations previously identified in Section 1.2. Some
frequent properties of these unsolved problems are
misleading views with several objects having substantial
overlap in 2D, the potential for a varying number of
surgical instruments to be present in a view and the
existence of objects which are dynamically changing shape
or possibly “splitting” into several new objects. Real-time
osteotome navigation using single view fluoroscopy,
illustrated in Figure 4, is exemplary of the many unsolved
challenges outlined above and will be used as a motivating
example throughout this discussion.

Each time the osteotome is advanced through bone, a single
fluoroscopic view is collected and interpreted by the surgeon in
order to accurately adjust the chiseling trajectory and safely
avoid sensitive components of the anatomy which must not be
damaged, such as the acetabulum shown in 4. Although the
oblique views shown in Figure 4 1) and (c) help ensure that
the osteotome tip is distinguishable from the acetabulum, the
lateral orientation of the tool is challenging to interpret
manually and may need to be confirmed by collecting
subsequent fluoroscopic views at substantially different
orientations, such as the approximate anterior-posterior
(AP) view shown in Figure 4 (b). Figure 4 (c) also
demonstrates the intraoperative creation of a new object
which may move independently of all others, further
compounding the difficulty associated with non-navigated
interpretation of these views. An additional challenge with
osteotomy cases is the ability to determine when all
osteotomies are complete and the new bone fragment is
completely free from its parent. Figure 4 (c) demonstrates
that retaining the angled osteotome as a static object in the
field of view during performance of the posterior cut helps to
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guide the flat osteotome along the desired trajectory, but does
not guarantee that the acetabular fragment has in fact been
freed from the pelvis. A navigation system capable of
accurately tracking the osteotome with respect to the
anatomy using a series of oblique views would eliminate the
need for additional, “confirmation,” views, potentially reduce
operative time, decrease radiation exposure to the patient and
clinical team and reduce the frequency of breaches into
sensitive anatomy.

We envision that this problem, and others like it, will
eventually be solvable as the capabilities of learning-based
methods advance further. Future contextualization and
similarity modeling methods could enable a large enough
capture range to provide an automatic registration to the
initial oblique view used for chiseling, and regression
methods, coupled with contextualization, could enable
real-time pose estimates in subsequent views.
Reconstructions of newly created bone fragments should
be possible through similarity modeling approaches, such
as by extending the framework introduced by Gao et al.
(2020c) to include multiple objects and non-rigid
deformation. Finally, recurrent NN approaches, such as
long short-term memory (LSTM) components, could
provide some temporal segmentation of the intervention
into phases and gestures, as is already done for
laparoscopic surgery (Vercauteren et al., 2019; Garrow
et al., 2021; Wu et al., 2021). This segmentation could be
useful in identifying when 1) certain objects need to be
tracked, 2) a radically different view has been collected, or
3) new objects have been split off from an existing object.

Although foreign objects such as screws, K-wires,
retractors, osteotomes, etc. frequently confound traditional
registration methods, their location or poses often have
clinical relevance. Therefore, contrary to the inpainting
approach of Esfandiari et al. (2021), we advocate that
learning-based methods should make attempts to register
these objects.

3.4 Estimating Uncertainty and Assuring
Quality
The four studies which consider registration verification in this
review all attempt to provide a low dimensional classification
of registration success, e.g., pass/fail or correct/poor/incorrect
(Mitrovi et al., 2014; Varnavas et al., 2013, 2015a; Wu et al.,
2016). These strategies effectively attempt to label registration
estimates as either a global (correct) or local minimum (poor/
incorrect) of (Eq. 1). Unfortunately, even when correctly
classifying a global optimum, these low-dimensional
categorizations of a registration result may unintentionally
fail to report small, but clinically relevant, errors. This is
perhaps easiest to recognize by first revisiting (1) and
noting that registration strategies attempt to find singular
solutions, or point estimates, which best minimize the
appropriate objective function. However, several factors,
including sensor noise, modeling error or numerical
imprecision, may influence the landscape of the objective

function and potentially even cause some variation in the
location of the global minimum. This possibility of
obtaining several different pose estimates under nominally
equivalent conditions, reveals the inherent uncertainty of
registration. Even though a failure to identify cases of large
uncertainties may lead surgeons to take unintentional risks
with potentially catastrophic implications for patients, to our
knowledge, only one prior work has attempted to estimate the
error associated with 2D/3D registration estimates (Hu et al.,
2016). We therefore believe that the development of methods
which quantify 2D/3D registration uncertainty is of
paramount importance and essential for the eventual
adoption of 2D/3D registration into routine use, and even
more in the advent of autonomous robotic surgery.

Inspiration can be drawn from the applications of 3D/3D
and 2D/2D deformable image registration (Chen et al., 2020;
Fu et al., 2020; Haskins et al., 2020), where machine learning
techniques have dominated most existing research into
registration uncertainty. Some of these approaches report
interval estimates, either by reformulating the registration
objective function as a probability distribution and drawing
samples (Risholm et al., 2013; Le Folgoc et al., 2016; Schultz
et al., 2018), approximating the sampling process using test-
time NN drop-out (Yang et al., 2017) or sampling using the
test-time deformation covariance matrices embedded within a
variational autoencoder (Dalca et al., 2019). Due to the
interventional nature of most 2D/3D registration applications,
care needs to be taken in order to ensure that program
runtimes are compatible with intra-operative workflows.

Although we have mostly advocated for the development of
new uncertainty quantification methods, there is likely still
room for improvement of the local/global minima
classification problem. Given the computational capacity of
contemporary GPUs and sophistication of learning
frameworks, it should be feasible to extend the approach of
Wu et al. (2016) and pass densely sampled regions of the
objective function through a NN, relying on the learning
process to extract optimal features for distinguishing local
and global minimal.

As registration methods will inevitably report failure or
large uncertainties under certain conditions, we also believe
that a promising topic of future research extends to intelligent
agents which would determine subsequent actions to optimally
reduce uncertainty, such as collecting another 2D view from a
specific viewpoint. Finally, we note that registration
uncertainties have the potential to augment existing robotic
control methods which rely on intermittent imaging
(Alambeigi et al., 2019).

3.5 The Need for More Generic Solutions
Traditional image-based 2D/3D registration that relies on
optimization of a cost function is limited in many ways
(Section 1.2); however, a major advantage of the
algorithmic approach is that it is very generic, i.e., a
pipeline configured for 2D/3D registration of the pelvis
would be equally applicable to the spine. The introduction
of machine learning to the 2D/3D pipeline, however, has in a
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way taken away this generality and methods have become
substantially more specialized. This is not because specific
machine learning models are only suitable for one specific task
or anatomy; on the contrary, e.g., pose or PCA component
regression techniques are largely identical across clinical
targets. Rather, it is yet another consequence of the
compact domain assumption of machine learning models
that confine solutions to the data domain they were
developed on. While this specificity of solutions may be
acceptable, and perhaps, unavoidable for methods that
seek to contextualize data, it inhibits the use of 2D/3D
registration pipelines as a tool to answer clinical or research
questions. We feel that, in part due to its complexity, 2D/
3D registration already leads a niche existence and the
necessity to re-train or even re-develop some algorithm
components for the specific task at hand further exacerbates
this situation.

Some approaches already point towards potential
solutions to this issue: Methods like (Varnavas et al., 2013;
2015b) rely on patient- and object-specific training sets, and
therefore, avoid the task-specificity that comes with one-time
training. Another noteworthy method learns to establish
sparse point correspondences between random points
rather than anatomically relevant ones (Liao et al., 2019).
However, despite matching random points, this method is
likely still scene-specific because matching is performed using
a very deep CNN with very large receptive field which may
have learned to exploit the global context of the random
keypoints, which would not be preserved in different
anatomy. Contributing machine learning-based solutions
that address some of the large open challenges in 2D/3D
registration while making the resulting tools general purpose
and easy to use will be an important goal in the immediate
future.

4 CONCLUSION

Machine learning-based improvements to image-based 2D/3D
registration were already of interest before the deep learning
era (Gouveia et al., 2012), and deep learning has only
accelerated and diversified the contributions to the field.
Contextualization of data, representation learning to reduce
problem dimensionality, similarity modeling for increased
capture range, direct pose regression to avoid iterative
optimization, as well as confidence assessment are all well
established research thrusts, which are geared towards
developing automated registration pipelines. While
convincing performance improvements are reported across
a variety of clinical tasks and problem settings already today,
most of those studies are performed “on the benchtop.”

Coordinated research efforts are desirable towards 1)
developing more robust learning paradigms that succeed
under domain shift, 2) creating standardized reporting
templates and devising evaluation metrics to enhance
reproducibiliy and enable comparisons, 3) researching
multi-object registration methods that can deal with the

presence of foreign objects, 4) advancing uncertainty
quantification and confidence estimation methodology to
better support human decisions, and finally 5) developing
generalist machine learning components of 2D/3D
registration pipelines to improve accessibility.

Even though learning-based methods show great promise
and have supplanted traditional methods in many aspects,
their rise should not render traditional methods unusable or
irrelevant. New researchers typically spend a great deal of time
implementing a traditional registration pipeline so that
traditional methods may be leveraged in conjunction with
the development of learning-based approaches. In order to
facilitate more rapid research and development towards
learning-based methods, we have made the core registration
components of our intensity-based framework (xReg3), as well
as our physics-based DRR generation tools for realistic
synthesis and generalizable learning (DeepDRR4) available as
open source software projects.

We have no doubt that progress on the aforementioned fronts
will firmly establish machine learning methodology as an
important component for 2D/3D registration workflows that
will substantially contribute to 2D/3D registration growing out
of its niche existence, establishing itself as a reliable, precise, and
easy-to-use component for research, andmore importantly, at the
bedside.
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