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Abstract 

Alzheimer’s disease (AD), a critical neurodegenerative condition, has a wide range of effects on brain activity. Synaptic 
plasticity and neuronal circuits are the most vulnerable in Alzheimer’s disease, but the exact mechanism is unknown. 
Incorporating optogenetics into the study of AD has resulted in a significant leap in this field during the last decades, 
kicking off a revolution in our knowledge of the networks that underpin cognitive functions. In Alzheimer’s disease, 
optogenetics can help to reduce and reverse neural circuit and memory impairments. Here we review how optoge-
netically driven methods have helped expand our knowledge of Alzheimer’s disease, and how optogenetic interven-
tions hint at a future translation into therapeutic possibilities for further utilization in clinical settings. In conclusion, 
neuroscience has witnessed one of its largest revolutions following the introduction of optogenetics into the field.
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Introduction
“A peculiar severe disease process of the cerebral cor-
tex” are the words used by A. Alzheimer to describe his 
patient’s severe memory loss, personality changes, and 
sleep disturbance in 1906. This condition is now known 
as Alzheimer’s disease (AD), the world’s leading cause of 
dementia, the most common neurodegenerative disease, 
and the 5th overall cause of mortality affecting ~ 44 mil-
lion people globally [1]. At the same time, even though 
several theories for AD etiology have emerged through-
out the past century, its etiology and pathology remain 
relatively unclear, and no successful treatment exists [2].

Francis Crick once suggested that the main challenge 
facing neuroscience is to control one cell type in the 
brain while leaving others untouched [3]. The remarkable 
specificity of optogenetic techniques, first introduced in 
2005 by a pair of researchers [4, 5], has allowed scientists 

to address this issue. Researches can now target very spe-
cific populations of cells within (or sometimes across) 
tissues and observe neural networks in a much higher 
resolution [6, 7], helping to better dissect the pathology 
behind several neurologic conditions [8]. Optogenetics is 
using genetically modified cells expressing proteins that 
respond to light [9]. This method has been an important 
milestone in neuroscience, aiding researchers in discov-
ering and modulating neural circuits that govern differ-
ent complex functions of behavior and cognition [10–13]. 
Optogenetic findings can determine dependencies and 
infer causality, which is necessary for establishing circuit-
centric therapeutics, thus overcoming the limitations of 
most other approaches [14].

Here we review recent breakthroughs in AD research 
and discuss what the future clinical horizon looks like. 
Although optogenetics has had broad uses in neurosci-
ence studies, we have only chosen studies that have been 
used on AD models or have clear implications for under-
standing or treating AD.

Open Access

*Correspondence:  rezaei_nima@yahoo.com
2 Network of Immunity in Infection, Malignancy and Autoimmunity 
(NIIMA), Universal Scientific Education and Research Network (USERN), 
Tehran, Iran
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-3836-1827
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13041-022-00905-y&domain=pdf


Page 2 of 14Mirzayi et al. Molecular Brain           (2022) 15:20 

Introduction to optogenetic methods
Opsins
Rhodopsins (named for their light-responsive molecule 
opsin), first reported in 1971 [15], are light-sensitive pro-
teins that are expressed in all organisms [16]. These trans-
membrane proteins respond to different wavelengths of 
electromagnetic light, thus initiating ion exchanges that 
alter the plasma membrane potential. The central idea 
behind optogenetics is fine-tuning these proteins to fit 
into specific subpopulations of cells and then inducing 
said membrane potential changes using light [17].

Optogenetics studies commonly use microbial opsins 
because of their efficient kinetics and that they are rela-
tively simpler to engineer [18]. These including ion 
pumps (such as bacteriorhodopsins and halorhodopsins) 
and ion channels (such as channelrhodopsins) [19]. 
Opsins have been rigorously engineered to offer a com-
plex toolbox for neuronal excitation or inhibition, as well 
as control of intracellular signaling [20, 21], rendering 
optogenetics a powerful method to modulate molecular 
events in a targeted manner.

Gene vehicles
Opsin-encoding genes must be delivered into the desired 
cell population, and various delivery methods exist for 
this purpose. Lenti- and adeno-associated viral vectors 
are most commonly used to transfer the opsin gene into 
the desired cell population [13, 17]. Viruses allow the 
simultaneous induction of activation or inhibition in 
neural cells of the same class, even if scattered through-
out the tissue and offer an extraordinary efficacy in 
invading living cells [4]. Non-viral vectors are also being 
explored; these vehicles are safer, cost-effective, and rela-
tively easier to use; but have lower delivery efficacy and 
expression rates [22].

Light delivery
The main methods of introducing light into the tissue are 
(1) distant light sources that require infiltration of the tis-
sue, typically through an optical fiber, and (2) in-site light 
sources (such as LEDs), which can either be implanted 
[23] or directly target the cortical surface [24, 25]. LEDs 
and lasers are widely used due to their simplicity, effec-
tiveness, and cost. Their disadvantage is having a nar-
row spectral bandwidth requiring two different devices 
to activate two spectrally different opsins independently 
[26].

Optical fibers can potentially be connected to any light 
source as long as their power is controlled. This control 
is necessary so that the tissue is exposed to as little light 
as possible to minimize heat and light damage, but also 
sufficient light to activate the opsins. Standard white light 
sources work in this setting, but given that light should 

be band-passed to reduce the power and opsins have dif-
ferent sensitivities to wavelengths, the right filter should 
be applied [27].

Role of optogenetics in revealing Alzheimer’s 
disease pathogenesis
There is no established consensus as to what clinical find-
ings correspond with AD. However, AD is famously char-
acterized by the presence of amyloid-beta (Aβ) plaques 
and neurofibrillary tau tangles [28]. Researchers once 
suggested the deposition of amyloid-beta plaques in dif-
ferent regions of the brain as the primary molecular basis 
for pathogenesis [29, 30], which, following inconsisten-
cies [31], was modified to be smaller, more soluble amy-
loid oligomer assemblies rather than plaques [32, 33]. 
Now it is thought that AD begins with minute alterations 
of hippocampal synaptic function induced by diffusible 
oligomeric assemblies of Aβ [34], specifically AβO1–42 
[35]. The rest of the disease process, including the for-
mation of tau protein tangles, results from a production-
clearance imbalance of these assemblies [32], progressing 
into neuronal degeneration [36–39] and memory loss 
[40, 41]. A pure impairment of memory is how AD usu-
ally exhibits itself in its earliest clinical phase [36].

Artificial plaque deposition
Scientists working on AD need to understand the path-
ogenic effects of Aβ better. While animal and in  vitro 
models of Aβ exist and are most commonly used for this 
purpose [42], optogenetic methods of artificial plaque 
induction have also been introduced in recent years. Lim 
et al. [43] developed fluorescently labeled, optogenetically 
activated Αβ peptides that can oligomerize in vitro upon 
illumination. The authors concentrated on the question 
of how intracellular Aβ oligomers underlie the patholo-
gies of AD and were able to put a distinction between 
the metabolic and physical damage of Aβ, and between 
the damage caused by light-induced Aβ oligomerization 
from mere Aβ expression. The physical damage caused 
by Aβ oligomers signifies tissue loss, a hallmark of late 
AD. Kaur et al. [44] went further and enhanced a similar 
method to generate in vivo Αβ aggregation.

Dissecting hippocampal memory pathways
Memory impairment in the early stages of AD is limited 
chiefly to episodic memory, in which the hippocampus 
plays a crucial part [36] (Fig.  1). AD and similar mem-
ory disorders associated with this part of the brain have 
sparked interest in the hippocampus’s role in memory, 
and neurodegenerative memory loss research has exten-
sively focused on pathology in the medial temporal lobe, 
primarily in the hippocampus [45]. The neural circuits 
in the dentate gyrus (DG) and the CA1 regions in the 
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hippocampus, the first to receive signals from the cortex 
and the last to process them, respectively [46], were the 
earlier interests of scientists in the field.

It was established that optogenetic inhibition of 
pyramidal cells (PCs) in dorsal CA1 [47] or disinhibition 
through somatostatin-positive (SST) cells [48] revers-
ibly disrupts memory acquisition. Inhibition of CA1 
during recall also disrupts recall [47]. These findings 
underscored the importance of CA1 and suggested that a 
precise CA1 function is needed for both memory acqui-
sition and recall.

Light-induced inhibition of dorsal DG, on the other 
hand, was found to impair only memory acquisition but 
not recall, whereas its hyperactivation [49] or disinhi-
bition through hilar GABAergic neurons [50] impairs 
recall but not acquisition. However, this inhibition causes 
remarkable cognitive impairment when the mouse model 
needs to encode a new, conflicting memory rapidly. Con-
sistent with former knowledge, these data revealed that 
CA1 is the terminal region from which the hippocampus 
emits output signals and is crucial for memory recall. In 
contrast, DG could be bypassed through alternative cir-
cuits, namely the intrahippocampal associative network 
of CA3 and the entorhinal cortex (EC) [51, 52].

The vast diversity of GABAergic interneurons (INs) 
in the hippocampus arms its microcircuits with the 
required flexibility for memory encoding and retrieval. 
Using optogenetics, it was found that a population of hip-
pocampal GABAergic INs, known as oriens lacunosum-
moleculare (OLM) cells, gatekeep the information flow 
in CA1, enabling the intrahippocampal transmission of 
information from the CA3 while reducing the influence 
of extrahippocampal inputs from the EC. These cells are 

interconnected and receive cholinergic inputs from dif-
ferent regions of the brain, suggesting that acetylcholine, 
acting through OLM cells, can control the mnemonic 
processes executed by the hippocampus [53].

Curious laterality in memory function is also observed 
in the hippocampus. Optogenetically silencing CA3 PCs 
on the left but not the right hippocampus impairs asso-
ciative spatial long-term memory [54]. Aβ also selec-
tively disrupts synaptic activity and facilitates long-term 
depression (LTD, see next section) in the left hippocam-
pus [55], providing insights for further studies to under-
stand the development of unusual brain lateralization in 
AD.

Hippocampal rhythmic oscillations
Rhythmic activity in the hippocampus occurs within 
distinct frequency bands, namely theta (4–12  Hz) and 
gamma (30–120  Hz) oscillations. Slow (30–60  Hz) and 
fast (60–120  Hz) gamma oscillations have also been 
proposed recently to have functionally distinct roles in 
memory [56]. These oscillations are prominent in spa-
tial memory processing [57] and synaptic plasticity [58, 
59]. Two critical models of synaptic memory learning, 
long-term potentiation and depression (LTP and LTD), 
are also closely related to the hippocampal oscillations 
and are involved in learning and memory formation [60, 
61]. Background abnormal accumulation of amyloid oli-
gomers is believed to be the mechanism that causes dys-
function in hippocampal parvalbumin-positive (PV) and 
SST IN circuits [62], which are critically involved in the 
induction of these oscillations, and impairs LTP by exten-
sion [34, 63–65].

Fig. 1  Optogenetics illuminates memory circuits impaired in AD
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Indeed, exploiting optogenetics, it was found that 
AβO1–42 causes specific dysfunction in CA1 PC-to-PV 
IN and PV-to-PC synapses. Having no effect on PC-to-
SST or SST-to-PC synapses, AβO selectively disrupts 
SST IN-mediated disinhibition to CA1 PC and impairs 
theta-nested gamma oscillation-induced spike-timing-
dependent LTP [66]. AβO also increases the probabil-
ity of the initial GABA release that depresses SST/PV 
IN’s inhibitory input to CA1 PC selectively at theta and 
gamma frequencies, respectively [62]. These oscillations 
are reversible through optogenetic activation of neu-
rons [66]. Light activation of SST and PV INs similarly 
restores AβO-induced theta and gamma oscillation peak 
power reduction, resynchronizing spike phases relative to 
the respective oscillations, and resynchronizes CA1 PC 
spikes [62].

Since theta frequency rhythmic oscillatory activ-
ity underlies a mechanism that can synchronize neu-
ral network activity during mnemonic processes [67], 
researchers commonly use theta-burst stimulation in 
order to induce LTP, especially in the hippocampus [68]. 
For instance, Yang et  al. showed that selective optoge-
netic induction at theta-burst frequency in the pathway 
between EC layer II PCs and CA1 PV GABAergic neu-
rons, a pathway that exhibits degeneration in AD, before 
the onset of symptoms, rescues degeneration of synapses 
and improves learning and memory function [69].

The CA1 is a point of convergence that receives gamma 
frequency inputs from upstream regions (CA3 and 
medial EC) and generates itself a faster [70] gamma oscil-
lation. Butler et  al. produced an optogenetic model of 
intrinsic CA1 gamma oscillations and showed that sinu-
soidal optical stimulation of CA1 at theta induces strong 
theta-nested gamma oscillations similar to in  vivo, sug-
gesting there exists a single gamma rhythm generator 
[71]. Using optogenetically induced theta–gamma oscil-
lations, the authors later found that CA3 stimulation 
induces slower gamma oscillations in CA1 than stimu-
lation of either medial EC or CA1 itself, where gamma 
oscillations are of similar frequency [72]. Optogenetic 
inhibition of PCs in CA1 also was not found to affect the 
power of the oscillations [70]. Altogether, these results 
reveal an excitatory-inhibitory feedback loop that under-
lies gamma oscillation generation in all three regions.

Increasing data is suggesting that brain network altera-
tions rather than protein deposition could account for 
the early pathogenesis of AD and might even precede 
the canonical Aβ deposition [73], most notably the theta-
gamma cross-frequency coupling [74]. Mondragon-
Rodriguez et al. studied young mouse models of AD and 
found that not the PC inhibition by local INs nor the 
PV excitation by PCs, but the intrinsic excitability of PV 
cells was reduced in this condition. This impairment of 

cross-frequency coupling was not rescued by optogenetic 
activation of PV INs, which directly drive theta oscilla-
tions in the hippocampus, suggesting this damage does 
not directly result from an alteration of the underlying 
theta rhythm [75].

These hippocampal PV INs in the hippocampus are 
directly regulated by extrahippocampal networks as well, 
for example, medial septal PV cells (MSPVs) [76], which 
constitute a septohippocampal feedforward inhibitory 
control [77]. Optogenetic stimulation of MSPV projec-
tions in the hippocampus is associated with direct, fre-
quency-specific pacing of hippocampal oscillations [78, 
79]. In an important study, Etter et al. demonstrated how 
optogenetic gamma stimulation could activate MSPVs, 
thereby restoring hippocampal slow gamma oscillations 
amplitude and phase-amplitude coupling, and finally 
retrieving lost spatial memory despite significant plaque 
deposition [80].

Corticohippocampal relations
Mounting evidence suggests that the prefrontal cor-
tex (PFC) is preferentially vulnerable to AD-related 
pathology [81], possibly due to metabolic demands of 
this region [82]. For instance, the medial PFC is among 
the first brain regions to develop Aβ plaques [83]. This 
renders the PFC an important region to study for AD 
researchers.

It is known that a joint contribution of the medial PFC 
and hippocampus supports successful spatial working 
memory in rodents [84, 85]. Spellman et  al. established 
that optogenetic disruption of the gamma synchrony 
between these regions impaired encoding, but not main-
tenance or retrieval, of spatial cues [86]. Optogenetic 
inhibition of excitatory medial PFC neurons similarly 
inhibited the activation of the entorhinal-hippocampal 
circuit and, therefore, impaired long-term associative 
memory formation [87]. Altogether these data reveal that 
encoding of long-term episodic memory is related to an 
early remodeling of circuits within the neocortex and 
that the PFC is a crucial regulator of hippocampal activa-
tion during encoding and long-term memory formation.

Cassel et  al. reported that optogenetic stimulation of 
the reuniens-rhomboid nuclei (ReRh) of the thalamus 
induces LTP in CA1 and alters functions that are also 
sensitive to lesions of the hippocampus and the medial 
PFC [88]. On the other hand, Ito et  al. reported that 
optogenetic silencing of Re reduced spatial memory-
dependent CA1 activity, further establishing that projec-
tions from medial PFC via the Re to the hippocampus are 
crucial for spatial memory [89]. Maisson et  al. similarly 
demonstrated that light-induced Re inhibition selectively 
disrupts memory encoding [90]. These studies suggest 
that thalamic nuclei contribute to the encoding of spatial 
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information during working memory and may act as a 
gateway, relaying cortical input to the hippocampus.

The DG is the primary gate of the hippocampus and 
controls information flow from the cortex [91, 92], and 
granule cells (GCs) are the principal neurons in the DG 
which receive inhibition from both PV and SST GABAe-
rgic inhibitory INs. Lee et al. utilized cell-specific optoge-
netic perturbation and found that PV and not SST INs 
suppress GC responses among these cells. PV INs also 
control the onset, whereas SST INs regulate the later 
spikes [93].

The EC is another hotspot that regulates hippocampal 
activity. Mild cognitive impairment, which often pre-
cedes AD, is characterized by a significant neuronal loss 
in the EC, most notably in the layer II PCs [94, 95]. Bott 
et al. reported that a partial EC lesion generates hyperac-
tivity in the DG, which could be abolished by optogenetic 
stimulation of hippocampal cholinergic fibers. These 
cholinergic fibers sprout in response to the lesion; there-
fore, control of DG hyperactivity by cholinergic sprout-
ing seems to be involved in functional compensation of 
reduced EC glutamatergic input after a lesion of the EC 
[96].

Slow waves and sleep
Slow oscillations are crucial for memory consolidation 
during sleep, the power of which is commonly dimin-
ished in AD. AD-associated sleep–wake cycle disrup-
tions include disruptions in NREM slow-wave sleep. 
AD patients spend less time in NREM sleep and exhibit 
decreased slow-wave activity. Consistent with the criti-
cal role of SWS in memory consolidation reduced SWA 
is associated with impaired memory consolidation [97].

Kastanenka et  al. reported that inhibitory activity 
within the cortical circuit is responsible for slow oscil-
lation dysfunction since light activation of excitatory 
cortical neurons restored slow oscillations by synchro-
nizing neuronal activity. While optogenetic driving of 
slow oscillation activity halted plaque deposition and 
prevented calcium overload associated with this pathol-
ogy [98], the authors later found that attempting to pro-
pel this circuit at an increased rate yields opposite results 
[99], possibly due to activity-dependent acceleration of 
amyloid production. This phenomenon has also been 
demonstrated before, through optogenetic activation 
of the hippocampus [100] and is consistent with former 
knowledge that neuronal activation increases Aβ release 
from presynaptic terminals [101]. There is a positive feed-
back loop between amyloid/tau pathology and slow-wave 
activity (SWA) disruptions in AD that cause even further 
accumulations of amyloid and tau, possibly hinting at the 
utility of SWA disruptions for early AD diagnosis [97].

The forebrain
The basal forebrain (BF) is another major controller of 
cortical and hippocampal activity, and its dysfunction 
coupled with a significant loss of its cholinergic neurons 
is observed in AD. Many of the BF neurons involved in 
said processes are, in fact, GABAergic, including a sub-
population of PV projection neurons [102]. Optogenetic 
stimulation of the cholinergic neurons activates the cor-
tically projecting BF PV GABAergic neurons (CPBPGs), 
suggesting that the loss of cholinergic neurons in AD 
may partially impair cortical activation through CPBPGs 
[103].

CPBPGs seem to regulate gamma-band oscillations 
(GBO, 30–80 Hz, typically ~ 40 Hz) in the cortex. These 
oscillations are involved in higher cognitive functions 
such as attention and working memory, and their impair-
ments are a feature of many disorders associated with 
dysfunction of cortical fast-spiking PV INs, including 
AD [104]. Indeed, Kim et  al. showed that optogenetic 
activation or inhibition of CPBPGs can preferentially 
increase cortical GBO or reduce the ability of the cortex 
to generate GBO, respectively, indicating that this pre-
sumptively inhibitory input likely synchronizes cortical 
PV INs [105]. Optogenetic activation of BF PV neurons, 
however, unlike what is observed in hippocampal PV 
neurons, increases amyloid burden, suggesting that the 
beneficial effects of GBO on AD pathology depend on 
the method it is induced. In other words, activating BF 
inhibitory neurons preferentially suppresses cortical PV 
neurons rather than activating them [106]. Optogenetic 
stimulation of BF nuclei has also been used to establish 
BF modulation of sensory responses in the cortex [107].

Developing an optogenetic method for GBO induction, 
gamma entrainment using sensory stimuli (GENUS), Iac-
carino, Singer et  al. found that driving fast-spiking PV 
INs at gamma reduces levels of Aβ isoforms; hinting to 
a possible role of gamma rhythms in recruiting neuronal 
and glial responses to ameliorate AD pathology [108]. 
The main advantage of this study, was that this multi-
sensory stimulation recruits multiple brain regions with 
a subsequent wider effect on the brain. It was later found 
that auditory GENUS boosts hippocampal function and 
affects microglia, astrocytes, and vasculature in the audi-
tory cortex and hippocampus. Both auditory and visual 
GENUS can induce microglia clustering around plaques, 
which could explain how GBO induction reduces amy-
loid and tau burden throughout the neocortex [109].

The cholinergic system
Brain cholinergic neurons are critical for memory func-
tion, and their loss contributes to memory impairment in 
AD. One role of these neurons is to elicit theta rhythm 
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in the hippocampus during periods of learning when hip-
pocampal synapses are in a state of heightened plasticity 
[58].

It has been established that optogenetic septal cholin-
ergic input induces different types of hippocampal plas-
ticity depending on the timing, all which are disrupted 
by Aβ exposure [110], impairs spatial memory formation 
when activated at goal location but not during naviga-
tion, reduces sharp-wave ripple incidence at goal loca-
tion, and enhances theta-gamma oscillations during sleep 
[111]. These results highlight the importance of proper 
timing of cholinergic input in long-term memory forma-
tion, which could explain the relatively limited success of 
cholinesterase inhibitors in treating AD.

Betterton et  al. found that acetylcholine release in 
CA3 enhances light-induced gamma oscillation power in 
lower and decreases it in higher concentrations, acting 
primarily through muscarinic receptors [112]. Aitta-aho 
et  al. similarly found that while brainstem acetylcholine 
neurons transiently excite amygdala neurons through 
glutamate, BF acetylcholine neurons cause biphasic 
inhibition-excitation responses that synchronize amyg-
dala activity. The authors suggested that the brainstem 
and the BF inputs to the amygdala might drive opposing 
learning behaviors [113].

Forebrain cholinergic neurons also regulate innate 
immune responses and inflammation, which is interest-
ing to note, considering that anti-inflammatory regu-
lation is often impaired in diseases associated with 
cholinergic dysfunction, including AD. In one study, 
selective optogenetic stimulation of BF cholinergic neu-
rons was found to significantly reduce serum TNF levels, 
a marker of inflammation [114].

Memory engrams
Hippocampal cells, thought to represent "memory 
engrams," have been optogenetically targeted to better 
understand the circuits involved in AD-related memory 
pathology. In a critical study, Roy, Arons et al. showed 
that in early AD amnesia, direct optogenetic activation 
of memory engram cells could retrieve lost memory, 
suggesting a retrieval rather than a storage impair-
ment. The authors optically induced LTP at perforant 
path synapses of DG engram cells and reported resto-
ration of both spine density and long-term memory, a 
reduction in which is the underlying mechanism of age-
dependent amnesia that precedes plaque deposition 
[115]. Bostancıklıoğlu similarly showed that optoge-
netic manipulation of serotonin nuclei retrieve the lost 
memory by closing potassium channels on the mem-
ory engram cells, raising questions about the effects 
of serotonin on memory engram cells and pointing 
to the possible interface between the amyloid‐centric 

hypothesis of AD and the memory engram hypothesis 
in order to explain memory loss in AD [116].

In order to visualize memory traces, Denny et  al. 
created a transgenic line of mice that allowed for the 
comparison between cells activated during encoding 
and expression of memory. Mice re-exposed to a con-
text had more reactivated cells in the DG and CA3 than 
mice exposed to a novel context. Over time, these dif-
ferences disappeared, in keeping with the observation 
that memories become generalized. Optogenetically 
silencing DG or CA3 cells that were recruited dur-
ing encoding of a fear-inducing context prevented the 
expression of the corresponding memory. Mice with 
reduced neurogenesis displayed less contextual mem-
ory and less reactivation in the CA3, but surprisingly, 
regular reactivation in the DG [117]. The results sug-
gest that distinct memory traces are located in the DG 
and CA3, but the strength of the memory is related to 
reactivation in the CA3.

Emotions and memory
Depression is commonly observed in patients with 
dementia [118], such as AD [119]. Animal studies have 
also confirmed a causal relation in that depression can 
impair memory [120, 121]. The basolateral amygdala 
(BL) is famously being associated with emotion and 
motivation, playing an essential role in processing emo-
tion-associated events. BL has neuronal fibers directly 
projecting to the hippocampus [122] and regulates long-
term potentiation of the dorsal hippocampus [123] and 
hippocampal plasticity [124].

Yang et  al. developed mouse models of learned hope-
lessness and learned hopefulness (LHL and LHF), which 
are models of memory impairment and enhancement 
resulting from negative and positive emotions, respec-
tively. The authors found that opposite scaling of the 
excitatory monosynaptic connection between posterior 
BL (BLP) and ventral CA1 governs the modified spatial 
learning and memory. More interestingly, optogenetic 
disruption of this circuit abolishes the effects of LHF and 
impairs synaptic plasticity, whereas its stimulation res-
cues the LHL-induced memory deficits [125].

“Sundowning” is another emotional disturbance in AD, 
characterized by early-evening agitation and aggression 
[126]. Exploiting optogenetic mapping technics, Todd 
et  al. found that a population of GABAergic subpara-
ventricular zone neurons, which are major postsynaptic 
targets of the central circadian clock, receive input from 
neurons in the aggression regulating region of the hypo-
thalamus and revealed a functional circuit by which the 
circadian clock regulates aggression [127], explaining the 
daily rhythmicity of this phenomenon.
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Neurogenesis
The hippocampus, most notably the DG, is a plastic 
and vulnerable structure in which neurogenesis occurs 
in embryonic and postnatal periods, and impairments 
in neurogenesis are one of the key manifestations of 
Aβ pathology [128]. Morgun et  al. found that aberrant 
mechanisms of development of stem and progenitor cells 
caused by Aβ1-42 can be partially restored through tar-
geted optogenetic activation of certain astrocytes in the 
neurogenic niche [129].

Duan et al. have recently presented an optogenetic tool 
to study the nerve growth factor/tropomyosin receptor 
kinase A signaling pathway, which plays a key role in neu-
ronal development, function, survival, and growth, and is 
implicated in neurodegenerative disorders. However, this 
tool has yet to be used in the context of AD [130].

Drug function
Optogenetic tools have also been used to test drug func-
tion. Memantine has been shown to improve cognitive 
functions AD models. Using optogenetics, it was estab-
lished that memantine enhanced EC to CA1 synaptic 
neurotransmission and promoted dendritic spine regen-
eration of EC neurons that projected to CA1 [131]. Caf-
feine consumption prevents memory deficits in aging 
and AD through the antagonism of adenosine receptors, 
optogenetic activation of which in the hippocampus 
impairs spatial memory performance [132].

Neurovascular dysfunction
AD is associated with neurovascular dysfunction, peri-
cyte loss, and reduced cerebral blood flow [133]. Optoge-
netic manipulation of the activity of individual and small 
clusters of mural cells and consequent imaging tech-
niques together with system modeling methods [134] 
have been used to allow the investigation of pericyte and 
smooth muscle cell physiology and their role in regulat-
ing cerebral blood flow [135]. One study, for instance, 
noted that optogenetic excitation of pericytes results in 
contraction followed by constriction of the underlying 
capillary leading to a decrease in capillary diameter and 
reduced capillary RBC flow [136].

Cellular stress
DNA damage is intimately connected to aging and the 
manifestation of age-related neurodegenerative disorders 
such as AD [137]. Suberbielle et  al. showed that DNA 
double-strand breaks that naturally occur during explo-
ration of a new environment are increased in AD and 
are even more severe after optogenetic stimulation. The 
authors found that suppressing aberrant neuronal activ-
ity, and improving learning and memory, normalized 
DSB levels [138].

Αβ1–42 induces oxidative stress in AD [139]. Using 
zebrafish as a model, Formella et  al. utilized a geneti-
cally encoded photosensitizer that produces reactive 
oxygen species upon stimulation to study oxidative stress 
and neurodegeneration. It was found that neural cells 
undergo stress and cell death similar to what is seen in 
several neurodegenerative diseases, including AD [140].

Role of optogenetics in Alzheimer’s disease 
treatment
Conventional AD treatments
AD treatment remains symptomatic without chang-
ing the disease prognosis, and there is no definitive cure 
available for it, which could slow the disease progression 
and mitigate cognitive and memory impairments [141, 
142]. To date, only seven medical treatments have been 
approved for AD by the United States Food and Drug 
Administration (FDA): Six treatments (including Done-
pezil, Galantamine, Rivastigmine, Memantine, Meman-
tine + Donepezil, Suvorexant) act to control symptoms 
rather than changing the course of the disease, and one 
treatment (Aducanumab) may delay the clinical decline 
[143]. Most clinical therapeutic approaches use passive 
immunotherapies with monoclonal antibodies to clear 
Aβ peptides and tau proteins [144].

The recent approval of Aducanumab reignited the 
interest around novel therapeutic approaches, as it marks 
the first approved disease-modifying therapy for AD 
[145, 146]. Lamentably, Aducanumab is one of the very 
few clinical trials that have investigated AD treatments 
in the last two decades. The general outcome for these 
trials is considered a big failure, with an overall success 
rate of 0.4% during the 2002–2012 period [147]. This rate 
emphasizes the need to identify different therapeutic 
plans for AD treatment.

Optogenetics and AD treatment in animal studies
Optogenetics could, in theory, be an alternative thera-
peutic strategy against AD. However, as the field stands 
today, there are major translational obstacles to overcome 
(see section ‘Clinical application challenges’) if optoge-
netic methods are to be embedded into the clinic. These 
tactics can embark on better therapeutic interventions, 
alongside their other advantages, for pathophysiological 
studies and screening purposes [2]. The use of optoge-
netics, even if not directly therapeutic, can also provide 
insight into the mechanism of action and development of 
other forms of treatment [148] (Fig. 2). The chief advan-
tage of using optogenetics over conventional electrical 
or pharmacological techniques may be more precise tar-
geting of specific neural elements, greater cellular and 
temporospatial specificity, and reduced off-target effects 
[149–151].
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Different murine studies on AD model mice have 
shown promising results. For example, Yang et al. found 
an effective way for rescuing synaptic decay and devel-
oping spatial learning and memory by optogenetic acti-
vation of EC layer II-CA1 PV synapses with theta-burst 
stimulation (see section ‘hippocampal rhythmic oscilla-
tions’) [69]. Roy et al. suggested that the dendritic spine 
density loss in DG neurons can be reversed in early AD 
stages using optogenetic techniques. They also reported 
that stimulating photo-activating DG engram cells could 
lead to episodic memory recall [115] (see section ‘Mem-
ory engrams’). Perusini et  al. separately studied optoge-
netic stimulation of DG and reported reactivation of 
previously learned neural memory ensembles and mem-
ory improvement in AD model mice [152].

Gamma oscillations (see section ‘Hippocampal rhyth-
mic oscillations’) are essential for higher cognitive func-
tions and sensory responses [153–155], and changes in 
them (20–50 Hz) have been observed in various neuro-
logical conditions, including AD [156, 157]. Iaccarino, 
Singer et  al. used optogenetics to spike these oscilla-
tions at 40 Hz in the hippocampus of 5XFAD mice and 
reported a dramatic reduction of Aβ peptides followed by 
microglia response [108] (see section ‘The forebrain’).

Robinson et  al. investigated the effect of optogenetic 
techniques on neurotransmitter signals and ascertained 
that optogenetically activating glutamatergic neurons 
could facilitate learning and memory by theta-wave gen-
eration in the hippocampus [158]. Optogenetic activation 

of glutamatergic neurons in the bilateral DG in AD has 
been shown to improve working and short-term but not 
long-term memory, associated with increased expression 
of glutamate receptors in the hippocampus [159, 160]. It 
was also established that glutamate receptor upregulation 
varies in various hippocampus regions, suggesting that a 
single-target optogenetics strategy has spatial limitations 
and a multiple targeted optogenetics approach to AD 
therapy should be explored [160].

GABA levels are different in wild and AD model 
mice brains. GABA downregulates Αβ uptake in neu-
rons; therefore, relatively high levels of GABA decrease 
Αβ-induced cytotoxicity. GABA treatment also decreases 
basal levels of cell death. Application of GABA during 
early life at an early age but not at older ages can improve 
cognitive function significantly. Activating or suppressing 
GABA(A) receptors by optogenetic methods also con-
firmed that GABA activation at young age ameliorated 
Aβ pathology, suggesting early life GABA as AD treat-
ment [161]. In another research, Zhang et al. found that 
optogenetic stimulation of GABAergic neurons in the 
hippocampus of APP/PS1 mice induced autophagy, miti-
gated neuroinflammation, reduced Aβ fragments, and 
completely reversed the learning impairment [162].

Mancuso et  al. suggested that despite the anatomical 
depth of their cell bodies, cholinergic projection neu-
rons provide a better target for systems-level optoge-
netic modulation in AD treatment than cholinergic INs 
found in several brain regions, including the cortex and 

Fig. 2  Optogenetics ameliorates AD pathology, augments pharmacological studies, and points to valuable spots for future interventions
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the striatum that are activated in traditional deep brain 
stimulation [163].

Feasible brain sites for optogenetic‑mediated therapy
Although the whole brain structure acts as a unit and 
the activity of the whole system should be considered for 
interventional studies on AD and memory loss, it is not 
always practical to modify the entire brain to access the 
effect of optogenetic stimulation [45], especially given 
that most vectors modify the genome in order to reach 
stable levels of opsin expression. Some studies have iden-
tified hippocampal formation as the most prominent 
site for interventions to enhance memory [164–166], 
together with sites that work in conjunction with the 
hippocampus, such as frontal and retrosplenial corti-
ces [167–170]. Other studies suggested targeting major 
input/output regions such as the EC and area CA1 [69, 
171–173].

Today, the main focus is on small brain structures 
which innervate and regulate hippocampal and corti-
cal regions. One of these structures is the small thalamic 
nuclei [174–176], particularly anterior thalamic nuclei 
(ATN). ATN has a strategic position and extensive corti-
cal connections [177–179], and its anteroventral nucleus 
(AV) comprises a large population of theta frequency 
cells that coordinate memory [180]. Another small struc-
ture is the mammillary body (MB) which neurons are 
connected to ATN and fire at theta frequency, but its 
location on the ventral surface of the brain makes it a 
difficult target for optogenetics [181]. The nucleus Re is 
the third site of interest because of its dense reciprocal 
connections with the PFC and the hippocampus, directly 
innervating the CA1 area [175]. The Re connections sug-
gest it has a vital role in mnemonic functions [182, 183]. 
One specific study reported working memory impair-
ment due to delta frequency optogenetic stimulation of 
transduced Re terminals [184].

Clinical application challenges
The main hurdle is taking research results from the 
laboratory into the clinic, specifically the delivery of 
optogenetic tools in patients. As Shen et  al. stated, the 
minimum requirements of an ideal clinical optogenetic 
therapy would be: (1) a safe and efficient gene delivery 
vehicle; (2) targeting of the gene delivery vehicle to the 
tissue of interest; (3) a delivery vehicle, transgene, and 
therapeutic protein gene-product, that is non-immuno-
genic and non-mutagenic; and (4) an optogenetic protein 
that is highly sensitive to light in the red to near-infrared 
wavelength range (to keep light doses low, maximize light 
penetration, and minimize photodamage) [185].

Gene delivery vehicle
Presently, viral vector-based transduction is the most 
forward-looking, persuasive, and commonly used 
method to deliver foreign genes to specific tissues in 
mammals [186]. Different phases of clinical trials also 
proved the safety of using the adeno-associated virus 
(AAV) as a viral agent in humans [187].

Targeting the gene to a specific tissue
Local virus injections are used to deliver optogenetic 
tools to the central and peripheral nervous systems in 
rodents. This prevents the virus from direct contact 
with the bloodstream and its circulating antibodies. 
However, local stereotaxic injection into the human 
brain is not as easy as rodents and will require imag-
ing and expert analysis. Engineered AAV capsids such 
as the AAVDJ are found to have increased spreading 
capacity with promising perspectives [188].

Other alternatives to this approach include deliver-
ing AAV to the cerebrospinal fluid, which transfers 
the gene throughout the brain and spinal cord [189]. 
Nevertheless, the tight junctions of ependymal cells 
will restrict AAV entry into the brain parenchyma and 
makes its use less practical, unlike rodents [190].

Light delivery
Delivering light to the brain is also more complicated 
in primates and humans than rodents because of the 
larger size of their brains, and the deeper positioning 
as some of the important target structures such as the 
hippocampus and the thalamus (see section  ‘Feasible 
brain sites for optogenetic-mediated therapy’). Strate-
gies such as using an epidural optic fiber or small-scale 
bio-optoelectronic implants to deliver light are consid-
ered invasive procedures and may be helpful in mice. 
However, it is far from being used in humans and may 
be accompanied by side effects, such as tissue overheat-
ing and damage by light, tissue scarring, or infection 
[191, 192]. This makes light delivery possibly the largest 
obstacle on the path of therapeutic optogenetics.

Immunogenicity and genotoxicity
All gene- and protein-based therapies, including 
optogenetic-based therapies, bring the possibility of 
adverse immune responses. So, the potential risk of 
opsin, a foreign protein antigen, as an autoimmune 
agent in patients must be considered if safe optogenetic 
therapeutics are to be developed in the future [193]. 
Moreover, it must be taken into account that there may 
be pre-existing immunity against the AAV delivery 
vehicle itself. Even at low levels, anti-AAV antibodies 
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can prevent the vehicle from reaching its destination 
[194, 195].

Recent therapeutic developments
Despite all the challenges, optogenetics has been safely 
and effectively applied to awake non-human primate 
rhesus macaques (Macaca mulatta) [196, 197], which is 
remarkable, as primate studies take the field closer to the 
clinic. Another impressive effort was the first reported 
case of partial functional recovery in a neurodegenerative 
disease after optogenetic therapy, reported in July 2021. 
In this effort, the partial vision was recovered in one par-
ticipant, a 58-year-old male diagnosed with retinitis pig-
mentosa [198]. This, despite the challenges listed above, 
shows a promising prospective for considering optoge-
netics as an alternative in the future therapeutic methods 
of neurodegenerative conditions, including AD.
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