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a proteomic and RNa-seq 
transcriptomic dataset of  
capsaicin-aggravated mouse 
chronic colitis model
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Yuheng Zou1,2,3, Lili Li1,2,3, Zhen Zeng1,2,3, Chunxiang Ma1,2,3, Yuan Dang1,2,3 & Hu Zhang  1,2,3 ✉

An inappropriate diet is a risk factor for inflammatory bowel disease (IBD). It is established that 
the consumption of spicy food containing capsaicin is strongly associated with the recurrence and 
worsening of IBD symptoms. Moreover, capsaicin can induce neutrophil accumulation in the lamina 
propria, contributing to disease deterioration. To uncover the potential signaling pathway involved 
in capsaicin-induced relapse and the effects of capsaicin on neutrophil activation, we performed 
proteomic analyses of intestinal tissues from chronic colitis mice following capsaicin administration 
and transcriptomic analyses of dHL-60 cells after capsaicin stimulation. Collectively, these multiomic 
analyses identified proteins and genes that may be involved in disease flares, thereby providing new 
insights for future research.

Background & Summary
Inflammatory bowel disease (IBD), comprising ulcerative colitis (UC) and Crohn’s disease (CD), is a lifelong and 
incurable disease that provokes a relapsing-remitting course in most patients1. In recent decades, the incidence 
of IBD has rapidly risen in newly industrialized countries due to environmental changes2. This refractory and 
cost-consuming disease has increased the burden of the disease on patients and society3–5. Some studies have 
suggested that an inappropriate diet, as one environmental factor, plays a critical role in the onset, recurrence, 
and progression of IBD6–9. Specifically, spicy food is found to be closely related to the recurrence of the disease. 
For example, a questionnaire related to dietary intake and IBD symptoms revealed that over 80% of IBD patients 
perceived spicy food as a risk factor for relapse10. A large online questionnaire cohort study reported that spicy 
food intake can worsen symptoms11. However, to date, there are so far not enough proteomic profiling data to 
explain the mechanisms of diet-induced disease flares. Such a lack of convincing biological evidence leaves this 
topic controversial. In this study, our main aim was to reveal the potential signaling pathways related to disease 
activity induced by spicy food through proteomic analyses of colon tissues from mouse models of DSS-induced 
chronic colitis treated with capsaicin.

Proteomics, which is widely utilized to identify differential protein expression, mainly relies on mass spec-
trometry (MS) technology12. Data-dependent acquisition (DDA) and data-independent acquisition (DIA) scan 
modes are used to acquire the MS data. The DDA model uses a narrow m/z window to scan target ions and 
reduces the percentage of interfering ions, which can provide some high-quality debris information13. In our 
study, we used the DDA model for peptide quantification combined with the front-end high-field asymmetric 
waveform ion mobility spectrometry (FAIMS) interface. FAIMS installed between the MS vacuum chamber and 
ion source can reduce chemical noise and matrix interference to improve detection durability and sensitivity by 
compensating voltage for the electrode14–17.
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Capsaicin is derived from chili peppers and bestows their characteristic spicy flavor18. Its receptor is the 
transient receptor potential vanilloid 1 (TRPV1), which is expressed in a wide variety of cells, including dorsal 
root ganglion (DRG) neurons19, epithelial cells20,21, neutrophils22, dendritic cells (DCs), and macrophages23. 
The widespread expression of TRPV1 in immune cells indicates that it plays a role in immune regulation. 
Studies have shown that Ca2+ influx through TRPV1 in neutrophils can lead to the release of pro-inflammatory 
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Fig. 1 Workflow of sample preparation and data analysis. (a) The establishment of chronic colitis mice model 
and the progress of the experiment. Two groups of chronic colitis mice were established (n = 5). (b) The 
progress of proteomic sample preparation for LC‒MS. In total, 10 samples from two groups (CAP; DSS) were 
used. (c) Transcriptomic sample preparation and the process of detection. (d) The flow chart of the proteomic 
and transcriptomic data analysis.
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factors22. Similarly, the activation of TRPV1 has been shown to induce neutrophil accumulation and thus 
exacerbate experimental colitis24,25. These findings highlight the critical functions of TRPV1 in neutrophils. 
However, the effect of neutrophils/TRPV1 on IBD is complex26–29 and additional research is required to prop-
erly characterize their positive and negative impact on disease. High-throughput RNA sequencing (RNA-seq) 
is widely used for total RNA expression profiling. Neutrophils have a short lifespan, but they share many key 
characteristics with differentiated HL-60 neutrophil-like cells (dHL-60)30. Thus, dHL-60 cells are frequently 
used in neutrophil research. To identify the characteristics of neutrophils treated with capsaicin, we performed 
RNA-seq of capsaicin-processed differentiated HL-60 cells.

In this study, we collected colon tissues from capsaicin oval-gavage-treated mice of chronic colitis for pro-
teomic data acquisition. We identified differentially expressed proteins that were closely associated with inflam-
matory pathways. We also generated capsaicin-stimulated neutrophil-like cells, dHL-60, to build transcriptomic 
maps of their gene expression patterns (Fig. 1). In general, this study identifies the key pathways involved in the 
recurrence of capsaicin-aggravated colitis and the effects of neutrophils on intestinal inflammation. As such, our 
study helps elucidate the underlying mechanisms of IBD.

Methods
Cell culture. Differentiated HL-60 neutrophil-like cells (dHL-60) were induced by stimulation with 1.2% 
dimethyl sulfoxide (DMSO) over 5 days from the human leukemic cell line HL-60 (ATCC CCL-240). HL-60 and 
dHL-60 cells were maintained in RPMI-1640 medium supplemented with 10% serum, which was changed once 
every three days. Capsaicin (Sigma‒Aldrich) was reconstituted in DMSO at a final concentration of 400 mM and 
then added to the medium. As described previously30, we used three criteria to assess the effectiveness of HL-60 
differentiation: i) the cell diameter was smaller after induction (Fig. 2a,d); ii) CD11b, as a biomarker of neutro-
phils, was increased (Fig. 2b); and iii) TRPV1 which is the receptor of capsaicin was dramatically increased at the 
RNA expression level and was equal to the expression of human peripheral neutrophils (Fig. 2c).

preparation of colonic tissue from chronic colitis mice. Wild-type C57BL/6 J male mice (8 weeks old) 
were obtained from the Chengdu Dossy Experimental Animals Company (Chengdu, China) and maintained in 
the animal facilities at the Frontier Medical Center of Chengdu with automatically controlled temperature and 
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Fig. 2 Differentiation assessment of the dHL-60. (a) The diameter changes of the cells after induction. (b) The 
expression profile of CD11b. (c) The alteration of TRPV1 expression after induction. (d) Comparison of the 
cell lines. Photomicrograph (20X) of cultured cells. All values represent the mean with SE; a two-sided t test. 
*P < 0.05, **P < 0.01, ***P < 0.005.
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humidity. A chronic colitis model was induced by administering 2.3% dextran sulfate sodium (DSS) (molecular 
mass, 36 000–50 000, MP Biomedicals, Solon, Ohio, USA) in autoclaved tap water over 7 days and changed to 
distilled water for the next 14 days. Then the 21-day cycle (7 days DSS solution and 14 days distilled water) was 
repeated twice more for a total of three cycles31. The establishment of colitis was judged based on body weight, 
stool characteristics, and hematochezia. After three induction periods, the mice were provided with capsaicin 
(0.20 mg/kg/d) or vehicle control (10% Tween 80–10% ethanol-80% NS) via oral gavage over 5 consecutive days. 
Then, the mice were sacrificed by cervical dislocation. The colon, from the ileum to the anus, was washed with 
cold phosphate-buffered saline (PBS). Colon tissue was then deposited in liquid nitrogen for proteomics (Fig. 1a). 
All animal procedures received ethics approval from the Institutional Animal Care and Use Committee of West 
China Hospital.

samples CAP_1 CAP_2 CAP_3 CAP_4 CAP_5 DSS_1 DSS_2 DSS_3 DSS_4 DSS_5

peptide concentration (ng/μl) 186.3158 168.6948 157.8947 127.3684 176.8421 409.4737 311.5789 189.4737 314.7368 327.3684

Table 1. Peptide concentration before the mass spectrometry.

Group Tissue Treatment Replicates Method Data collection Data

DSS Colon DSS and control solvent 5X Protein extraction Mass spectrometry PXD032186

 CAP Colon DSS and capsaicin 5X Protein extraction Mass spectrometry PXD032186

Table 2. Proteomics datasets stored in PRIDE.

Group Treatment Replicates Method Data collection Data

CTRL Control solvent 3X RNA extraction RNA-seq GSE198304

CAP_8H Capsaicin for 8 hours 3X RNA extraction RNA-seq GSE198304

CAP_16H Capsaicin for 16 hours 3X RNA extraction RNA-seq GSE198304

CAP_24H Capsaicin for 24 hours 3X RNA extraction RNA-seq GSE198304

Table 3. RNA-seq datasets stored in GEO.

Samples Insert mean Raw reads Clean reads Unique map Error rate Q20 Q30 GC_pct

CTRL_1 270.263015 46393688 45366372
40807528

0.02 98.27 94.87 50.08
89.95%

CTRL_2 276.253272 40076918 39167786
35317655

0.02 98.33 95.02 50.03
90.17%

CTRL_3 279.501619 41948558 41015416
37030522

0.02 98.35 95.06 50.11
90.28%

CAP8h_1 280.42114 45205394 44327580
39953545

0.02 98.25 94.82 50.38
90.13%

CAP8h_2 284.804996 46174918 45312474
40937899

0.02 98.36 95.07 50.14
90.35%

CAP8h_3 282.903598 43320518 42410542
38299239

0.02 98.32 95 50.31
90.31%

CAP16h_1 280.317545 45940974 45097508
40619275

0.02 98.42 95.23 50.39
90.07%

CAP16h_2 281.97131 45282430 44538370
40167480

0.02 98.43 95.26 50.16
90.19%

CAP16h_3 281.448836 46722614 45806726
41420280

0.02 98.39 95.14 50.67
90.42%

CAP24h_1 269.580855 46783774 45603100
41202102

0.02 98.44 95.3 50.47
90.35%

CAP24h_2 273.931073 43048290 42179844
38102712

0.02 98.36 95.08 50.38
90.33%

CAP24h_3 274.084105 42275524 41189068
37155656

0.02 98.25 94.82 50.33
90.21%

Table 4. Quality of the transcriptomic data.
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Sample preparation for proteomics. The process of proteomic sample preparation is summarized in 
Fig. 1b. As described previously, the colonic tissues were isolated from mice with chronic colitis after treatment 
and were frequently frozen in liquid nitrogen. Ten milligrams of colonic tissue was added to 1 ml of T-PER Lysis 
Buffer (Thermo Fisher Scientific) and was supplemented with a complete Protease Inhibitor Cocktail (Roche, 
4693132001). Then, the samples were lysed with an ultrasonic tissue homogenizer (60 HZ × 1 min), incubated 
at 4 °C for 10 minutes, homogenized again (60 HZ × 30 sec), and incubated for 30 minutes. Lysates were centri-
fuged at 16,000 × g for 20 minutes at 4 °C and the supernatant was retained. Then, the protein concentration was 
determined using a BCA assay kit (Thermo Fisher Scientific) according to the manufacturer’s protocol. For each 
sample, 300 μg of protein sample was diluted with 50 mM NH4HCO3 (Sigma) to 100 μl and 500 μl of prechilled 
acetone (Thermo Fisher Scientific) was added and stored overnight at −20 °C. The sediment was washed with 
500 μl prechilled acetone and centrifuged at 15,000 × g for 5 minutes at 4 °C. Then, we removed the supernatant 
and dissolved the sediment with 50 μl 8 M urea for 2 hours, added 1 μl 1 M DTT (Sigma), and incubated the 
mixture at 30 °C for 2 hours. After that, 2.5 μl of 1 M IAM was added and the samples were placed in the dark 
for 30 minutes. Next, the samples were diluted to 200 μl with 8 M urea, added to the PALL10K filtration capsule 
(Millipore), and centrifuged at 10,000 g for 15 minutes. Urea (8 M) and 50 mM NH4HCO3 were used to wash the 
protein sample. Then, the protein was resuspended in 100 μl of 50 mM NH4HCO3, and 6 μg of sequencing grade 
modified trypsin (Sigma) was added and digested at 37 °C for 16 hours and then centrifuged at 10,000 × g for 

Sample Exon Intron Intergenic

Ctrl_1 5382168796(82.4146%) 828085462(12.6801%) 320346390(4.9053%)

Ctrl_2 4661408617(82.5985%) 709450038(12.5712%) 272593654(4.8303%)

Ctrl_3 4862478252(82.2548%) 761475087(12.8813%) 287526941(4.8639%)

CAP8h_1 5220184212(81.8008%) 866291011(13.5749%) 295106693(4.6244%)

CAP8h_2 5371981596(82.2278%) 865832863(13.2531%) 295236105(4.5191%)

CAP8h_3 4966172441(81.2915%) 861115993(14.0956%) 281809659(4.613%)

CAP16h_1 5439957641(83.6688%) 754567473(11.6056%) 307250798(4.7256%)

CAP16h_2 5429628434(84.5426%) 695405602(10.8279%) 297322256(4.6295%)

CAP16h_3 5592457562(84.5483%) 721375106(10.9059%) 300681170(4.5458%)

CAP24h_1 5651165273(86.0521%) 633308980(9.6436%) 282674335(4.3044%)

CAP24h_2 5155626144(84.9197%) 652907375(10.7542%) 262640714(4.326%)

CAP24h_3 4954761082(83.7145%) 696843982(11.7737%) 267036292(4.5118%)

Table 5. Sample comparison area.
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15 minutes. Fifty microliters of 50 mM NH4HCO3 was used to wash the peptide twice, and the effluents were com-
bined with TFA (0.4%) to end the reaction. The peptide concentration was quantified by the Pierce Quantitative 
Colorimetric Peptide Assay Kit (Thermo Fisher Scientific). Finally, the peptides were desalted using Pierce C18 
Tips (Thermo Fisher Scientific), and the tips were washed using 10 μl 50% ACN/H2O and 0.1% TFA/H2O. 
Subsequently, the peptide was eluted with 0.1% TFA (Thermo Fisher Scientific) and 50% ACN (Thermo Fisher 
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Scientific) and then freeze-dried for MS analysis. The peptide concentration was measured by a peptide assay kit 
(Thermo Fisher Scientific) (Table 1).

DDA-MS data acquisition. All samples were resolved in 10 µL of mobile phase A solvent (0.1% formic 
acid [v/v]) to be analyzed on the Orbitrap Exploris 480 mass spectrometer (ThermoFisher Scientific, USA). 
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Fig. 5 Differential expression gene analysis. (a,b) FPKM density distribution of the sequencing data. The X-axis 
represents the log2(FPKM + 1) value of the genes, and the Y-axis represents the distribution density of the genes 
with corresponding expression levels. (c) Venn diagram of the differentially expressed genes in comparation 
groups. (d) Summary of up- and down-regulated genes in different comparison groups. (e) Cluster line diagram 
of differentially expressed genes.
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Approximately 1 μg of the peptide was isolated from each sample on the EASY-nLC 1200 system (ThermoFisher 
Scientific, USA) using an in-house packed 25 cm, 75 μm i.d. capillary column with 1.9 μm Reprosil-Pur C18 
resin (Dr. Maisch, Ammerbuch, Germany) at flow rates of 300 nL/minutes over 60 minutes linear gradient. In 
DDA-MS, data were acquired on an Exploris 480 mass spectrometer with FAIMS running dual compensation 
voltages at −45 V and −65 V and using EASY-IC. For MS1, the full scan orbitrap resolution was set to 60,000, the 
scan was set to 350–1500 (m/z) and the full scan normalized AGC target was 300% with a maximum injection 
time of 50 ms. For MS2, the full scan orbitrap resolution was set to 15,000 with a 75% normalized AGC target. 
The maximum injection time was set at 22 ms. The precursor intensity threshold was kept at 5e4. The isolation 
window was 1.6 m/z with 30% normalized collision energy17.

protein identification and quantification. DDA raw data files were processed by using Proteome 
Discoverer 2.4 software with the standard settings as described previously32. Briefly, the MS/MS spectra were 
searched against the UniProt mouse database (downloaded in April 2020) using a label-free quantification 
method with trypsin as a protease and allowing up to two missed cleavages. Alkylation of cysteines was used as 
fixed modification, and oxidation of methionine and N-terminal acetylation were used as variable modifications. 
The false discovery rate (FDR) for protein identification was set to 0.01. The finally identified proteins were used 
for subsequent analyses.

Transcriptomic sample preparation. RNA extraction. The treated cells were counted and collected after 
washing with PBS buffer. Total RNA was isolated from cells with TRIzol (Ambion, USA) according to the man-
ufacturer’s instructions. In short, chloroform was added as one-fifth of the total volume, shaken vigorously for 
15 seconds, rested for 3 minutes, and centrifuged at 12,000 rpm for 15 minutes at 4 °C. Then the water phase was 
moved to a new centrifuge tube with an equal volume of isopropyl alcohol and inverted to mix and incubated 
for 10 minutes. This was centrifuged, the supernatant was discarded, and then 1 ml 75% alcohol diluted with 
RNase-free water was added. Agarose gel electrophoresis was used to analyze the integrity of RNA and detect the 
existence of DNA contamination. An Agilent 2100 Bioanalyzer 2100 was used to detect RNA integrity precisely. 
RNA purity was assessed by the ratio of OD260/280 and OD260/230.

Library construction for transcriptomic analyses. Total RNA over 1 μg was used as the initial RNA 
for library preparation. The kit used for library preparation was the NEBNext® UltraTM RNA Library Prep Kit 
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Fig. 6 Comparison of quantitative information between biological replicates in the CAP group (capsaicin 
treatment) and DSS groups (vehicle control treatment). Each group had five sample replicates, and every two 
samples were compared.
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for Illumina® (NEB, USA). First, mRNA with a polyA tail was enriched by OligO (dT) magnetic beads and then 
interrupted randomly in NEB Fragmentation Buffer by divalent cations. Then the interrupted mRNA was set 
as a template and random oligonucleotides were used as primers to synthesize the first cDNA strand under the 
M-MuLV reverse transcriptase system. The RNA strand was cleared by RNaseH. Under the DNA polymerase I 
system, the second cDNA strand was synthesized. Subsequently, the purified double-stranded cDNA was pro-
cessed, and cDNA of 250–300 bp was purified by AMPure XP beads. After amplification, the PCR products were 
purified again using AMPure XP beads. Finally, the library was prepared. The preliminary quantification was 
conducted by Qubit 2.0 Fluorometer and diluted to 1.5 ng/μl. Precise quantification was performed by qRT‒PCR 
to assess the library.

After library pooling, Illumina novaseq6000 was used for sequencing and generating a 150 bp paired termi-
nal reading. In the sequencing flow cell, the four types of dNTPs with fluorescent, DNA polymerase, and primer 
were added for amplification. When every detection cluster extended the complementary chain, the dNTP 
labeled by fluorescence was detectable so that the sequencing information could be captured by the sequencer 
(Fig. 1c).

Data Records
All proteomic data described in this study have been stored in the Proteome change Consortium via PRIDE 
https://identifiers.org/pride.project:PXD032186 with the accession number PXD03218633. The RNA-seq data 
are available at the NCBI Gene Expression Omnibus (GEO) with dataset identifier GSE19830434. These data 
contained raw read count data of RNA-seq, gene counts, and FPKM values for all samples. Tables 2 and 3 pro-
vide the sample group information, treatment, replications, and accession number of the datasets.

technical Validation
rNA-seq quality control. Quality control of all samples was performed using Fastp. The raw data of the 
sequencing data included adaptor sequencing and low-quality reads. To guarantee the quality of the sequencing 
analysis, the raw data required filtration. Reads with an adaptor, reads with N (N means base information cannot 
be determined), and low-quality base numbers with low Phred scores (less than or equal to 20) more than 50% 
of the whole reads were removed. The component proportion diagram of the filtered sequencing data for each 
group is shown in Fig. 3a. The Q20, Q30, and GC percent were calculated (Table 4), and the GC contents of the 
experimental group and control groups are shown in Fig. 4, while the remaining samples all had similar GC 

Fig. 7 Quality control of proteomics. (a) Percent and count of the missing value in each sample. (b) 
Distribution of the quantitative data before missing value imputation within samples. The Y-axis represents the 
logarithmically transferred quantitative value. (c) Distribution of the missing value imputed proteomic data 
after normalization and logarithmic transformation. (d) Principal component analysis (PCA) score plot shows 
the discrepancies between groups. (e) The count of common items within samples.
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content distributions. Principal component analysis (PCA) was used to assess the similarities within samples 
and whether the samples could be grouped well (Fig. 3b). Error rate statistics were calculated, and the error rate 
of samples without contamination and specific processes was found to be less than 0.03% (Table 4). An index 
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Fig. 8 Overlapping genes profiles and GO enrichment. (a) Expression profile of overlapping genes at the protein 
level. (b) Overlapping genes expression profile in the CAP_8 h vs Ctrl group. (c) Overlapping genes expression 
profile in the CAP_16 h vs Ctrl group. (d) Overlapping genes expression profile in the CAP_24 h vs Ctrl group. 
(e) Venn diagram of overlapping GO term enrichment of DEGs and DEPs. (f) GO term enrichment of DEPs. 
(j) GO term enrichment of DEGs. (h) GO term enrichment of overlapping genes in the CAP_8 h vs Ctrl group. 
(i) GO term enrichment of overlapping genes in the CAP_16 h vs Ctrl group. (j) GO term enrichment of 
overlapping genes in the CAP_24 h vs Ctrl group.
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of the reference genome was built using HISAT2v2.0.5, which can produce a database of splice junctions. The 
paired terminal clean reads were mapped to the reference genome using the genome reference document. A total 
of 37 million to 44 million reads were mapped to the reference genome, where more than 80% of the reads were 
uniquely mapped (Table 4). The distribution of the mapping genome district is shown in Table 5. Finally, to assess 
the correlation of samples from the same group, we used Pearson’s test to calculate the correlation coefficient. The 
samples in one experimental group exhibited a robust similarity (Fig. 3c). After quality control, a total of 9,234 
genes were identified in the four groups.

Transcript expression profiling and differential expression analysis. FeatureCounts (1.5.0-p3) was 
used to calculate the mapping reads of each gene. Then according to the length of the genes, we calculated the 
Fragments Per Kilobase of transcript sequence per Millions base pairs sequenced (FPKM) and the mapping reads 
of each gene. A summary of the FPKM of RNA-seq is shown in Fig. 5a,b. The DESeq2 R package (1.16.1) was 
used to test for differential gene expression in the comparator groups (three biological replicates were used per 
group). To control for the false discovery rate, the adjusted p value was calculated with the Benjamini‒Hochberg 
method35. The thresholds for a differential expression were adjusted as p value < 0.05 and log2|fold change| > 0. 
To reveal the unique and common differentially expressed genes in comparison groups, we generated Venn dia-
grams and identified 1,008 genes that were common and differentially expressed across the six comparison groups 
(Fig. 5c). The detailed expression profiles in six comparison groups are shown in Fig. 5d. Finally, we performed 
the clustering of differentially expressed genes by using the gene cluster tread tool in Hiplot (https://hiplot.org), 
an online web service for biomedical data visualization. Differentially expressed genes (DEGs) were divided into 
several clusters, and the genes in the same cluster had similar expression trends in different groups (Fig. 5e).

proteomic quality control and imputation. First, to assess whether the biological replicates in the same 
group were quantitatively similar, we calculated the correlation coefficient for two samples in each group and 
found that the between-sample reproducibility was good (Fig. 6). Second, the missing value of each sample was 
evaluated and the high proportion of missing values was filtered. Then, 2,763 distinct proteins were retained 
with an average missing rate of 5.38%, as shown in Fig. 7a. The data distribution after the logarithmic transfor-
mation is shown in Fig. 7b. Third, imputation of missing values was performed by using NAguideR as previously 
described36. To minimize errors derived from the system and samples caused by processing, loading, and pre-
classification, normalization and log2 transformation were performed using an online platform (https://www.
omicsolution.com/wkomics/main/). The distribution of processed data is shown in the boxplot of Fig. 7c. We also 
performed three-dimensional PCA, which showed good separation between the capsaicin (CAP) groups and 
control (DSS) groups (Fig. 7d). Figure 7e illustrates the overlapping proteins within the two experimental groups, 
and most of the identified proteins were common in a total of ten samples.

Identification of differentially expressed proteins. Data processing for differential expression analysis 
was performed as follows: (i) missing value filtration and imputation; (ii) logarithmic transformation; and (iii) data 
normalization. Then, the differentially expressed proteins were identified by the Limma R package by calculating the 
adjusted p value and fold change value37. First, the group list was built, and a linear model fit was performed. Then, the 
p value of the protein was calculated by the empirical Bayes test. Adjusted p values were calculated by the Bonferroni‒
Holm method to control for multiple comparisons. We determined differential protein expression based on a fold 
change > 0 and an adjusted p value < 0.05. More than 50 proteins were determined to be differentially expressed.

Integrative analysis of proteomic and transcriptomic data. In this study, 2,763 proteins were identi-
fied by mass spectrometry and 9,234 genes were detected by RNA sequencing. We used three strategies to accom-
plish integrative analysis. First, based on proteomic data, more than 50 proteins were differentially expressed. 
DEGs in transcriptomic data were compared with this list to find the overlap. Figure 8a shows the expression 
profile of overlapping genes at their protein level. Second, according to the correspondences and discrepancies 
between RNA and protein expression, we classified overlapping genes into four clusters: (i) up-up (increased at 
both the RNA and protein level), (ii) up-down (increased at the RNA level, and decreased at the protein level), 
(iii) down-down (decreased at both the RNA level and protein level), (iv) down-up (decreased at the RNA level 
and increased at the protein level) (Fig. 8b–d). Third, DEPs and DEGs at their representative GO term enrich-
ment also showed coverage (Fig. 8e). In the top 20 GO terms enrichment of DEPs, the cellular component was 
dominant (Fig. 8f), while in DEGs, the biological process was prominent (Fig. 8g). For overlapping genes, GO 
enrichment analysis revealed that enriched pathways highly related to the immune response and inflammatory 
factor regulation in the CAP_8 h group (Fig. 8h), CAP_16 h group (Fig. 8i), and CAP_24 h group (Fig. 8j)

Code availability
RNA-seq data analysis was performed with fastp (https://github.com/OpenGene/fastp) and HISAT2 version 
2.0.5 (https://daehwankimlab.github.io/hisat2/). For differential expression and functional enrichment analysis, 
DESeq2 version 1.16.1 and clusterProfiler version 3.4.4 were used: http://bioconductor.org/packages/3.15/bioc/.

Proteomic raw data were processed using Proteome Discoverer version 2.4 (https://www.thermofisher.com/
order/catalog/product/OPTON-30810#/OPTON-30810), NAguildeR (https://www.omicsolution.com/wukong/
NAguideR/), limma (https://www.omicsolution.com/wkomics/passwd/hytestlimma/), STRING version 11.5 
(https://cn.string-db.org), and cystoscope version 3.9.0 (https://github.com/cytoscape/cytoscape/releases/3.9.0/).
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