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Abstract

The purpose of the present study was to examine whether lack of skeletal

muscle peroxisome proliferator-activated receptor gamma coactivator 1 alpha

(PGC-1a) affects the switch in substrate utilization from a fed to fasted state

and the fasting-induced pyruvate dehydrogenase (PDH) regulation in skeletal

muscle. Skeletal muscle-specific PGC-1a knockout (MKO) mice and floxed lit-

termate controls were fed or fasted for 24 h. Fasting reduced PDHa activity,

increased phosphorylation of all four known sites on PDH-E1a and increased

pyruvate dehydrogenase kinase (PDK4) and sirtuin 3 (SIRT3) protein levels,

but did not alter total acetylation of PDH-E1a. Lack of muscle PGC-1a did

not affect the switch from glucose to fat oxidation in the transition from the

fed to fasted state, but was associated with lower and higher respiratory

exchange ratio (RER) in the fed and fasted state, respectively. PGC-1a MKO

mice had lower skeletal muscle PDH-E1a, PDK1, 2, 4, and pyruvate dehydro-

genase phosphatase (PDP1) protein content than controls, but this did not

prevent the fasting-induced increase in PDH-E1a phosphorylation in PGC-1a
MKO mice. However, lack of skeletal muscle PGC-1a reduced SIRT3 protein

content, increased total lysine PDH-E1a acetylation in the fed state, and pre-

vented a fasting-induced increase in SIRT3 protein. In conclusion, skeletal

muscle PGC-1a is required for fasting-induced upregulation of skeletal muscle

SIRT3 and maintaining high fat oxidation in the fasted state, but is dispens-

able for preserving the capability to switch substrate during the transition

from the fed to the fasted state and for fasting-induced PDH regulation in

skeletal muscle.

Introduction

Skeletal muscle plays a major role in lipid and carbohy-

drate (CHO) utilization and is instrumental in maintain-

ing metabolic flexibility with various metabolic challenges.

Specifically fasting robustly prompts the protection of

CHO stores through a coordinated decrease in skeletal

muscle glucose oxidation and a switch toward fat oxida-

tion. Pyruvate dehydrogenase (PDH) is thought to be a

key element in such regulation of substrate utilization

(Randle et al. 1994). Hence, the pyruvate dehydrogenase

complex controls the access of CHO to the TCA cycle by

irreversibly converting pyruvate to acetyl CoA thereby

bridging glycolysis and oxidative substrate utilization

(Harris et al. 2002). However, the detailed regulation of

PDH during energy deprivation is not fully understood

and merits further investigation.

The main regulation of PDH activity is thought to be

through inhibitory phosphorylation by PDH kinases

(PDKs) and activating dephosphorylation by PDH phos-

phatases (PDPs) at four known serine residues on the cat-

alytic subunit PDH-E1a (PDH) (Patel and Korotchkina

2001; Roche et al. 2001; Harris et al. 2002; Kiilerich et al.

2010). In addition, recent studies point toward other

important posttranslational modifications as the mito-

chondrially located deacetylase Sirtuin 3 (SIRT3) has been

reported to regulate the acetylation state of PDH-E1a and

thus the activity of PDH (Jing et al. 2013; Fan et al. 2014;
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Ozden et al. 2014). Previous studies have demonstrated

that fasting reduces the activity of PDH in the active form

(PDHa activity) (Sugden et al. 2000; Spriet et al. 2004),

increases PDHSer293 and PDHSer300 phosphorylation (Kii-

lerich et al. 2010), and increases PDH-E1a acetylation as

well as PDK4 mRNA (Wu et al. 1999; Sugden et al. 2000;

Pilegaard et al. 2003) and protein (Sugden et al. 2000;

Spriet et al. 2004; Kiilerich et al. 2010) in rodent skeletal

muscle. Furthermore, fasting has been reported to elicit a

muscle-type-dependent regulation of PDK activity and

PDK4 expression in rat skeletal muscle (Sugden et al.

2000). However, the factors determining this are not

resolved.

Peroxisome proliferator-activated receptor gamma

coactivator 1-alpha (PGC-1a), first discovered and iden-

tified as a PPARc-binding protein in brown adipose tis-

sue (Puigserver et al. 1998), is a transcriptional

coactivator that has been established to be an important

regulator of mitochondrial biogenesis. Hence, muscle-

specific PGC-1a overexpression mice have been shown to

have increased content of oxidative proteins and con-

versely whole-body PGC-1a knockout and muscle-speci-

fic PGC-1a knockout mice to have lowered content of

oxidative proteins in skeletal muscle (Lin et al. 2004;

Leick et al. 2008; Geng et al. 2010). Furthermore, mus-

cle-specific PGC-1a overexpression mice have been

shown to exhibit lower respiratory exchange ratio (RER)

during treadmill running (Calvo et al. 2008; Wong et al.

2015). This may be due to the enhanced skeletal muscle

oxidative capacity of these mice (Lin et al. 2002), but

may also be related to metabolic flexibility and regula-

tion of substrate use. In accordance, the level of skeletal

muscle PDH-E1a protein content has been shown to fol-

low differences in the level of muscle PGC-1a in mice

(Kiilerich et al. 2010) and PGC-1a to regulate PDK4

expression in mouse skeletal muscle (Wende et al. 2005;

Calvo et al. 2008; Kiilerich et al. 2010). In addition, the

fasting-induced downregulation of PDHa activity was

blunted in PGC-1a KO mice (Kiilerich et al. 2010) sup-

porting that PGC-1a plays a role in PDH-mediated

metabolic regulation during fasting. However, the impact

of PGC-1a on the switch from CHO to fat utilization

during the transition from the fed to the fasted state,

and on the level of fat utilization in the fasted state

as well as the associated regulation of PDH in skeletal

muscle is not fully resolved.

Therefore, the aim of the present study was to exam-

ine whether lack of muscle PGC-1a (1) affects the time

course of the switch in substrate utilization during

the transition from a fed to fasted state, (2) affects

regulation of fasting-induced changes in PDHa activity,

PDH phosphorylation, and PDH acetylation in skeletal

muscle.

Methods

Animals

Generation of PGC-1a MKO mice used in the present

study was carried out as described previously (Lin et al.

2004; Geng et al. 2010). The mice were genotyped using

PCR-based muscle and tail genotyping as previously

described (Leick et al. 2008) and the genotype was con-

firmed based on determination of PGC-1a mRNA in

muscle tissue after euthanization. Animals were kept on a

12:12-h light–dark cycle at 22°C with ad libitum access to

water and chow diet (Altromin 1314F, Brogaarden, Lynge,

Denmark) until the intervention of the experiment. All

experiments were approved by the Danish Animal Experi-

ments Inspectorate and complied to the European Con-

vention for the protection of vertebrate animals used for

experiments and other scientific purposes (Council of

Europe no. 123. Strasbourg, France 1985).

Fasting procedure

At 3 months of age, female mice were individually housed

for 3 days and subsequently allocated to either a fed

group (FED), which maintained ad libitum access to both

food and water, or a fasted group (FAST), for which the

food was removed at 6 AM and only water was available

for the following 24 h. As we have previously not

observed PGC-1a-dependent gender differences in meta-

bolic parameters (Leick et al. 2008), female mice were

used in the present study due to availability. Fed and

fasted mice were euthanized by cervical dislocation at the

end of the 24 h intervention period and quadriceps mus-

cles were rapidly excised and snap frozen in liquid nitro-

gen. Quadriceps muscle was chosen to ensure sufficient

amount of tissue for the analyses. Trunk blood was

obtained in EDTA containing tubes and plasma was

obtained after centrifugation. Both muscle and plasma

were stored at �80°C. A subset of mice (n = 8–10; indi-
vidually housed) were acclimatized to the environment of

the cabinets in a TSE Phenomaster unit (TSE Systems,

Bad Hamburg, Germany) for 3 days with a constant set-

ting of 22°C, 30% humidity, and a 12:12-h light–dark
cycle for determination of activity level and indirect

calorimetry measurements followed by data collection

(laser beam breaks, respiratory exchange ratio [RER]) for

24 h with ad libitum access to food and water followed

by 24 h of fasting with only access to water.

Plasma analyses

Plasma free fatty acid concentrations were measured using

a NEFA-HR kit according to the manufacturer’s
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guidelines (WAKO Diagnostics GmbH, Germany). Plasma

glucose and lactate were measured fluorometrically as

described previously (Lowry and Passonneau 1972).

Muscle analyses

Whole quadriceps muscles were crushed in liquid nitro-

gen to achieve tissue homogeneity. For measurements of

muscle glucose, lactate, and glucose-6-phosphate (G-6-P),

10–15 mg of crushed muscle tissue was extracted in

perchloric acid (PCA), neutralized to a pH of 7–8 and

measured as described above for plasma. Muscle glycogen

was determined fluorometrically as glycosyl units after

hydrolyzing 10–15 mg wet weight muscle samples by boil-

ing for 2 h in 1 mol/L HCl as described previously

(Lowry and Passonneau 1972).

Immunoblotting

Crushed muscle samples (25–30 mg) were homogenized

in lysis buffer (10% glycerol, 20 mmol/L Na-pyropho-

sphate, 150 mmol/L NaCl, 50 mmol/L HEPES, 1% NP-

40, 20 mmol/L b-glycerophosphate, 10 mmol/L NaF,

1 mmol/L EDTA, 1 mmol/L EGTA, 20 lg/ml aprotinin,

10 lg/ml leupeptin, 2 mmol/L Na3VO4, 3 mmol/L benza-

midine, and deacetylase inhibitors [nicotinamide,

1 mmol/L, and sodium butyrate, 5 mmol/L], pH 7.5)

using a Tissue Lyser II (Qiagen, Germany). Protein con-

centration in each of the samples was determined using

the bicinchoninic acid method (Thermo Fischer Scien-

tific) and protein concentration was adjusted with sample

buffer to a concentration of 1 lg/ll. Protein phosphoryla-

tion and protein content were determined by SDS-PAGE

using hand-casted gels and western blotting. PVDF mem-

branes were incubated in optimized primary antibody

solutions overnight at 4°C for determination of AMPKa2
(1:20,000), PDK4 (1:4000), and PDH-E1a protein

(1:1000), PDH-E1aSer293(1:1000), PDH-E1aSer300 (1:1000),

and PDH-E1aSer295phosphorylation (1:1000) (all kindly

provided by Professor Grahame Hardie, University of

Dundee, Scotland), hexokinase (HK) II protein (1:1000),

AMPKThr172phosphorylation (1:1000), total lysine acetyla-

tion (1:1000) (#2867, #2535 and #9441, respectively, Cell

Signaling Technologies, Danvers, MA), acetyl-CoA

carboxylase (ACC)Ser212 phosphorylation (1:1000), and

PDH-E1aSer232 phosphorylation (1:4000) (07-303 and

#AP1063, respectively, EMD Millipore, Bedford), TBC1D4

(1:20.000), PDK1 (1:1000), and OXPHOS proteins

(1:1000) (ab24469, ab90444, and ab110413, respectively,

Abcam, Cambridge, UK), PDK2 protein (1:1000)

(ST1643, CalBioChem, Bedford), PDP1 protein (1:1000)

(Sigma-Aldrich, St. Louis), and GLUT4 protein (1:1000)

(PAI-1065, ABR, Connecticut). Species-specific

horseradish peroxidase-conjugated immunoglobulin sec-

ondary antibodies (DAKO, Denmark) were used for incu-

bation the following day. ACC2 protein was detected

using streptavidin (1:2000) (Dako, Glostrup, Denmark).

Protein bands were subsequently visualized using an

ImageQuant LAS 4000 imaging system and quantified

with ImageQuant TL 8.1 software (GE Healthcare,

Freiburg, Germany).

Immunoprecipitation and PDH-E1a
acetylation

A total of 200 lg protein from lysate was immunopre-

cipitated for the determination of global PDH-E1a
acetylation. Briefly, the lysate was added to PBS-rinsed

protein G agarose beads (EMD Millipore, Bedford) in a

50:50 solution with PBS buffer containing 0.5% Triton

X with 2 lg of PDH-E1a antibody. The samples were

rotated end over end at 4°C overnight and on the sub-

sequent day the beads were washed, sample buffer was

added, and the samples were heated at 96°C for 3 min.

The beads were spun down to avoid transfer and lysate

loaded on a hand-casted gel for SDS-page and western

blotting as described above. For each sample, acetylated

protein was normalized to the amount of precipitated

PDH-E1a protein content determined by western

blotting.

PDHa activity

PDHa activity was determined after homogenizing 10–
15 mg of wet weight muscle tissue and snap-freezing the

homogenate in liquid nitrogen as described previously

(Cederblad et al. 1990; Constantin-Teodosiu et al. 1991;

Putman et al. 1993) with modifications (Pilegaard et al.

2006) and PDHa activity was normalized to creatine

content in each muscle sample to correct for nonmuscle

tissue in the sample as previously described (St Amand

et al. 2000).

Statistics

All values are expressed as means � standard error. A

two-way ANOVA was applied to test the effects of geno-

type and intervention. If data passed the prerequisites of

normality and equal variance and a main effect was

detected, a Student–Newman–Keuls test was applied as a

post hoc test to locate specific differences in group means

(McHugh 2011). For single grouped data, a Student’s

t-test was used to test if a difference was present. Signifi-

cance was accepted at Ps < 0.05. The statistical tests were

performed using Sigmaplot 13.0 (Systat, San Jose, CA,

USA).
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Results

Metabolic markers

OXPHOS basal protein content was lower (P < 0.05) in

PGC-1a MKO than control mice. There were no signifi-

cant differences in basal HKII, GLUT4, and TBC1D4 pro-

tein between genotypes (Fig. 1).

Indirect calorimetry and locomotor activity

RER was overall lower (P < 0.05) and activity higher

(P < 0.05) in PGC-1a MKO than control mice at night in

the fed state, while RER was overall higher (P < 0.05)

and activity lower (P < 0.05) in PGC-1a MKO than con-

trol mice at night in the fasted state (Fig. 2A and B). In

the final hour of the dark, fed period (5–6 AM), RER was

lower (P < 0.05) and in the last hour of the dark, fasting

period higher (P < 0.05) in PGC-1a MKO than control

mice (Fig. 2C).

Plasma glucose and NEFA

The plasma free fatty acid concentration increased

(P < 0.05) and the plasma glucose concentration decreased

(P < 0.05) in both PGC-1a MKO and control mice with

fasting. There were no differences in either plasma NEFA

or plasma glucose levels between genotypes (Table 1).

Muscle metabolites

Muscle glucose and glycogen concentrations decreased

(P < 0.05) in both PGC-1a MKO and control mice in

response to fasting with no difference between genotypes.

G-6-P decreased (P < 0.05) with fasting in PGC-1a MKO

and tended to be lower (0.1 ≤ P ≤ 0.05) in PGC-1a
MKO mice than control mice (Table 2).

AMPK and ACC

There were no differences in either absolute (Fig. 3A) or

normalized AMPK phosphorylation or in AMPKa2
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protein in skeletal muscle with fasting or between geno-

types (Fig. 3B). There was a tendency for an increase

(0.05 ≤ P ≤ 0.1) in absolute ACC phosphorylation

(Fig. 3C) with fasting in control mice, while there was no

difference in normalized ACC phosphorylation with fast-

ing in control mice (Fig. 3D). Fasting increased

(P < 0.05) both absolute (Fig. 3C) and normalized ACC

phosphorylation (Fig. 3D) in skeletal muscle of PGC-1a
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MKO mice, while ACC2 protein was lower (P < 0.05) in

PGC-1a MKO than control mice in the fed state.

PDHa activity and PDH-E1a protein

PDHa activity decreased (P < 0.05) markedly in skeletal

muscle with 24 h of fasting in both PGC-1aMKO and con-

trol mice with no difference between genotypes (Fig. 4A).

PDH-E1a protein content increased (P < 0.05) in both

genotypes after 24 h of fasting relative to fed and PDH-E1a
protein was lower (P < 0.05) in PGC-1aMKO than control

mice in both the fed and fasted state (Fig. 4B).

PDH phosphorylation

PDHSer293, PDHSer300, PDHSer232, and PDHSer295 phos-

phorylation increased (P < 0.05) with 24 h of fasting,

regardless of genotype. PDHSer293 and PDHSer300 phos-

phorylation was lower (P < 0.05) in PGC-1a MKO than

control mice in the fasted state (Fig. 5A, C, E, G). When

normalized to PDH-E1a protein, phosphorylation sites

PDHSer293 and PDHSer300 increased (P < 0.05) to a similar

level with fasting in PGC-1a MKO and control mice,

while PDHSer232 overall was higher (P < 0.05) in PGC-1a
MKO than control mice and PDHSer295 tended to be

higher (0.05 ≤ P ≤ 0.1) in PGC-1a MKO than control

mice both in the fed state and after 24 h of fasting

(Fig. 5B, D, F, H).

PDK1, 2, 4, and PDP1

There was an overall tendency for lower (P < 0.05) skeletal

muscle PDK1 protein in PGC-1a MKO than control mice,

while PDP1 protein and PDK2 protein were lower

(P < 0.05) in PGC-1a MKO than control mice with no

effect of the fasting intervention (Fig. 6A–C). PDK4 pro-

tein increased (P < 0.05) in both genotypes after 24 h of

fasting and was lower (P < 0.05) in PGC-1a MKO than

control mice both in the fed and the fasted state (Fig. 6D).

SIRT3 and PDH acetylation

Skeletal muscle SIRT3 protein was lower (P < 0.05) in

PGC-1a MKO than control mice in the fed state and

increased (P < 0.05) after 24 h of fasting only in control

mice (Fig. 7A). PDH-E1a acetylation was higher

(P < 0.05) in PGC-1a MKO than control mice in the fed

state, but was not different between genotypes after 24 h

of fasting (Fig. 7B).

Discussion

The main findings of the present study are that lack of

muscle PGC-1a did not affect the switch from CHO to fat

utilization in the transition from the fed to the fasted

state, but was associated with higher CHO use in the

fasted state potentially influencing the ability to endure

Table 1. Plasma glucose and nonesterified fatty acids (NEFA) in fed (FED) and 24 h fasted (FAST) skeletal muscle-specific PGC-1a knockout

(MKO) and littermate-floxed control (control) mice.

FED FAST

Control MKO Control MKO

Glucose (mmol/L) 6.11 � 0.2 6.03 � 0.2 4.03 � 0.17* 4.24 � 0.22*

NEFA (mmol/L) 0.15 � 0.01 0.13 � 0.01 0.23 � 0.01* 0.25 � 0.02*

Values are given as mean � SE (n = 8–10).

*Significantly different from FED within given genotype (P < 0.05).

Table 2. Concentrations of skeletal muscle glucose, glucose-6-phosphate (G-6-P), and glycogen in fed (FED) and 24 h fasted (FAST) skeletal

muscle-specific PGC-1a knockout (MKO) and littermate-floxed control (control) mice.

FED FAST

Control MKO Control MKO

Glucose (mmol/kg) 0.84 � 0.06 0.77 � 0.06 0.47 � 0.04* 0.48 � 0.03*

G-6-P (mmol/kg) 2.37 � 0.17 2.20 � 0.11 1.97 � 0.35 1.40 � 0.18*

Glycogen (mmol/kg) 23.9 � 2.3 24.5 � 1.6 15.9 � 1.6* 13.0 � 1.5*

Values are given as mean � SE (n = 11).

*Significantly different from FED within given genotype (P < 0.05).
#Significantly different from control within given group (P < 0.05).
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prolonged starvation. Fasting-induced downregulation of

PDHa activity in skeletal muscle of control mice was asso-

ciated with increased phosphorylation of all four known

sites in PDH-E1a as well as with increased PDK4 and

SIRT3 protein without changes in total acetylation of

PDH-E1a. Lack of muscle PGC-1a reduced PDH-E1a,
PDK1, 2, 4, PDP1, and SIRT3 protein content as well as

increased total lysine PDH-E1a acetylation in the fed state.

Knockout of muscle PGC-1a did not influence the fasting-

induced increase in PDH-E1a phosphorylation, but pre-

vented the fasting-induced increase in SIRT3 protein,

while additional factors seem to override PGC-1a-medi-

ated regulation of PDH-E1a acetylation during fasting.

The observed switch in substrate utilization from CHO

to fat and the lower RER value during fasting than in the

fed state in the control mice are in accordance with

numerous previous studies (Kersten et al. 1999; Frier

et al. 2011; Jensen et al. 2013; Wueest et al. 2014)

demonstrating an experimental foundation for examining

the impact of skeletal muscle PGC-1a on the ability to

switch substrate during fasting. The present finding that

lack of skeletal muscle PGC-1a had no clear impact on

the time course of the change in RER during the switch

from the fed to the fasted state suggests that skeletal mus-

cle PGC-1a is not required for metabolic flexibility during

this transition. This is as such in accordance with the
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(n = 11). Protein and phosphorylation (phos) levels are given in arbitrary units (AU). *Significantly different from FED within given genotype
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previous observation that lack of muscle PGC-1a did not

influence the fluctuations in RER over the course of 24 h

with access to food (Finley et al. 2012).

Because the activity level was higher in PGC-1a MKO

than control mice during the dark period in the fed state,

and increased activity is expected to enhance carbohydrate

utilization, the genotype difference in substrate oxidation

in the fed state does not seem to be related to activity dif-

ferences. Likewise, the differences in average activity levels

between genotypes in the fed state, and generally high

levels of activity in the fasted state, were not associated

with differences in RER values. That being said, differ-

ences in activity level cannot be completely excluded to

have an effect on the observed RER differences. Moreover,

the similar plasma glucose and NEFA concentrations as

well as similar muscle glycogen in fed PGC-1a MKO and

control mice indicate that the RER differences in the fed

state are not due to differences in substrate availability

between the genotypes.

The observation that PGC-1a MKO mice had higher

RER in the final phase of the fasted state than the control

mice indicates that lack of skeletal muscle PGC-1a

reduced fat oxidation in the fasted state, although this

effect cannot be excluded to be driven by differences in

locomotor activity. The finding that the PGC-1a MKO

mice overall were less physically active than the controls

during the last 12 h of fasting shows that the higher car-

bohydrate oxidation was not due to increased activity

level in the PGC-1a MKO mice relative to control. Fur-

thermore, the similar plasma glucose and NEFA concen-

trations as well as muscle glycogen level in the two

genotypes suggests that differences in substrate availability

did not elicit the difference in substrate utilization. How-

ever, while the decrease in plasma glucose and the

increase in plasma NEFA concentration were independent

of genotype, the finding that the absolute decrease in

mean muscle glycogen was 44% greater in PGC-1a MKO

than control mice supports the higher reliance on carbo-

hydrates in the PGC-1a MKO than the control mice.

Based on the previous observation that muscle-specific

PGC-1a overexpression resulted in reduced glycogen

phosphorylase content and phosphorylation (Wende et al.

2007) with concomitantly reduced glycogen use during

exercise, it may be suggested that the higher glycogen use
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in PGC-1a MKO mice in the present study is caused by

an elevated glycogen phosphorylase activity. Furthermore,

the observed decrease in skeletal muscle G-6-P with fast-

ing in PGC-1a MKO mice only supports that the gly-

colytic flux and glucose oxidation were higher in PGC-1a
MKO than control mice. In addition, the reduced fat oxi-

dation in PGC-1a MKO mice relative to control mice in

the fasted state may imply that low skeletal muscle PGC-

1a content is associated with impaired carbohydrate spar-

ing during food deprivation. The present observation that

TBC1D4 protein content was similar in the two genotypes

may suggest that the higher carbohydrate oxidation in

PGC-1a MKO mice was not due to differences in GLUT4

translocation to the plasma membrane, although it cannot

be ruled out that other factors in the translocation pro-

cess may be affected by lack of PGC-1a.
The present finding that SIRT3 protein increased with

24 h of fasting in control mice is in agreement with pre-

vious findings (Palacios et al. 2009; Hirschey et al. 2010;

Caton et al. 2011). Previous studies suggest that ROS

balance is impaired when PGC-1a is lacking (St-Pierre

et al. 2006; Adhihetty et al. 2009) and that lack of PGC-
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1a furthermore leads to ROS accumulation (St-Pierre

et al. 2006; Olesen et al. 2013). ROS has been shown to

increase in mouse skeletal muscle with fasting (Qi et al.

2014; Rahman et al. 2014) and as SIRT3 has been shown

to play a role in ROS scavenging (Qiu et al. 2010; Yu

et al. 2012) increasing SIRT3 protein may be an adapta-

tion to handling a prolonged period of increased ROS

production. SIRT3 protein has previously been shown to

increase with fasting and caloric restriction in wild-type

mice (Palacios et al. 2009) and to increase with both

repeated AICAR injections and exercise training in a

PGC-1a-dependent manner using PGC-1a KO mice

(Brandauer et al. 2015). The present observation that

skeletal muscle SIRT3 protein was lower in PGC-1a
MKO mice than controls is therefore in accordance with

previous studies. However, the present finding that

SIRT3 protein content was completely unresponsive to

24 h of fasting in PGC-1a MKO mice is novel. Further-

more, the higher lysine acetylation level of PDH-E1a in

PGC-1a MKO mice than controls in the fed state is in

agreement with a previous study using myocytes (Jing

et al. 2013) and with the present genotype difference in

SIRT3 protein content. The lack of a genotype difference

in PDH-E1a acetylation in the fasted state indicates on

the other hand that PGC-1a-deficient mouse skeletal

muscle is capable of maintaining the PDH acetylation

state equal to control muscle despite reduced SIRT3 pro-

tein level. As muscle NAD+ levels have been shown to

increase with fasting (Canto et al. 2010), this may upreg-

ulate SIRT3 activity (Schwer et al. 2002) sufficiently in

PGC-1a MKO mice to obtain an acetylation state as in

control mice.

The present observation that 24 h of fasting led to

robust increases in absolute phosphorylation of all the

four PDH phosphorylation sites, PDHSer293, PDHSer300,

PDHSer232, and PDHSer295, in both genotypes is in line

with the downregulation of PDHa activity and the previ-

ously reported fasting effects in PGC-1a KO and PGC-1a

MCK mice (Kiilerich et al. 2010). On the other hand, the

fasting-induced increase in skeletal muscle PDHSer232

phosphorylation has not been reported previously. The

observed increase in PDH-E1a protein with fasting was

unexpected, but might be explained by a possible increase

in PGC-1a and thus mitochondrial content as previously

reported in liver (Haase et al. 2011) and skeletal muscle

(Palacios et al. 2009; Canto et al. 2010). However, the

lack of a similar increase in OXPHOS protein with fasting

in the present study (data not shown) does not support

this notion. Regardless, it appears that PGC-1a is partly

dispensable for fasting-induced increases in PDH-E1a
protein.

PDH phosphorylation levels were also normalized to

PDH-E1a protein content due to the impact of both

genotype and intervention on PDH-E1a protein content.

The observation that normalization of PDH phosphoryla-

tion to PDH-E1a protein resulted in similar or even

higher levels of PDH phosphorylation in PGC-1a MKO

than control mice indicates a maintained capability to

regulate PDH relative to the amount of PDH-E1a protein

despite lack of PGC-1a. Furthermore, the small genotype
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differences in both site PDHSer232 and PDHSer295 when

normalized to PDH-E1a protein may be due to the site-

specific affinity of the different PDK isoforms as previ-

ously reported (Korotchkina and Patel 2001; Patel and

Korotchkina 2001).

The finding that skeletal muscle PDK4 protein was

markedly increased with fasting is in agreement with

numerous previous studies in humans, rats, and mice

(Wu et al. 1999, 2001; Pilegaard et al. 2003; Spriet et al.

2004; Zhang et al. 2006; Kiilerich et al. 2010). Although

PDK4 protein levels were lower in PGC-1a MKO than

control mice both in the fed and the fasted state, the

same absolute increase in PDK4 protein was evident in

both genotypes underlining that skeletal muscle PGC-1a
plays a role in basal PDK4 expression, but is not neces-

sary for the observed fasting-induced upregulation of

PDK4 protein content. The finding that the protein con-

tent of PDP1, PDK1, and PDK2 were unaffected by fast-

ing is in accordance with previous studies (Spriet et al.

2004; Bienso et al. 2014), but the lower protein levels of

PDP1, PDK1, and PDK2 in PGC-1a MKO mice than

controls have not been reported previously. This observa-

tion, in conjunction with reduced skeletal muscle

OXPHOS and PDH-E1a content in PGC-1a MKO mice,

as also previously shown in PGC-1a KO mice (Kiilerich

et al. 2010), indicates a reduced capacity for regulation of

glucose oxidation. However, the present observation that

the PDHa activity did not differ between genotypes sug-

gests that additional factors influence PDHa activity. In

addition, the observation that the genotype differences in

RER were not reflected in differences in skeletal muscle

in vitro PDHa activity supports the previous findings that

there can be a dissociation between PDHa activity and

actual flux through the PDC (Constantin-Teodosiu et al.

2004).

Skeletal muscle AMPK phosphorylation has been

reported to increase in rodents with shorter fasting proto-

cols (De et al. 2006; Canto et al. 2010; Frier et al. 2011).

However, the present finding of no change in AMPK

phosphorylation indicates that AMPK does not exhibit

increased phosphorylation levels after 24 h of fasting as

reported previously in mice (Gonzalez et al. 2004) and

humans (Wijngaarden et al. 2014). It cannot be excluded

that the mice in the present study had transiently

increased AMPK activation during the fasting interven-

tion in the hours prior to euthanization, and that this

activation differed between genotypes, especially with dif-

fering locomotor activity in the light phase of both the

fed and fasting intervention. The observed increase in

phosphorylation of ACC with fasting likely contributing

to the enhanced fatty acid oxidation (FAO) might reflect

a preceding, transient activation of AMPK as previously

observed in rat skeletal muscle after 12 h of fasting, but

not 48 h of fasting (De et al. 2006). On the other hand,

ACC deactivation may also occur through a proposed

fasting-induced b-adrenergic epinephrine/PKA axis (Frier

et al. 2011). The finding that ACC phosphorylation was

higher in PGC-1a MKO mice than controls during fasting

when normalized to protein content may indicate fewer

active ACC proteins and hence less malonyl CoA to inhi-

bit lipid uptake into the mitochondria in PGC-1a MKO

than control mice. Furthermore, the observed similar FFA

plasma level in the two genotypes suggests a similar deliv-

ery of fatty acids to the muscles in the two genotypes.

These observations are therefore not in accordance with

the higher RER values indicating elevated CHO oxidation

in PGC-1a MKO mice than controls. However, both

CD36 mRNA and CPT1 mRNA content have been shown

to increase with fasting (Long et al. 2005; Frier et al.

2011) and to be PGC-1a dependent (Calvo et al. 2008)

suggesting that the mitochondrial fatty acid transport step

may limit fat oxidation during fasting in PGC-1a defi-

cient muscle and hence potentially explain the reduced fat

oxidation during fasting when PGC-1a is lacking.

In summary, the present study suggests that skeletal

muscle PGC-1a plays an important role in skeletal muscle

mitochondrial protein adaptations to prolonged fasting,

as seen with PDH-E1a and SIRT3, but is dispensable for

maintaining metabolic flexibility in the transition from

the fed to the fasted state. Furthermore, lack of skeletal

muscle PGC-1a reduces the content of PDH regulatory

proteins and PDH-E1a protein as well as alters PDH

phosphorylation and the acetylation pattern in skeletal

muscle. In addition, while both fed and fasting-induced

PDHa activities appear independent of PGC-1a, PGC-1a
is required for fasting-induced SIRT3 protein upregula-

tion in skeletal muscle.
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