
viruses

Article

Directed in Vitro Evolution of Therapeutic
Bacteriophages: The Appelmans Protocol

Ben H. Burrowes 1,2, Ian J. Molineux 3,* and Joe A. Fralick 1,*
1 Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center,

3601 4th Street, Lubbock, TX 79430, USA; benburrowes@live.com
2 Roche Molecular Systems, 983 University Avenue B200, Los Gatos, CA 95032, USA
3 Center for Infectious Disease, Department of Molecular Biosciences, The University of Texas at Austin,

1 University Station A5000, Austin, TX 78712, USA
* Correspondence: molineux@austin.utexas.edu (I.J.M.); joe.fralick@ttuhsc.edu (J.A.F.)

Received: 21 January 2019; Accepted: 8 March 2019; Published: 11 March 2019
����������
�������

Abstract: The ‘Appelmans protocol’ is used by Eastern European researchers to generate therapeutic
phages with novel lytic host ranges. Phage cocktails are iteratively grown on a suite of mostly
refractory bacterial isolates until the evolved cocktail can lyse the phage-resistant strains. To study
this process, we developed a modified protocol using a cocktail of three Pseudomonas phages and
a suite of eight phage-resistant (including a common laboratory strain) and two phage-sensitive
Pseudomona aeruginosa strains. After 30 rounds of selection, phages were isolated from the evolved
cocktail with greatly increased host range. Control experiments with individual phages showed little
host-range expansion, and genomic analysis of one of the broad-host-range output phages showed its
recombinatorial origin, suggesting that the protocol works predominantly via recombination between
phages. The Appelmans protocol may be useful for evolving therapeutic phage cocktails as required
from well-defined precursor phages.

Keywords: Appelmans; bacteriophage evolution; bacteriophage recombination; phage therapy;
Pseudomonas aeruginosa; antibiotic resistance

1. Introduction

The emergence and increasing prevalence of bacterial strains that are resistant to available
antibiotics poses a serious threat to world health [1], which, according to the World Health Organization
(WHO), is heading toward a post-antibiotic era when many common infections will no longer have
a cure [2]. This imminent threat demands an evaluation of novel approaches toward treating
antibiotic-refractory infections. One such approach that is being re-examined is bacteriophage
(phage) therapy, the use of bacterial viruses to specifically target and clear bacterial infections [3–6].
The National Institute of Allergy and Infectious Diseases included phage therapy as one of seven
strategic approaches to combat antimicrobial resistance [7]. Bacteria and their phages have been
evolving for over three billion years, and although bacteria can become resistant to phages, the latter,
unlike antibiotics, can also evolve to infect otherwise resistant bacteria. For phages to be successful
therapeutically, it may be necessary to continually isolate new phages that infect refractory bacterial
strains. Therapeutic phages are usually isolated from the environment using sources such as sewage,
marine and fresh water, or even patient samples [8]. While such sources can offer a great diversity
of phages from which to select, it is not always possible or efficient to isolate phages with the most
clinically relevant host range.

One approach successfully used in the Republic of Georgia is to prepare large cocktails of phages
that target a broad range of pathogenic bacteria [9]. When a pathogen is encountered that is refractory
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to the cocktail, a new phage that can grow on the resistant pathogen is added, or what is referred to
as the “Appelmans protocol” is employed to “invigorate” the cocktail (pers. comm. Dr Z. Alavidze,
see Appendix A). This protocol is based on an empirical liquid method of phage titration developed
in the 1920s by Appelmans [9,10]. Despite its history and common use by several laboratories in
countries of the former Soviet Union and Europe, the protocol has only recently been reported in
Western journals [11], and the mechanism(s) by which it works has not been determined.

For a mixture of phages, two major genetic mechanisms by which one or more phages adapt to a
bacterium that was refractory to the original cocktail are spontaneous mutation and recombination.
Phage genomes are architecturally mosaics, with each individual genome representing a unique
assemblage of individual exchangeable modules [12–15]. Mechanisms for generating such mosaics
include homologous recombination at shared boundary sequences of modular junctions, illegitimate
recombination in a non-specific sequence-directed process, and site-specific recombination [13,16,17].
A cocktail of phages applied to host strains susceptible to several members of the mixture offers an
opportunity for recombination events that can generate more genetic diversity in the phage pool.

In the contemporary laboratory, host-range mutants are usually isolated using a single phage,
either through spontaneous or induced mutations by selecting for those that can grow on the resistant
bacterial strain, which often map to the tail fiber genes (e.g. [16,18–23]). However, in the Appelmans
protocol, a phage cocktail consisting of multiple phages is grown iteratively on multiple separate hosts,
including resistant bacteria, until the cocktail evolves the ability to lyse the entire culture. The bacterial
strains are maintained from their original stocks and are kept separate throughout. Any mutant phage
with the ability to propagate on a strain that is refractory to other members of the mixture will be
selected as phages are pooled at the end of each round of selection.

As a proof-of-principle experiment aimed at examining the mechanism of host-range expansion,
we designed a 96-well plate format Appelmans protocol using a three-phage cocktail to which a suite
of seven clinical isolates were initially refractory by plaque analysis. After 30 rounds of selection, an
individual phage was isolated that could grow on all seven clinical isolates. Multiple recombination
events between two phages in the cocktail were seen, at least some of which likely conferred an
expanded host range. Our results describe a relatively simple, straightforward method by which a
phage cocktail can expand its host range without the addition of new genetic information.

2. Materials and Methods

2.1. Bacterial and Bacteriophage Strains

All bacterial and bacteriophage strains used are listed in Table 1. The phages chosen for the
protocol were ΦKZ, a large, virulent member of the Myoviridae family [24,25], Pa2, shown here to be an
N4virus and used in our laboratory in previous in vivo studies of phage therapy [26], and phage RWG,
also shown here to be an N4virus, which was isolated in our laboratory from a patient wound swab.

The bacterial strains included three common laboratory strains, PAO1, PA14 [27], and PAK [28].
PAO1 and PAK were kind gifts from Dr A. N. Hamood, Texas Tech University Health Sciences Center
(TTUHSC); PA14 was generously donated by Dr K. Rumbaugh, TTUHSC. Seven clinical Pseudomonas
aeruginosa strains were isolated from wound swabs within a six month period from patients at the
Southwest Regional Wound Care Center (WCC), Lubbock, Texas. All isolates were from separate
patients and showed high degrees of antibiotic resistance but with distinct antibiograms. These isolates
are identified by the prefix WCC accompanied by a three-digit identifier (see Table 1). PAO1 was the
fully permissive host used to propagate all P. aeruginosa phages.

Bacterial strains were grown in LB (5 g/L NaCl (Sigma Aldrich, St. Louis, MO, USA), 5 g/L yeast
extract (BD, Franklin Lakes, NJ, USA), 10 g/L tryptone (BD, Franklin Lakes, NJ, USA)) supplemented
with 1 mM CaCl2 (Sigma Aldrich, St. Louis, MO, USA) and 1 mM MgSO4 (Sigma Aldrich, St. Louis,
MO, USA). Phages RWG and Pa2 were grown by infecting PAO1 at an A600 ~0.2, using an MOI ~0.1.
After 3–5 h incubation at 37 ◦C, 250 rpm, the cultures were seen to lyse, and the phage was harvested by
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adding 1:100 CHCl3 (Sigma Aldrich, St. Louis, MO, USA), vortexing vigorously, and then centrifuging
(≥18,000× g, 5 min, 4 ◦C) to remove cellular debris. The supernatants were stored over CHCl3 at 4 ◦C.
ΦKZ was grown on semi-solid media as described elsewhere [25].

Table 1. Pseudomonas aeruginosa and bacteriophage strains used for the Appelmans protocol. Plaque
morphologies are described for growth on PAO1.

Bacterial/Phage Strain Source Reference Notes

PAO1
Dr A. N. Hamood (TTUHSC)

[1]

Host strains used for the
Appelmans protocol

PAK [2]

PA14 Dr K. Rumbaugh (TTUHSC) [3]

WCC176

Dr R. D. Wolcott MD
Southwest Regional Wound Care Center.

(Lubbock, TX)

This study

WCC199

WCC201

WCC205

WCC222

WCC229

WCC232

Pa2 ATCC [14203-B1] [1] 73,008 bp. Plaques 1–2 mm, clear

ΦKZ Felix d’Herelle Reference Center for Viruses [4] 280,334 bp. Plaques <1 mm, clear

RWG This laboratory This study 72,646 bp. Plaques 2–3 mm, clear

Where required, phage stocks were concentrated by the addition of 1/5 volume of 25%
polyethylene glycol (PEG) M.W. 8000 (Sigma Aldrich, St. Louis, MO, USA), 2.5 M NaCl after incubation
overnight at 4 ◦C. After centrifugation at 15,000× g for 15 min, the pellet was suspended in SM buffer
(50 mM Tris-HCl [pH 7.5] (Sigma Aldrich, St. Louis, MO, USA), 0.1 M NaCl, 8 mM MgSO4, 0.01% w/v
gelatin (Sigma Aldrich, St. Louis, MO, USA)). PEG precipitation was performed twice to give a final
purified phage suspension [29]. Phage titers were assayed by the agar overlay method [30].

2.2. Analysis of Host Range

The Appelmans protocol was carried out as described in Results. Every 10 rounds, the pooled
lysates were checked for novel phages by streaking a loopful (~1 µL) onto an LB agar plate and
overlaying with ~107 exponential-phase bacteria in top agar (LB plus 5 g/L agar). Five plaques were
picked on each bacterial strain, choosing distinct plaque morphologies where possible, and were
purified on the same strain. After at least three rounds of purification, the plaques were picked with a
sterile Pasteur pipet and added to 2 mL early log-phase cells in supplemented LB. After lysis, or after
5 h incubation (whichever came first), the bacteria were killed by the addition of 20 µL CHCl3, and cell
debris was removed by centrifugation at 15,000× g for 10 min. Most (38/50) phages isolated after the
final round of Appelmans selection gave only faint, diffuse plaques and poor titers after purification
and amplification on either the isolation strain or on PAO1; these phages were not studied further.

Host range was initially assessed by placing a 10 µL drop of phage suspension (≥106

plaque-forming units, pfu) onto a pre-seeded lawn of host cells in top agar [30]. After overnight
incubation at 37 ◦C, zones of lysis or the presence of plaques indicated that the bacterial strain was
susceptible to the phage. The lytic host range of phage suspensions was further confirmed by titering
to observe individual plaques.

2.3. DNA Sequencing and Annotation

The phages Pa2, RWG, and phi176 were purified by equilibrium density gradient centrifugation
in CsCl [29]. Genomic DNA was isolated by extraction with phenol [31] and was subjected to
454 pyrosequencing by the University of Texas at Austin genomics core facility. Assembly used
Newbler 2.6 and DNAStar software, followed by manual inspection of read frequency that revealed the
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presence of terminal repeats. These were taken as the physical genome ends but they were not formally
established as such experimentally. Alignment of the Pa2, RWG, and phi176 genomes was performed
using the NCBI Blast suite (https://blast.ncbi.nlm.nih.gov/Blast.cgi) and DNAStar. Genome sequences
have been deposited in GenBank with Accession Numbers KM411958 (RWG), KM411959 (Pa2), and
KM411960 (phi176).

The DNA sequences of phi176, Pa2, and RWG were annotated using the RAST (Rapid Annotation
using Subsystem Technology) annotation service available at http://rast.nmpdr.org/ and manually.
Differences were resolved by comparison to the previously annotated, closely related phage genomes
PA26 (JX194238) and LIT1 (NC_013692) and, post facto, by internal comparisons. Open reading frames
(ORFs) were analyzed for putative function using the Translated BLAST (blastx) and Protein BLAST
(blastp) algorithms, searching the non-redundant protein sequences database.

2.4. Mitomycin C Induction and Southern Blot Analysis of Temperate Phages

Bacterial strains were grown to an A600 ~0.5 in LB before adding 4 µg/mL mitomycin C and
incubating overnight. The cultures were then centrifuged and filtered through a 0.2 µM membrane.
The resulting lysate was DNase I-treated prior to DNA extraction. Output phage DNA was digested
with HincII and EcoRV (NEB), electrophoresed, and hybridized to a nitrocellulose membrane. Probes
were prepared with temperate phage DNA using the ThermoFisher North2South Random Prime DNA
Biotinylation Kit. Hybridization was detected using the ThermoFisher North2South Chemiluminescent
Hybridization and Detection Kit.

3. Results

3.1. Appelmans ProtocolUusing a Phage Cocktail Expands Bacteriophage Host Ranges

In order to generate novel phages from our laboratory strains, we developed a protocol based on
that used by the George Eliava Institute of Bacteriophage, Microbiology and Virology (IBMV), Tbilisi,
Georgia (see Appendix A). The protocol is represented schematically in Figure 1. Phages Pa2, RWG,
and ΦKZ were combined 1:1:1 by titer to yield an input cocktail of 1 × 1010 pfu/mL. Using a 96-well
microtiter plate, 100 µL of serial 10-fold dilutions (100 to 10−9) of the cocktail were added to 100 µL of
double-strength LB containing 1 µL of an overnight bacterial culture of a single strain. Eight bacterial
strains can be tested on each plate. One well was used for each dilution plus a control well with no
phage. After overnight incubation at 37 ◦C on a shaking platform at 200 rpm, the plates were visually
inspected. Wells showing complete lysis, plus the first turbid well, were pooled. If no lysis was seen,
the well containing the undiluted phage cocktail was harvested. Pooled lysates were cleared by vortex
mixing with 1:100 CHCl3, followed by centrifugation (15,000× g for 15 min). The lysate was termed
the round 1 cocktail and was used to initiate the next round of the protocol using the same set of
bacterial strains.

In the original Appelmans protocol the endpoint is reached when the output cocktail lyses >80%
of the host strains at a minimum dilution of 10−7 (Appendix A). This cocktail is then usually used
therapeutically. However, we were interested in analyzing the phages in the developing cocktail
and we added additional steps in order to allow the analysis of individual phages present every
10 rounds of evolution. Table 2 shows that after 30 rounds, the evolved phage population generated
plaques on all 10 P. aeruginosa strains, whereas the parent phages were only able to plaque on two
laboratory strains.

The round-30 cocktail was plated onto each of the 10 bacterial strains used for the Appelmans
protocol; five phages were isolated on each bacterial strain. For each plaque on a particular host, the
same strain was used for further phage purification. Of the 15 plaques isolated on the laboratory
P. aeruginosa strains PAO1, PA14, and PAK, eight phages were successfully amplified to high titer
(≥108 pfu/mL) on their isolation strain. Only 4 of the 35 plaques isolated on the WCC clinical strains
contained phages that grew to high titers in liquid culture, either on their isolation strain or on PAO1,

https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://rast.nmpdr.org/
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so only these were used for further study. Table 3 shows the host range of individual phages isolated
from the round-30 cocktail. Phi229.2, phi229.1, and phi176 had a relatively broad host range that
encompass, respectively, 80%, 90%, and 100% of the tested strains. Because of resource constraints, we
obtained sequence data only for the parental strains and phi176; the genetic origins of phages phi229.1
and phi229.2 are therefore unknown.
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Figure 1. Schematic representation of the 96-well-plate-format Appelmans protocol.

Table 2. Phage host range. A 10 µL spot of a lysate containing ≥ 106 plaque-forming units (pfu) was
placed onto an overlay lawn seeded with ~107 colony-forming units (cfu) of P. aeruginosa. “+” indicates
visible lysis after 16 h incubation at 37 ◦C, no entry indicates no visible lysis.

Test Strain
Phage

Pa2 ΦKZ RWG Round 10 Cocktail Round 20 Cocktail Round 30 Cocktail

PAO1 + + + + + +
PA14 + + +
PAK + + + + +

WCC176 + +
WCC199 + + +
WCC201 + + +
WCC205 + + +
WCC222 +
WCC229 +
WCC232 +
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Table 3. Host range of individual phages isolated from the round-30 cocktail.

Test Strain
Phage 1

phiPAO1.1 phiPAO1.2 phiPAO1.3 phiPA14.1 phiPA14.2 phiPAK.1 phiPAK.2 phiPAK.3 phi176 phi201 phi229.1 phi229.2

PAO1 + + + + + + + + + + +
PA14 + + + + + +
PAK + + + + + + + + + + +

WCC176 + + +
WCC199 + +
WCC201 + + + +
WCC205 + + +
WCC222 + + +
WCC229 + + +
WCC232 + + +

1 Phages are named with the prefix ‘phi’ followed by the isolation strain (see Table 1) and by the phage isolate
number where appropriate (e.g., phi229.2 was the second phage isolated on strain WCC229).

Plating efficiencies (Table 4) show that PAO1 is highly susceptible to all phages, whereas PA14,
PAK, and WCC201 are far more resistant. This is not surprising, as Pa2 and RWG (and ΦKZ) had
been routinely propagated on PAO1 prior to this study, and the cell surfaces of PAO1, PAK, and PA14
are known to be different [32,33]. Cell surface differences can affect phage sensitivity. It is interesting
that phi201 plated reasonably efficiently on both PAO1 and PAK but poorly on PA14, suggesting
that the phages within the developing cocktail could be adapting to different hosts. In several cases,
efficiency of plating (EOP) values >>1 were seen when the isolated phages were titered on non-host
strains. These phages were better adapted to the hosts than to the host on which they were isolated,
yielding the highest EOP. In other words, although they grew on a given strain, they grew better on
an alternative host (usually PAO1). Although these phages were propagated primarily on the more
permissive host, their maintenance during the Appelmans protocol was also selected for by the less
permissive host(s) present. In this way, the protocol was able to select for and propagate rare phage
mutants as they arose.

Table 4. Efficiency of plating (EOP) and standard deviations (SD) of phages isolated on clinical isolates.
‘-’ indicates no plaques (<10 pfu/mL). EOP is determined as the phage titer on a test strain divided
by the titer of the same phage preparation on the isolation host. EOP and SD values on the isolation
strains are shown in bold.

Test
Strain

phi176 phi201 phi229.1 phi229.2

EOP SD EOP SD EOP SD EOP SD

PAO1 73.6 5.9 0.7 0.1 6.7 2.0 51.2 11.0

PA14 9.6 × 10−5 5.4 × 10−4 1.0 × 10−9 2.4 × 10−8 8.3 × 10−5 4.6 × 10−5 1.1 × 10−3 4.2 × 10−4

PAK 2.7 × 10−5 2.0 × 10−6 0.1 1.8 × 10−2 1.3 × 10−6 4.6 × 10−7 2.0 × 10−4 4.6 × 10−5

WCC176 1.0 0.1 - - 1.5 0.5 7.9 2.7

WCC199 4.3 1.1 - - 3.3 × 10−2 1.2 × 10−2 - -

WCC201 1.8 × 10−6 1.2 × 10−6 1.0 0.2 - - - -

WCC205 3.3 0.4 - - 1.4 0.5 2.6 0.6

WCC222 18.2 1.6 - - 1.1 0.3 2.6 0.8

WCC229 50.0 6.9 - - 1.0 0.4 1.0 0.3

WCC232 39.3 6.7 - - 0.1 4.7 × 10−2 7.9 1.9

3.2. Appelmans Protocol Using Single Phages Generates Little Host-Range Expansion

When a single phage was used for the Appelmans protocol, little expansion in host range was
seen (Supplementary Table S1A–C). Only phage RWG adapted to utilize a new host, and the total
host-range expansion of all three phages separately was far less than that generated when the phages
were combined into a cocktail. We saw no plaques from the single-phage Appelmans protocol
experiments on most clinical P. aeruginosa isolates. Thus, although each individual phage was under
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continuous selection to grow on a mixture of different hosts, spontaneous mutations alone were
insufficient to generate much change in host range.

3.3. Phi176 is a Recombinant Derivative of Phages Pa2 and RWG

At the outset of this study, we had no information on phage RWG and limited data on Pa2. As
a preliminary check to determine whether recombination with endogenous genetic material (e.g.,
prophage or bacterial genes) was likely to contribute to phage evolution, we used Southern analyses
of Pa2, RWG, and ΦKZ DNA with phage DNA isolated after mitomycin C induction of all bacterial
strains. No hybridization was detected.

The genome of ΦKZ is known (GenBank: AF399011.1), but the genomes of phi176, Pa2, and RWG
were sequenced for this study. Phages Pa2 and RWG are closely related, showing an overall nucleotide
sequence identity of >99%. Both phages are also closely related to phages PA26 (JX194238, 97% identity),
LIT1 (NC_013692, 97% identity), vB_PaeP_C2-10_Ab09 (GenBank: NC_024140.1, 98% identity), and
PEV2 (NC_031063.1, 98% identity). Pa2 and RWG are therefore N4virus Podoviridae [34,35].

The genome of phi176 (GenBank: KM411960.1) is derived exclusively from phages Pa2 (GenBank:
KM411959.1) and RWG (GenBank: KM411958.1), with no ΦKZ-derived sequences. Remarkably,
only a single missense mutation—a residue not found at the corresponding position in either Pa2 or
RWG—was definitively identified across the phi176 genome. The absence of point mutations was
unexpected because of the extensive phage growth (~150 cycles) that took place during the Appelmans
protocol—a conservative estimate is five rounds of phage replication for each round of the protocol
(assuming a burst size of 50 pfu/cell, a single phage will be amplified to ~3 × 108 pfu in five rounds).

The Pa2, RWG, and phi176 genome sequences were aligned, allowing a visual determination that
at least 48 crossovers occurred during the overall Appelmans procedure to yield phi176 (Figure 2 and
Table 5). The terminal repeats of Pa2 and phi176 are the same, and the left (and right) genetic end
of phi176 is thus derived from Pa2. Working in base-pair order (i.e., left to right), the first crossover
from Pa2 DNA into RWG in generating phi176 is predicted by the last identical nucleotide to Pa2;
this process was then repeated using the last position of identity on each respective genome over the
complete sequence. Overall, about 2/3 of the phi176 genome is of Pa2 heritage. In Table 5, we named
the gene by the crossover site predicted, but obviously, it is only known that recombination includes
that site and not exactly where it was initiated or terminated. The phi176 sequence differed from both
Pa2 and RWG at only five sites. One, at position 30,110 (phi176 ORF52) was a spontaneous missense
mutation, but the remaining four (after phi176 positions 9355, 28671, 29,415, and 59342) occurred at
homopolymeric runs and were judged more likely to be sequencing errors than mutational events.
Two of the four affect intergenic regions, whereas the 151 amino acid phi176 ORF48 is only homologous
to Pa2 and RWG for its initial 71 residues, and the 82 amino acid phi176 ORF50 differs in its last eight
residues from both of its parents. The corresponding protein pairs from Pa2 and RWG were 100%
identical and had no known or predicted function, supporting our premise of sequencing errors.

Forty-eight recombination events is a lower bound because, unless the recombination led to a
change in sequence, it would go undetected; in addition, some recombination events might not have
survived through all 30 rounds of the protocol. The majority (63/92) of ORFs underwent no crossovers
between Pa2 and RWG in generating phi176. This was not unexpected because most genes are not
directly involved in determining the host range. One recombination event was detected in 22 of the 29
recombinant ORFs, and one altered the ORF44/45 intergenic region (Table 5). Three ORFs underwent
two crossovers, and a further three ORFs underwent three, whereas five and six recombination events
occurred in ORF43 and ORF52, respectively. ORF52 also harbors the spontaneous missense mutation.
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Table 5. Recombinant phi176 ORFs.

Phi176
ORF Start Stop ORF Size

(bp) Cross-Overs Crossover Location(s) in
phi176 Genome (bp) 1

Putative Gene
Function

02 872 1063 192 1 1020

03 1078 1308 231 1 1210

08 2394 2597 204 1 2581

10 2832 3065 234 1 2884

17 5053 5493 441 1 5352

18 5533 5880 348 1 5840

23 8042 9283 1242 1 8764 RNA polymerase 2

23a 9380 9532 153 1 9384

35 16,639 17,976 1167 1 16,721 DNA helicase

37 18,503 21,118 2616 2 19,203
19,359 DNA polymerase

42 22,534 25,050 2517 1 22,811 rIIA-like

43 25,062 26,840 1779 5

25,434
26,071
26,254
26,321
26,473

rIIB-like

IG44-45 N/A N/A N/A 1 27,137 N/A

45 27,196 27,513 318 1 27,326

51 29,943 29,464 480 1 29,758

52 33,215 29,943 3273 6
(+ 1 missense)

30,115
30,122
31,070
31,073
31,118
33,095

Tail fiber/tailspike;
lipase/esterase

domain

53 33,925 33,254 672 2 33,375
33,379

59 37,720 39,888 2169 2 38,669
39,095

DNA primase P4
type

66 43,308 43,712 405 1 43,324

67 44,118 44,354 237 1 44,210

70 55,093 44,897 10,197 1 54,100 Virion RNA
polymerase

71 56,659 55,094 1566 3
55,210
55,751
56,313

Structural protein

72 57,126 56,659 468 1 56,747

73 59,329 57,107 2223 1 59,203

75 61,019 60,354 666 1 60,455

77 63,503 62,310 1194 3
62,768
63,143
63,333

79 66,091 63,911 2181 1 64,015

82 67,614 66,880 735 1 67,134

83 69,263 67,611 1653 3
68,333
68,417
68,774

85 70,055 70,486 432 1 70,398
1 The starting 1–1020 bp and final 70,399–73,050 bp (including the terminal repeats) are derived from parental
phage Pa2.
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The frequencies of recombination within a given gene are not stochastic. Most ORFs undergoing
multiple crossovers are somewhat larger than the average gene length of ~740 bp, but the putative
phi176 virion RNA polymerase (ORF70), which is by far the largest gene at 10,197 bp, almost
completely retained its Pa2 ancestry, undergoing only a single crossover across its length, despite ~275
polymorphisms with respect to its RWG counterpart. Retention of Pa2 DNA sequences in ORF70 is
unlikely to be due to incompatibility of amino acid substitutions, as only 29 polymorphisms result in
amino acid substitutions. Figure 2 shows the composition of the phi176 genome as recombinatorial
crossovers between the Pa2 and RWG genomes, and Table 5 lists the Pa2 genes in which recombination
occurred, generating phi176. Note that the phi176 rIIB-like protein ORF43 contained only two distinct
amino acid substitutions, whereas six recombination events were detected within the gene; similarly,
only four of six cross-overs in the phi176 ORF52 tailspike gene gave rise to amino acid substitutions.
Recombination itself is of course totally distinct from any selective change conferred on an ORF by an
amino acid substitution. However, it cannot be determined whether recombination events that did not
lead to a change in an ORF were simply that, or whether they were fossils from prior events during
the evolution of phi176.

4. Discussion

A cocktail comprised of three distinct phages was evolved over 30 rounds of the Appelmans
protocol on a suite of seven clinical and three laboratory strains of P. aeruginosa. Of these 10 isolates,
only two of the laboratory strains were sensitive to the original phages. When the protocol was carried
out with each phage separately, very little expansion of host range was seen. However, after 30 rounds
of the protocol with three input phages, progenies were isolated with expanded host ranges that
included most (and in one case all) of the 10 bacterial strains. Genetic analysis of the phage with
broadest host range showed it to be a recombinant derivative of the two most closely related members
of the input cocktail: RWG and Pa2. These results support our premise that the Appelmans protocol is
able to rapidly extend the host range of a cocktail of phages via recombination between the members
of the cocktail.

The recombinant phage phi176 was essentially a result of multiple (≥48) recombination events
between Pa2 and RWG, with only a single spontaneous point mutation. Given that ΦKZ is unrelated
to Pa2 and that Pa2 and RWG share >99% DNA sequence identity, it is not surprising that no ΦKZ
sequences were found in the phi176 recombinant. Although recombination between very different
phages has clearly occurred in the environment (e.g., between the λ, P2, and T4 side-tail fibers [36],
also see [12–15]), a short-term laboratory experiment provides little opportunity for recombination
that does not involve significant DNA homology.

With so many recombination events occurring in genes of unknown function, it is impossible
to elucidate exactly which of those event(s) were crucial in generating the host range of phi176.
However, recombination clearly occurred in some genes likely to affect host range. The first step in
infection is adsorption, which must involve structural gene products (e.g., tail fibers or tailspikes) that
recognize a receptor on the surface of a bacterial cell. Two possible such gene products are encoded
by phi176 ORF71 and ORF52. Although ORF71, which is a homologue of LIT1 gp72 [34], underwent
three recombination events, it only differed from its Pa2 and RWG parents by a single amino acid
residue. However, that was enough to confer host-range differences in both phages and eukaryotic
viruses [19,21]. Phi176 ORF52, on the other hand, underwent six recombination events and additionally
acquired a single point mutation. Furthermore, two of these recombinations resulted in a template
switch for only three or seven contiguous nucleotides and hence were likely the end result of multiple
recombination events in this region. Phi176 ORF52 differed from its parental sequences by 17 (RWG)
and 75 (Pa2) amino acids. ORF52 is similar to LUZ7 gp56, or a hybrid of LIT1 gp52 and gp53, which
have been tentatively identified as phage tail fibers [34]. However, as the protein sequences contain
lipase and esterase motifs, they are more likely to be tailspikes. Phi176 ORF52 was therefore under
strong selection for adaptation during growth on different host strains in the Appelmans protocol.
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Interestingly, phi176 ORF55, which putatively encodes a tail fiber, is not altered from its Pa2 ancestor.
Perhaps, ORF55 is not required for phage adsorption on the strains tested here.

Resistance to phage is often achieved by cell surface receptor changes. Phages often respond by
altering their receptor-binding protein(s), usually a tail fiber or tailspike. The most dramatic example
is the accumulation of mutations found in Ox2 when selected to grow on a series of resistant strains.
The tail fiber changed its receptor from OmpA, through other Omps, to LPS [22,23]. However, bacteria
have several anti-phage defense mechanisms that operate after phage adsorption. These include
CRISPR/Cas, restriction–modification systems, and other abortive infection mechanisms [37–39]. Some
of these defenses are coded by prophage genes, including the exclusion of T4 rII mutants after infection
of a rex+ λ lysogen [40]. T4 r mutants were originally isolated as plaque morphology variants on
Escherichia coli B strains [41], which had lost the lysis inhibition characteristic of T4+ and thus exhibited
a rapid-lysis phenotype [42]. However, this phenotype is not maintained in the non-lysogenic E. coli
K-12 strains where plaques of rII mutants have wild-type morphology, and lysis inhibition is close
to normal [40,43]. The rII proteins were originally only associated with T-even phages, but DNA
sequencing has revealed similar proteins in the genomes of many different phage types, including
the N4virus lineage and thus Pa2, RWG, and phi176, the phages studied here. It is important to note
that only the roles of T4 rIIA and rIIB in overcoming the inhibitory effects of λ prophage rexA and
rexB on T4 growth and the association of these genes with rapid lysis in E. coli B have been studied
experimentally. Lysis inhibition, overcoming prophage- or plasmid-mediated exclusion or other
functions of sequence homologues in other phages has not been directly demonstrated. Nevertheless,
effects on lysis inhibition can alter plaquing host range because mechanisms that increase the rate of
viral propagation compared to bacterial propagation, such as increasing burst size or reducing lysis
time [37,44], can all increase fitness in vitro [45] and can lead to plaques from lysis-inhibition mutants
when compared to their non-plaquing lysis-inhibited parents.

A single recombination event was seen in ORF42, a putative rIIA gene. The N-terminal halves of
Pa2 and RWG ORF42 are very similar, and recombination between the two respective genes resulted in
the phi176 ORF42 having just two amino acid changes from Pa2. The C-terminal half of phi176 ORF42
is derived entirely from Pa2, with 120 amino acids differing from its RWG counterpart. However, five
recombination events took place in generating phi176 ORF43, a putative rIIB-like gene. The chimeric
phi176 rIIB-like protein has 11 and 27 amino acid changes from ORF43 of RWG and Pa2, respectively.
ORF43 was clearly under strong selection during adaptation in the Appelmans experiment to expand
phage host range. By analogy with the T4 rII proteins, we suggest that phi176 ORFs 42 and 43
could counteract unknown inhibitory genes in the various clinical isolates that allowed for a phi176
host-range expansion, relative to either of its parents.

Directed evolution of phages is a common laboratory approach that has been used, among other
things, to develop phages with enhanced therapeutic potential [46] and to study and modify phage
host range [20,47–49]. We suggest that several factors appear to be crucial for the rapid generation
of expanded host range phages with the Appelmans protocol. First, the use of a cocktail of virulent
phages is critical to allow recombination to generate diversity within the protocol. When we isolated
individual phages from the round-30 cocktail, those selected on our laboratory strains showed very
little expansion of host range. The three phages with broadest host range we identified were isolated
using bacterial strains refractory to the round-10 cocktail. However, when these broad-host-range
phages were tested against a new set of urinary tract infection isolates of P. aeruginosa, isolated in a
separate laboratory three years after the WCC isolates were obtained, no collateral expansion of host
range was seen. Therefore, it appears that the use of both clinically relevant and up–to-date bacterial
isolates that are resistant to the phages of the cocktail is important in generating therapeutically
useful phages. It is noteworthy that the Eliava IBMV regularly adds new bacterial isolates to their
Appelmans panel, and the phages generated are added to their complex and evolving therapeutic
preparations (Pers. Comm., Z. Alavidze). We also believe it is important to include a bacterial host that
can support lytic growth of all or most of the phages of the cocktail, thereby enabling recombination
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after co-infection. In contrast, collateral host-range expansion was maintained when a similar protocol
was carried out by Mapes et al. [11], who saw an increase in host range on a set bacterial isolates
that had not been used for phage evolution. It is not clear why the two studies arrived at different
conclusions, and clearly, further work is needed both to optimize the Appelmans protocol and to better
understand how to generate clinically useful phages efficiently.

Phage evolution is postulated to occur principally through recombination [12,13,15,17,50–54], and
recombination has been demonstrated between the members of an experimental therapeutic cocktail
of virulent E. coli phages in an anaerobic, continuous culture system [55]. Therefore, we consider it
likely that phage evolution itself occurs predominantly through what is essentially the Appelmans
protocol writ large. Indeed, the Appelmans protocol could already be occurring naturally, in situ,
during active phage therapy [56–58]. Multiple rounds of infection and lysis in a dense and relatively
localized bacterial population would provide many opportunities for horizontal exchange of genetic
elements between therapeutic phages and even non-therapeutic phages present as prophages in the
bacterial population or phages that are present in the local environment.

Our results are in keeping with this idea and suggest that recombination events between the
members of a phage cocktail during the Appelmans protocol or during therapy generate far more
genetic diversity than non-recombinant mutations alone. The total phenotypic diversity generated
by all three single phage experiments was far less than that generated by evolving a cocktail of those
same three phages. In the absence of recombination, we would have expected the total diversity
generated from all three input phages separately to be similar to that generated by the three phages
simultaneously. Moreover, only one point mutation was seen in the phi176 genome, whereas at least
48 recombination events occurred, corroborating the predominantly recombinatorial nature of phage
evolution in the Appelmans protocol.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/3/241/s1,
Table S1: Host range of single phage experiments.

Author Contributions: B.H.B, J.A.F., and I.J.M. conceptualized and helped design the methods. B.H.B. performed
the Appelmans protocol and all phage work. I.J.M. sequenced and identified crossovers, I.J.M. and B.H.B.
annotated the phage genomes. B.H.B. and I.J.M. prepared the manuscript.

Funding: This work was supported in part by grant GM32095 from the National Institutes of Health (NIH) to IJM
and also in part by a grant from the Jasper L. and Jack Denton Wilson Foundation and by NIH grant AI48696
to JAF.

Acknowledgments: The authors would like to thank Zemphira Alavidze (IBMV) for providing details of the
Appelmans protocol shown in Appendix A. Randall Wolcott (WCC), the University Medical Center Clinical
Microbiology Department (Lubbock, TX), Kendra Rumbaugh (Dept. of Surgery, TTUHSC), and Abdul Hamood
(Dept. of Immunology and Molecular Microbiology, TTUHSC) supplied the bacterial strains used in this work.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The Appelmans protocol, as supplied by Dr Z. Alavidze, IBMV. (In Georgia the protocol is often
called the ‘Appelman’ technique.)

“The Appelman technique is a method for developing phage isolates into strains that are much
more active against a wide range of bacterial strains of the same family. This long-standing technique
is a main method used in the development of phage cocktails in the Republic of Georgia. The phage
cocktail, generally active on at least 60% of the host collection, is diluted serially, with one dilution
series for each of the 10–12 strains of interest, adding 0.1 mL of bacteria, diluted 10-fold from a slant
tube, to each tube of 5 mL of broth. The tubes are incubated at 37 ◦C overnight. The following day,
each dilution is checked for lysis compared to a control tube. The lysed tubes are combined across all
the strains and filtered. The new filtrate is considered Appelman 1 and is used for the next dilution
series, with the addition of one dilution past the previous point of lysis. Once a phage is able to lyse
at a dilution of 10−7 across 10 or more strains, it is considered a “mother” phage that can be used in
combination with other Appelman phages for a cocktail.

http://www.mdpi.com/1999-4915/11/3/241/s1
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Qualitative analysis of the Appelman phages by spot testing shows an increase in virulence of the
phage between the first and last Appelman. The efficiency of plating of each phage on the various
strains is necessary to determine quantitatively how much change occurs as a result of Appelman
passaging. The important question raised by this method is: how are the phages becoming more
active? It is probable that a small change in the tail fibers of the phages allows for a better infection.”
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