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Abstract

Fear conditioning and extinction are basic forms of associative learning that have gained considerable clinical relevance in
enhancing our understanding of anxiety disorders and facilitating their treatment. Modern neuroimaging techniques have
significantly aided the identification of anatomical structures and networks involved in fear conditioning. On closer
inspection, there is considerable variation in methodology and results between studies. This systematic review provides an
overview of the current neuroimaging literature on fear conditioning and extinction on healthy subjects, taking into
account methodological issues such as the conditioning paradigm. A Pubmed search, as of December 2008, was
performed and supplemented by manual searches of bibliographies of key articles. Two independent reviewers made the
final study selection and data extraction. A total of 46 studies on cued fear conditioning and/or extinction on healthy
volunteers using positron emission tomography or functional magnetic resonance imaging were reviewed. The influence of
specific experimental factors, such as contingency and timing parameters, assessment of conditioned responses, and
characteristics of conditioned and unconditioned stimuli, on cerebral activation patterns was examined. Results were
summarized descriptively. A network consisting of fear-related brain areas, such as amygdala, insula, and anterior cingulate
cortey, is activated independently of design parameters. However, some neuroimaging studies do not report these findings
in the presence of methodological heterogeneities. Furthermore, other brain areas are differentially activated, depending on
specific design parameters. These include stronger hippocampal activation in trace conditioning and tactile stimulation.
Furthermore, tactile unconditioned stimuli enhance activation of pain related, motor, and somatosensory areas. Differ-
ences concerning experimental factors may partly explain the variance between neuroimaging investigations on human
fear conditioning and extinction and should, therefore, be taken into serious consideration in the planning and the

interpretation of research projects.
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Introduction

Fear conditioning is an ability that is vital for the detection of
danger, initiation of self-protection mechanisms, and for survival
of a species. Disorders in humans associated with increased anxiety
and fear levels, such as posttraumatic stress disorder, phobias, or
panic disorder, exemplify how misguided fear conditioning might
render originally innocuous stimuli fear-inducing and threatening.
In addition, extinction of these associations is also hampered in
these disorders. A life time prevalence of anxiety disorders of about
16,6% [1] highlights the substantial clinical and socioeconomic
relevance of fear conditioning and extinction.

The term conditioning refers to the process of learning the
association between two previously unrelated stimuli [2]. In a
typical differential fear conditioning design, a previously neutral
conditioned stimulus (CS+) is associated with an aversive and fear-
inducing unconditioned stimulus (US) and becomes intrinsically
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aversive, while another neutral stimulus remains unpaired (CS-)
[3]. Two main types of conditioning designs can be distinguished,
which differ in the temporal relationship between CS+ and US,
hence in the temporal contiguity. In trace conditioning, a time interval
ranging from for example 500 milliseconds [4] to 10 seconds [5]
separates the presentation of the CGS+ from presentation of the US.
The expression “trace conditioning” stems from the idea that a
memory trace needs to bridge the gap between CS+ and the
delayed US to form an association, therefore working-memory
processes are more strongly involved in trace conditioning. In
contrast, in delay conditioning the CS+ overlaps or is immediately
followed by the US. A repeated exposure of the originally neutral
stimulus without presenting the aversive stimulus gradually
eliminates the fear reaction and is defined as extinction. In the
past, extinction was regarded as a process of forgetting this
association. However, the phenomena of spontaneous recovery, renewal,
rapid acquisition, and remnstatement after extinction, suggest that fear
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extinction is “an active learning process that is distinct from
acquisition and requires additional training to develop” [6].

Fear conditioning has proven to be an extremely robust, rapid,
and precise experimental approach for studying the neurobiolog-
ical substrates of fear [2,7-15], while fear extinction most probably
represents the main therapeutic ingredient of exposure-based
psychotherapies. Numerous studies have investigated fear condi-
tioning and extinction in animals and humans, resulting in a core
neural network involved in conditioning and extinction (see e.g.
[16-18]).

While the literature on animals has been summarized in several
review articles (see e.g. [3,6]), there has been no such approach in
the current functional neuroimaging literature on human fear
conditioning. So far, only a few reviews have been published and
they focus on special topics such as extinction of conditioned fear
[19,20], or socio-cultural and cognitive influences on learning
[21]. Biichel et al.’s (2000) review compared event-related fear
conditioning studies to block-design studies and positron emission
tomography (PET) studies. This important review was one of the
first to identify a common core network for human aversive
conditioning, including the amygdala and anterior cingulate
cortex (ACC) [22]. Other reviews concentrated on cellular and
synaptic mechanisms, or on plasticity within this neuroanatomical
circuitry [3,23].

Even though a core network for fear conditioning has
consistently been reported in most imaging studies, results
obtained from modern neuroimaging techniques differ in many
respects, for example, in the number or the type of activated areas.

Therefore, the main aim of this review is to identify consistent
and common findings on aversive conditioning and extinction in
humans, as assessed by PET and functional magnetic resonance
imaging (fMRI), and to present them in a structured manner. The
second aim is to look at the differences between neuroimaging
studies with respect to neuroimaging results and design parame-
ters. We therefore identify and evaluate typical experimental
factors that may influence brain activation patterns and may
thereby contribute to the heterogeneity of neuroimaging results.
Overall, this review is intended to facilitate the interpretation of
seemingly contradictory neuroimaging findings, as well as the
selection of an appropriate conditioning design for specific
research purposes. Therefore, this review is relevant both to
clinicians seeking for a state-of-the-art overview and to researchers
investigating fear conditioning or extinction by means of
neuroimaging.

The main results of the reviewed studies will be briefly
summarized first, followed by an evaluation of specific consequences
on activation patterns of critical factors concerning conditioning
paradigms, measures of conditioning success, stimuli, and their
timing. The review concludes with a critical discussion of these
factors and an evaluation of their impact on past and future research.

Methods

Literature Search

To identify relevant neuroimaging studies on human fear
conditioning and extinction, a computerized database search of
journal articles via Pubmed was conducted for the years 1994—
2008. This Pubmed search, as of December 2008, used
combinations of the keywords ‘“conditioning”, ‘“extinction”,
“aversive”, “fear”, “fMRI”, “neuroimaging”, “PET” and “hu-
mans”’. No truncations and language restrictions were applied. We
screened the abstracts for relevant literature based on the literature
search criteria and additionally examined the references sections of
articles and reviews for potentially useful studies.
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Selection criteria

Studies were included if they were: (1) PET or fMRI studies, (2)
performed on healthy volunteers, (3) focused on cued fear
conditioning and/or extinction. Furthermore, exclusion criteria
were: (1) pharmacological modulation, (2) subliminal or masked
presentation, (3) context conditioning, (4) combination of fear
conditioning with other experimental tasks, such as cognitive-
demanding working-memory tasks. Inclusion criteria were applied
independently by two reviewers. Specific experimental designs for
fear conditioning in fMRI and PET were compared, focusing on
the impact of critical experimental variables, such as timing
parameters, the contingency rate, or characteristics of the stimuli,
on neuroimaging results.

Data Extraction

Data were extracted by the first author (CGS) and double-
checked independently by the second author (SS). The discrep-
ancies were resolved by consensus and the senior author (CK) was
consulted if needed. The following variables were extracted and
presented in Table 1: 1) demographic characteristics (number of
participants, gender, and age), 2) study design (delay, trace, and
extinction), 3) neuroimaging technique (fMRI, PET), 4) charac-
teristics of the stimuli (modality of CS and US), 5) independent
assessments of the conditioning process (e.g. heart rate), and 6)
neuroimaging results. In the data analysis, the outcomes of interest
were brain areas activated during conditioning and extinction.
Therefore, we extracted the neuroimaging data presented by each
study as the main results. Finally, we extracted those contrasts of

interest that represent the conditioning or extinction effect (e.g.
CS+>CsS-).

Data Analysis

The review provides a qualitative summary of neuroimaging
findings on fear conditioning and extinction of the included
empirical studies. These studies were classified according to the
type of study design (delay, trace, and extinction), the modality of
the CS and US, the contingency rate, and the independent
assessment of the conditioned response. For each category, we
extracted the absolute frequency of activated brain areas for the
contrasts of interest. Moreover, we attempted to identify common
and divergent activations across individual study results. Studies,
reporting additional or different activation from those described in
the core fear network, were examined for the following variables to
shed light on reasons for the discrepant findings: conditioning
design (delay, trace, and extinction), contingency rate, and
characteristics of the CS and US. We refrained from statistically
combining results from the studies due to the differences in their
design.

Results

Included studies

Based on the literature search strategies, 147 citations were
retrieved from the Pubmed database. Among these, we identified
33 relevant studies. Additionally, we examined the references of
relevant articles and reviews. Thirteen citations met the selection
criteria. As a whole, we reviewed 46 articles on human fear
conditioning and/or extinction. Figure 1 shows the search and
selection process. Forty studies exclusively used a delay condition-
ing paradigm during the acquisition phase (Table 1; No. 1-3, 5, 7,
9, 11-18, 20-23, 26, 28-29, 31-33, 35-36, 38-40, 42-45)
[4,5,24-65]. Only two studies investigated solely trace condition-
ing during acquisition (Table 1; No. 4, 34) [66,67], whereas four
other studies used both delay and trace conditioning protocols
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ACC, cerebellum (L, R), mid ACC (R), inf frontal G (L, R),

insula (L, R), postcentral G (L, R), SI (R), SII (L, R), SMA (L, R), sup

temporal G (L, R).

Delay conditioning (assessed as (CS->CS+ in the acquisition

Delay conditioning (assessed as (CS+>CS- in the
anticipation phase)): angular G (L, R), brainstem (R), mid ACC (R),

phase))

extinction of conditioned responses

Independent assessment of Neuroanatomical correlates of acquisition and

the conditioning process
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cerebellum (L), DLPFC (R), inf frontal G (R), insula (L, R), SMA (R),

supramarginal G (R).

Extinction (assessed as (CS+>CS-)): ACC (R), mid ACC (R), DLPFC

(R), mid frontal G (R), insula (L, R), SIl (R), SMA (R)

Abbreviations: ACC: anterior cingulate cortex, ant: anterior; BA: Brodman area, cau: caudal, C: cortex, CR: conditioned response, CS: conditioned stimulus, dor: dorsal, DPFC: dorsal prefrontal cortex, DLPFC: dorsolateral prefrontal

cortex, DMPFC: dorsomedial prefrontal cortex, EMG: electromyography, F: female, FOP: frontal operculum, G: gyrus, inf: inferior, IAPS: International Aversive Picture System, IPL: inferior parietal lobe, lat: lateral, L: left, Lo: lobule/lobe,

M: male, med: medial, mid: middle, MFL: medial frontal lobe, MPFC: medial prefrontal cortex, MTL: medial temporal lobe, N: nucleus, No.: number, OFC: orbitofrontal cortex, post: posterior, PCC: posterior cingulate cortex, PFC:

prefrontal cortex, PMA: premotor area, R: right, rCBF: regional cerebral blood flow, trans: transverse, RT: reaction time, ros: rostral, SCR: skin-conductance response, SCL: skin-conductance level, Sl: primary somatosensory cortex, SlI:

secondary somatosensory cortex, SMA: supplementary motor area, S: sulcus; sup: superior, vent: ventral, VMPFC: ventromedial prefrontal Cortex, US: unconditioned stimulus.

doi:10.1371/journal.pone.0005865.t001
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(Table 1; No. 6, 8, 10, 25) [4,5,27,28]. Extinction of learned fear
was additionally reported by seven of the 40 delay conditioning
studies (Table 1; No. 19, 24, 27, 30, 37, 41, 46)
[37,42,44,47,51,56,60]. Thirty-two of the 46 studies are fMRI
studies, 14 are PET studies. Table 1 contains information on
empirical study characteristics and corresponding neuroimaging
results.

Summary of Findings

Brain regions involved in delay fear conditioning. As a
major and stable result, the amygdala, the ACC and the insular
cortex turned out to be crucial structures in the acquisition of
aversive delay conditioning, independent of general design
characteristics. Twenty-five of the 44 delay conditioning studies
reported amygdala activation, with results varying with respect to
the laterality of activation. While nine studies reported bilateral
amygdala activation (e.g.[31,49,64]), eight studies detected left-
lateralized (e.g. [27,61,65]), and eight right-lateralized activations
(e.g.[53,62]). Methodologically, nineteen of the 25 studies
additionally tested for temporal interactions of amygdala
activation or split up the acquisition phase into an early and late
phase, in order to assess the temporal gradation in the signal
intensity of the amygdala. Seventeen of these studies reported
learning-related responses of the amygdala (e.g. [45,48,57,66]):
fourteen studies found initial increase and rapid decrease of
activation during repeated exposure to unpleasant stimuli (e.g.
[33,44]), whereas three studies only reported increases of
amygdala activation during the acquisition phase [40,51,58].
The remaining 19 delay conditioning studies did not report
activation of the amygdala. Seventeen of them did not test for
temporal aspects of amygdala activation (e.g. [39]). Sixteen delay
conditioning studies found activation of the ACC (e.g. [25,26]),
five of the posterior cingulate cortex (PCC) (e.g. [30]), and two
reported activation of the cingulate cortex [33,57]. Sixteen studies
detected insular activities (e.g [39,54,65]). These areas are all part
of the classical key fear network as described previously [22,23].
Activation of brain areas such as the hippocampus, the
cerebellum, the thalamus, the striatum or the sensory cortices
has been reported by fewer delay conditioning studies, underlining
the considerable variability in neuroimaging findings.
Hippocampal activity, mostly lateralized, was found for example
by ten studies (e.g. [34]). Twelve studies showed activation of the
striatum (including putamen, accumbens nucleus, caudate nucleus)
(e.g. [39,61]), whereas thalamic activity (including pulvinar,
geniculate nucleus) was reported by twelve delay conditioning
studies (e.g. [48]) (for details, see Figure 2). As argued below, we
believe such differences in results to be methodological in origin
[14].

Brain regions involved in trace fear conditioning. So far,
only two fMRI studies have employed solely trace conditioning
[66,67] and four fMRI studies were conducted on both delay and
trace conditioning [4,5,27,28] (for details, see Table 1), all with
either auditory, visual or tactile aversive stimulation. Again, the
amygdala and the medial temporal lobe (MTL) were
predominantly activated during the acquisition of trace
conditioning in five studies (e.g. [4,27,66]). Activation of the
ACC was apparent in three studies [5,66,67] and of the PCC in
one study [5]. The hippocampus was bilaterally activated in three
trace conditioning studies [5,27,66], and two studies showed
additional activation of the insula [66,67]. These fear-related
structures such as the amygdala, the hippocampus, the ACC, the
msula and the MTL were active independently of US-modality.
Furthermore, activation was observed in different areas of the
frontal cortex such as the dorsolateral prefrontal cortex (DLPFC)
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147 citations retrieved from Pubmed database search;

Combination of keywords: “conditioning”, “extinction”,
“aversive”, “fear”, “fMRI”, “neuroimaging”, “PET” and
“humans”

13 articles identified from manual searches of references
of articles and reviews

A 4

Inclusion criteria:

Human Fear Conditioning

(1) PET or fMRI studies
(2) study on healthy volunteers
(3) cued fear conditioning and/ or

extinction

| 160 potentially appropriate results |

| 114 references excluded

A 4

M
@)
@)
4)
®)

®)
@)
®)
©

(10) non relevant articles (n=12)

Reasons for exclusion:
study on patients (n=41)
pharmacological modulation (n=7)
subliminal or masked presentation (n=1)
context conditioning (n=8)

combination of fear conditioning with
other experimental tasks (n=5)

study on animals (n=3)
reviews (n=25)
appetitive conditioning (n=7)

other technique used ( e.g. EEG) (n=5)

46 references finally included in
the review

Figure 1. QUOROM flow chart used to identify studies for review.

doi:10.1371/journal.pone.0005865.9001

(e.g. [66]) or the middle frontal gyrus [5,27] in four trace
conditioning studies. Activation of other brain areas, such as the
cerebellum, was reported in one study, of the motor cortices in
three studies (e.g. [4,5]) (for details, see Figure 2). Again, this
variability in study results may be due to critical design
characteristics, which will be discussed below.

Brain areas involved in fear extinction. Although
extinction is very relevant in therapeutic settings, only seven
studies with focus on extinction met criteria for our review
[37,42,44,47,51,56,60]. All seven wused a classical delay
conditioning design during acquisition. Six studies used a tactile
US (e.g. [51]), and one an olfactory US [37]. Three of the seven
studies reported major activation foci in the amygdala [37,42,44],
two in the ACC [51,60], one study in the PCC [47] and three in
the mnsula (e.g. [37,47]), whereas four studies observed activation in
frontal regions such as the prefrontal cortex (PFC), and the
ventromedial prefrontal cortex (VMPFC) (e.g. [60]). Activation of
the hippocampus was found in only one study [42] (for details, see
Figure 2).

Although consensus exists that the amygdala again plays an
important role in extinction, a closer look reveals that the details
about amygdala activation vary. As with acquisition, four of the
seven studies reported habituation of the amygdala response
during extinction [37,42,44,51]. To assess the temporal gradation
in signal intensity of the amygdala, two of them split up the
extinction phase into an early and late phase [44,51], and one
study tested for time Xcondition interaction [37]. Knight and co-
workers (2004) reported an increase of right amygdala and a
decrease of left amygdala activation during extinction, by t-test

@ PLoS ONE | www.plosone.org

comparison [42]. Three other studies that did not analyze
temporal activation patterns failed to find amygdala activation
[47,56,60].

The influence of CS-US-contingency. Contingency
describes the rate of pairing between the previously neutral CS+
and the aversive US, and therefore the predictability of the US in
relation to the CS. In some cases, the CS is paired with the US on
every trial (continuous pairing), whereas in other conditioning
designs, CS and US are paired intermittently.

Contingency rates in neuroimaging studies cited here are quite
heterogeneous. Twenty-five studies used 100% contingency (e.g.
[29,43,44.,63]), two employed an 80% or a 90% pairing rate
[41,46], six included a 50% partial reinforcement procedure (e.g.
[37]), and eight described lower contingencies of 40%, 33%, 25%
or 0% (e.g. [33,48,51,52,65]). Three studies used 100% and 50%
contingency rates during different phases of the experiment
[31,32,60]. Another study employed a continuous pairing design
during trace conditioning and a 50% pairing rate during delay
conditioning [27]. One study did not report any contingency rates
[30]. Results of the studies cited here indicate that activation of the
amygdala seems to be independent of contingency rate: While
thirteen studies employing continuous (100%) pairing, eight
studies using 50% reinforcement and six studies with 0%, 25%,
33%, 40% and 80% all reported amygdala activation, (e.g.
[26,29,37,49,66]), others with the same pairing rates did not (e.g.
[25,60]).

Awareness about this CS-US-contingency, mediated by con-
scious US-expectancies or by explicit instruction about the CS-
US-contingency, also influences brain activation. Participants were
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Conditioning

design

B Delay

Trace

O Extinction

No. of studies reporting activation

Amygdala ACC Insula HC  StriatumThalamus Frontal Motor,
Cortex sensory
cortices

Brain areas

Figure 2. Brain areas involved in aversive conditioning and/or extinction. Different brain areas (with at least unilateral activation during
aversive conditioning and/or extinction) are plotted against the x-axis. The number of studies out of 46 studies per brain region is plotted against the
y-axis, taking into account the conditioning design which is delay conditioning in 40, trace conditioning in two, delay and trace conditioning in four,

and extinction in seven studies.
doi:10.1371/journal.pone.0005865.9002

explicitly informed about the CS-US pairing before the experi-
ment in some studies (e.g. [33]), but not in others (e.g. [44]).

Finally, the choice of contingency rates is related to a problem
specific to neuroimaging studies: the choice of contrasts between
conditions. In a continuous pairing paradigm where the CS+ is
always presented with the US, contrasts may be calculated
between CS+ and CS- (e.g. [58]), between paired und unpaired
subjects (e.g. [42]), or between conditioned and pseudo-condi-
tioned phases - in which CS and US are not correlated in time (e.g.
[25]). In a partial-reinforcement design, CS+ may be paired or
unpaired with the US. Here, contrasts are mainly calculated
between CS+unpaired and CS- (e.g. [26]).

Characteristics of the CS and US. Neuroimaging studies
on fear conditioning have used different types of conditioned and
unconditioned stimuli. Conditioned stimuli were presented
visually, acoustically or olfactory. Thirty-one studies used a
visual cue as CS: five studies used coloured lights (e.g.
[28,42,53]), one study photographs [30], and four videotapes
(e.g. [34,35]). Seven studies, however, employed photographs of
human faces (e.g. [24,26,37,49,64]), and 14 used geometrical
figures (e.g. [51,58]). Fourteen investigations used auditory
conditioned stimuli (e.g. [31,41,46,66]), whereas only one study
employed odours [45]. Again, activation of the amygdala was
independent of CS-modality: five studies with auditory CS (e.g.
[66]), 21 using a visual CS (e.g. [57]) and one study which
employed an olfactory CS [45] reported amygdala activation.

Unconditioned stimuli differ in modality (auditory, olfactory,
tactile, and visual), in salience, as well as in unpleasantness, factors
that may all influence the neurobiology of fear learning. Twenty-
four studies used electric shocks (e.g. [5,27-29,33,44]). The
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intensity of the shock is often assessed and adjusted to an
individual level described as “unpleasant but not painful”, such
that voltage varied from 40 V to 70 V between participants (e.g.
[30,37,43,44,61,68]). Electrical stimuli were administered to
different areas, such as the wrist (e.g. [44,51,52]), shin (e.g. [58]),
foot (e.g. [27]), or finger (e.g. [33,39]). Further tactile stimulations,
such as air blasts are reported in eight studies [4,25,46,53,56,60],
thermal stimulation with hot water in one study [54], and painful
phasic esphageal distention in another study [60]. Nine studies
cited here included auditory US, such as loud unpleasant tones
[26,66], or loud white noises (e.g. [31,41,48,49]) at intensities of
95dB to 100dB, for 500—-1000 ms. A verbal stimulus, a human
scream, was presented as unconditioned stimulus in one study
[24]. Another study used an olfactory unconditioned stimulus in
human fear conditioning, such as ‘“rotten eggs” and ‘“‘sweaty
socks” [37]. Finally, pictures (IAPS; International Affective Picture
System [69]) or aversive videotapes were presented as aversive
stimuli in three studies [30,40,67].

Again, activation of the fear network was observed to be
independent of US-modality. In spite of different USs, activations
of the amygdala, ACC and insula were reported for every stimulus
type. Of the 33 studies with tactile stimulation, fifteen found
activation of the amygdala (e.g. [29]), ten of the ACC (e.g. [35]),
and ten of the insular cortex (e.g. [39]). Other main activation foci
for tactile stimuli concern the thalamus in seven (e.g. [46]), and the
striatum in ten studies (e.g. [52]). Other regions such as the
occipital cortex, motor or somatosensory cortices are also activated
during tactile conditioning in 16 studies (e.g. [27,35]). By contrast,
the nine studies on auditory fear conditioning mainly report
activation of the fear network, with emphasis on amygdala in
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seven (e.g. [31]), on ACC in five (e.g. [48]), and on insula in five
studies (e.g. [41]). Moreover, activations of the motor or sensory
cortices (e.g. auditory, occipital) are also apparent in five studies
(e.g. [26]). The one study on olfactory conditioning mainly reports
activations in amygdala, insula and orbitofrontal cortex (OFC)
[37], areas that are also associated with the perception of disgust
[70,71]. All three studies on visual aversive conditioning reported
activation of key fear areas such as the amygdala and ACC or the
PCC [30,40,67]. Activation of the insula was found in two of the
studies (e.g. [67]). Furthermore, activations of the DLPFC, OFC,
thalamus, nucleus accumbens and the occipital cortex are
apparent in these visual conditioning studies (e.g. [40]) (for details,
see Iigure 3).

Our review reveals that 38 of the reviewed studies employed
different modalities of US and CS. Only five studies chose an
auditory CS paired with an auditory US (e.g. [31,41,66]), and
three were conducted on visual CS and US (e.g. [40]). Again,
research is needed to quantify this effect of common CS-US-
modality on neuroimaging results.

Independent assessment of the conditioning process. A
control procedure to ensure that a physiological response towards
the CS+ has actually occurred, with data from dependent variables
other than brain activation, was used in 41 of the 46 studies cited
here. Autonomous, endocrine, or behavioral responses, such as
skin-conductance responses, heart rate, verbal responses (ratings of
the CS, US-expectancy ratings, or CS-US-contingency
assessment), reaction times, or eye-blink reflex qualify as
parameters of successful conditioning. The majority of the
studies employed independent measures online during scanning.
Autonomous measures, such as heart rate, were applied in two
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[35,63], skin-conductance responses in 26 (e.g. [4,32,50,62,64,
65]), and eye-blink startle response in eight studies (e.g.
[24,25,46,56]). Only three studies used SCR outside the
scanner: before and after conditioning [38] or in an additional
experiment [44,57]. Online assessments of verbal responses, such
as CS-ratings, were used in one study [30], and US-expectancy
ratings in seven studies (e.g. [28,31,62]). Two studies compared
ratings of the CS before and after scanning [57,64]. Twelve
studies employed CS-US-contingency ratings and three studies
CS-ratings post experimentally (e.g. [27,40]). To conclude,
twenty-three studies combined different measurements of the
conditioned response (e.g. [27,44]) (for details, see Table 1,
Figure 4). To summarize, objective measurements are necessary
when studying conditioning, to verify that conditioned learning
has indeed occurred.

Discussion

This review deals with the neural correlates of human fear
conditioning in current fMRI and PET studies. Our analysis
indicates that neuroimaging studies on human fear conditioning
and extinction activate a common core fear network which is in
accordance with evidence from other sources (e.g. [17]). Some
neuroimaging studies do not find these activations. This
heterogeneity is not surprising taking into account the large
methodological variety in imaging and design parameters.
Methodological differences were found a) in the conditioning
protocol (delay, trace), b) in the contingency rate (100%, 80%,
50% or less) and awareness, ¢) in the modality of CS and US
(tactile, auditory, visual, olfactory), and d) with respect to the
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Figure 3. Brain areas involved in aversive conditioning according to the modality of the US. Different brain areas (with at least unilateral
activation during aversive conditioning) are plotted against the x-axis. The number of studies out of 46 studies per brain region is plotted against the
y-axis, taking into account US modality, which is tactile in 33 studies (such as electrical shocks), auditory in nine studies (such as noise), olfactory in
one study (such as odors), or visual in three studies (such as aversive pictures).
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further assessment of the conditioned response (e.g. psycho-
physiological measurements, verbal ratings).

Neuroimaging studies have substantially extended our under-
standing of fear conditioning and extinction, adding in vivo
evidence from humans to previous electrophysiological and lesion
studies from animals [3,72]. Consistent with comparative animal
data, neuroimaging investigations have corroborated the finding of
a neural fear network activated during fear conditioning. Within
this core fear network, key structures for the acquisition and the
extinction of conditioned fear have been identified, although there
is considerable methodological heterogeneity between studies, with
some of them not reporting these activations. Furthermore, it
turned out that anatomical regions relevant in fear conditioning
are also involved in the extinction of fear memories. In conformity
with animal and lesion data, our review indicates that the
amygdala, as one principal structure of the limbic system, is one of
the key regions involved in fear conditioning and extinction.
Amygdala activation occurs in response to emotional stimuli and is
therefore regarded as the gate keeper funnelling emotionally
relevant information into different processing channels. This
region is activated during conditioned-fear acquisition as well as
during the expression of learned fear (see for an overview [23]).
Furthermore, amygdala activation undergoes rapid habituation
during acquisition and extinction that should be taken into
account in neuroimaging studies (e.g. [26]). This typical response
profile of the amygdala may not be detected by categorical
comparisons of e.g. CS+ and CS-, as this contrast reflects time-
invariant neural responses. Consequently, some studies carried out
an analysis that tested for this type of time-dependent response
profile. They set up a statistical model that allows characterizing
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the activation of the amygdala by a time by condition interaction.
Therefore, we suppose that testing for interactions between
conditions and time may reveal conditioning results that otherwise
remain hidden, such as amygdala activation.

Furthermore, some brain regions, especially the MTL, are
difficult to assess using echo-planar imaging (EPI) because they are
highly vulnerable to susceptibility artifacts [73]. These differences
may cause image distortion and signal dropout [73-75]. This
might be another reason why some studies did not find amygdala
activation during conditioning. Activation of the insula, another
central structure for emotion processing, was also shown in 40% of
the neuroimaging studies. Phelps and co-workers (2001) assume
that the insula cortex conveys a cortical representation of fear to
the amygdala [52], and that uncertainty about the advent of the
aversive stimulus during intermittent pairing is reflected by insula
and dorsal prefrontal cortex activation [31,32,76]. Another region
belonging to the core fear conditioning and extinction network
described by the majority of the cited neuroimaging studies is the
ACC (for an overview, see [17,26]). The ACC plays an important
role in approach and avoidance learning [77] as well as in fear
learning [78]. The frontal cortex is particularly crucial for
emotional regulation and therefore for the extinction of condi-
tioned fear. Although extinction is the essential process in
therapeutic settings, only seven studies have so far focused on
extinction. From both animal data and theoretical considerations,
it is evident that fear extinction involves mainly interactions
between cortical and subcortical structures, such as the PFC and
the amygdala or the hippocampus (see for an overview [79]). As
one of the principal structures of the brain’s extinction circuitry,
the PFC regulates the expression of fear by inhibiting the
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amygdala, such that the fear-conditioned stimulus is prevented
from causing a conditioned fear response [79-81]. In this review,
only one study reported hippocampal activation during extinction.
This is surprising, because from other studies is known that the
hippocampus and the VMPFC seem specifically important during
late phases of extinction, and therefore for the retention of
extinction [51,82].

There are, however, considerable variances and discrepancies
between studies. Whereas some studies only report activation of
the core network, others do not find these activations or observe
activation within additional brain regions, such as the hippocam-
pus, striatum, sensory cortices or thalamus. The choice of
conditioning protocol, CS-US contingency, and modality of the
US seem to be very important factors modifying brain-activation
patterns in fear conditioning studies.

Our review indicates that of these factors, the conditioning
protocol has great impact on brain activation. Delay conditioning
leads to more rapid learning of the CS-US association than trace
conditioning [83-85]. Thus, from the experimental point of view,
delay conditioning has the advantage of a shorter acquisition time,
fewer trials, and a more rapid conditioning process than trace
conditioning. Additionally, delay conditioning designs are known
to extinguish associations faster than those established during trace
conditioning [86]. Therefore, all studies that investigated extinc-
tion employed delay conditioning in advance. By contrast, in trace
conditioning, CS is separated from the US by a temporal gap,
resulting in prolonged acquisition times and a larger number of
trials being required to form an association. The length of the
temporal gap and its distance to the subsequent stimulus also
exerts a strong influence. When the US is followed immediately by
the next CS, backward conditioning (US-CS associations) or contextual
conditioning can occur. In backward conditioning, the US is
associated with the next CS, so that no conditioned response is
established [87]. Contextual conditioning describes the association
of the CS with contextual cues [88,89]. Hence, there is no
contiguity in trace conditioning. While in general, delay and trace
conditioning involve comparable fear-related networks, activation
of the hippocampus is typical of trace conditioning. In trace
conditioning, hippocampal activation is required to bridge the gap
between CS and US, retaining a memory trace which is needed to
form an association between CS and US [90]. The hippocampus is
mvolved in trace conditioning irrespective of the length of trace
interval. However, animal data show that some neurons in the
hippocampus encode the duration of trace interval [91]. Thus we
assume that the level of hippocampal activation may be enhanced
by increasing the length of trace interval.

Another important variable contributing to heterogeneity of
neuroimaging results is the CS-US pairing or contingency rate.
Effects of CS-US-contingency on conditioning have been
repeatedly described in the psychological and behavioral literature
[31,32,92-94]. Contingency rates determine how fast conditioned
responses are acquired, and regulate extinction processes. Our
review reveals that the activation of the core fear network
consisting of amygdala, insula and ACC is independent of pairing
rate, but the time courses of neural responses and the degree of
activation may be influenced by contingency. In general, a
predictable US is less aversive than an unpredictable US.
Therefore, the continuous (100%) pairing of CS+ and US reduces
fear responses and activity in fear-related brain areas [31,32], and
promotes the habituation of the amygdala [26,44,57,58], relative
to intermittent pairing. Nevertheless, the majority of the studies
cited in this review employed a continuous pairing paradigm. In
intermittent procedures, US expectancy and response frequency is
decreased, which slows conditioning and prolongs the extinction

@ PLoS ONE | www.plosone.org

13

Human Fear Conditioning

phase [31,32,51]. The choice of these pairing parameters has
important implications for analysis of imaging data. First, in the
light of habituation processes, analysis of time by condition
interactions may well improve the detection of amygdala
activation. Second, the choice of the contingency rate influences
the definition of contrasts of interest between test and control
conditions. The cited studies differ in their contrasts of interest
which may also influence resulting activation and complicate
comparing studies even further. For example, in a 100% pairing
design resulting differences in neural responses may be confound-
ed by US-induced BOLD changes. In contrast, in a partial
reinforcement design, differences in neural responses are only due
to the anticipation of the US.

Our review also illustrates that there is an ongoing controversy
on the role of contingency awareness. It seems clear that awareness
of the CS-US contingency bridges the CS-US gap in trace
conditioning [95,96]. Therefore, it may be very important for
trace conditioning, but less so for delay conditioning. Still, this
topic requires further investigation. While some researchers found
autonomic fear reactions only in contingency-aware subjects,
others reported activation of the fear-network independently of
contingency awareness [40,97,98]. For example, Phelps et al.
(2001) showed that instructions alone can induce fear and that
activation of the amygdala can occur without direct experience of
the aversive event [52]. Tabbert et al. (2006) explicitly investigated
the effect of contingency awareness. They either informed their
subjects about the relationship of CS and US or prevented
contingency detection by employing a distracter figure or a
working-memory task. Amygdala and the OFC were only
activated in the unaware group [98], but Klucken et al. (2008)
found activation of fear-related areas independent of awareness
[40]. However, robust conditioned skin-conductance responses
have been observed only in aware participants who acquired a
cognitive representation of CS-US-contingencies, and who were
able to recall the correct contingency [97]. At this moment,
concrete advice as to whether participants should be informed
about contingency to obtain faster conditioning responses, is
premature.

Concerning the modality of the US and CS, 33 of the 46 studies
employed a tactile US, making it the most frequently applied US.
Only nine studies used auditory aversive stimuli which may be due
to the surrounding and interfering scanner noise. To the best of
our knowledge, the problem of scanner noise as being aversive
itself has not been discussed so far. The activation of the key fear
network including amygdala, ACC and insula seems to be
independent of the applied stimuli (auditory, olfactory, tactile,
and visual). Nevertheless, many studies do not show activation of
the key fear network or observe modality-specific activations. In
fear conditioning with tactile US, activation of the thalamus, the
striatum, somatosensory and of motor cortices is often reported.
These areas are also associated with the nociceptive system, pain
anticipation and perception (e.g. [99-102]). The nociceptive
system includes the somatosensory cortices, ACC, insula, prefron-
tal and parietal cortices [103]. Koyama et al. (2005) showed that
ACC activation increases with the magnitude of expected pain,
and pain-intensity [104]. The thalamus, a major relay site for
nociceptive inputs to cortical and subcortical structures, is thought
to be responsible for the onset plasticity in the amygdala during
fear conditioning [105]. Therefore, we suggest that a “pain-fear
network’ may be activated during tactile fear conditioning. The
one study on olfactory conditioning reported mainly activations of
amygdala, ACC and OFC [37]. Odour perception is more often
related to disgust than to fear. Disgust and fear are basic emotions
with different elicitors and expressions, and appear to be mediated
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by different neuronal circuits [70,71,106,107]. Therefore, further
research is needed to clarify if olfactory conditioning activates a
“disgust-fear-network™ rather than a mere “fear-network”. To
conclude, it seems likely that odours, visual or acoustic stimuli may
weaken conditioning effects and may cause activations in different
brain regions than electrical stimuli. But to the best of our
knowledge, this has never been tested directly in neuroimaging
studies. Again, research is needed to quantify the effect of common
CS-US-modality on neuroimaging results.

Concerning the modality of the CS, the majority of the studies
used visual stimuli as CS, especially photographs of human faces.
Faces as CS might be more emotionally relevant to human
subjects than tones or coloured lights [108]. However, there seems
to be a gender-related effect that needs to be considered in
neuroimaging studies. For example, in women, the presentation of
faces leads to stronger and persisting amygdala activation, while
amygdala activation in men decreases rapidly [109]. Moreover, it
1s known that the amount of preexposure influences the outcome
of aversive learning. These phenomena, so called ““latent inhibition”
and “US-preexposure effect”’, emphasize that novel and unknown CS
and US produce more robust conditioning effects than familiar
stimuli [31,110]. The disadvantage of unfamiliar stimuli is the
mixing of novelty effects and conditioning effects.

Finally, it is very important to ensure that conditioning really
takes place by sampling a second psycho-physiological or
behavioral measure to avoid contamination of successful condi-
tioning with unsuccessful trials. Skin-conductance responses as
measures of autonomic responses have been widely investigated
and are well validated [41]. Classifying subjects as “responders”
and “non-responders”, or classifying single trials as “successful” or
“not successful” conditioning based on autonomous measures has
proven extremely useful, to exclude erroneous trials or subjects
from further analysis (e.g. [28,51]). However, technical issues in
the scanner environment have to be solved. Measurement of skin-
conductance responses may well prolong the experiment beyond
critical time values for such experimental designs. On the other
hand, verbal ratings may easily be influenced and consciously
manipulated. Alternatives are the assessment of heart rate, or of
the startle reflex, which is an elegant measure if an eye-tracker or
electromyography is available. In all, the combination of different
psycho-physiological and behavioral methods has proven valuable
to assure that conditioning has really taken place.

Strengths and Limitations
To the best of our knowledge, this review is the first
summarizing current literature on neuroimaging fear conditioning
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and extinction and providing an overview on similarities and
heterogeneities between study results. In this review, we focused on
discussing experimental factors that are typical for conditioning
paradigms, such as the design (delay, trace), the contingency rate,
the contrasts of interests, or the stimuli (CS, US), and that may
contribute to the reported heterogeneity in neuroimaging results.
Other experimental factors that may influence fear conditioning
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genetic variables (e.g. [17,113-115]), or personality factors (e.g.
[116-124]). These variables may also contribute to the diversity of
neuroimaging results. Another limitation is that our search did not
include conditioning studies that were conducted on context
conditioning, on patients, on pharmacological interventions, or
that included another experimental task. However, we excluded
these studies to limit the number of potential influencing variables.

Conclusion

This review provides an overview of 46 current neuroimaging
studies on fear conditioning and extinction. Neuroimaging yields
new in-vivo evidence with respect to humans revealing and
corroborating a consistent pattern of key areas in aversive
conditioning and extinction. These structures encompass the
amygdala, ACC, and insular cortex for both associative condi-
tioning and extinction. This confirms previous electrophysiological
or lesion studies on animals. The key fear-related brain areas, such
as amygdala, ACC and insula, are activated independently of
specific design parameters. However, some studies still do not
report these findings or observe additional modality-specific
activations. We pinpointed a number of methodological differ-
ences between the functional imaging studies and conclude that
these may contribute to the observed variance between results.
Prime candidate factors for modifying brain activation patterns are
the choice of conditioning protocol, CS-US contingency, and
modality of the US. Thus, the contingency and timing parameters,
the modality of the CS and US, as well as the assessment of
conditioned responses are important for conducting and inter-
preting neuroimaging studies on fear conditioning and extinction.
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