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Eukaryotic cells ensure error-free progress through the cell
cycle by monitoring (1) the completion of cell cycle events, (2)
damage to critical cellular components, or (3) structural
changes such as the attachment of kinetochores to the
mitotic spindle. In the presence of damage, or in the face of a
reduced capacity to complete essential events, cells are
capable of delaying the cell cycle so that damage can be
repaired, or previous cell cycle phases can proceed to com-
pletion. Although such “checkpoints” have been extensively
studied in many organisms—and much is understood with
respect to the monitoring of DNA replication and DNA
damage—little is known with regards to mechanisms that
might monitor the completion of cytokinesis. In this review I
summarize recent work from the fission yeast, Schizosaccharo-
myces pombe, describing the existence of regulatory modules
that aid in ensuring the faithful and reliable execution of
cytokinesis. Together, these modules promote the mainten-
ance of a “cytokinesis-competent” state characterized by
delayed progression into mitosis and the continuous repair
and/or re-establishment of the acto-myosin ring. In this way,
fission yeast cells are able to increase the likelihood of
successful cell division prior to committing to a subsequent
cell cycle. The recent demonstration of conservation between
S. pombe components of these modules, and human proteins
with defined roles in preventing cell division failure, suggest
that the lessons learned in S. pombe may be applicable to
other eukaryotes.

The Fission Yeast, Schizosaccharomyces pombe

The fission yeast, Schizosaccharomyces pombe, has been used exten-
sively as a model system for the molecular-level understanding
of a diverse array of biological processes (e.g., cell cycle control,
RNA interference, cytoskeletal dynamics, DNA damage/repair).1-7

Interestingly, of the ~5000 genes in S. pombe, at least 172 share
significant similarity to human genes whose mis-regulation leads

to disease, and at least 23 share significant similarity to human
genes with roles in the development of cancer.6 Thus, S. pombe
is an excellent model with which to understand the complex
regulation of genetic networks and the consequences of their
mis-regulation. Nowhere has this been more apparent than in the
study of cytokinesis, where a multitude of recent studies have
dramatically increased our knowledge of the mechanisms govern-
ing this fundamental process.5,8-12 In many respects these studies
have not only increased our knowledge regarding cytokinesis,
but have also increased our general understanding of (1) how
eukaryotic cells assemble and regulate complex genetic networks
and (2) how these regulatory modules relate to higher order
biological phenomenon.

While much is now known regarding the assembly and
constriction of the actomyosin ring, our understanding of the
mechanisms (if any) monitoring the completion of cytokinesis is
lacking. In this review, I first present a brief summary of the
regulatory modules required for the proper spatial and temporal
regulation of cytokinesis in fission yeast. Next, I present an
in-depth account of evidence that supports the existence of
genetic networks with roles in promoting the reliable execution
of cell division.

Spatial and Temporal Regulation of Cytokinesis
in Fission Yeast

Cytokinesis comprises the period of the cell cycle in which newly
segregated chromosomes are irreversibly separated into two
independent daughter cells. While the absence of cytokinesis is
tolerated under certain specialized circumstances—the develop-
ment of Drosophila embryos, for example—it is normally
essential for the proliferation and differentiation of actively
growing cellular populations.13,14 In addition, recent work has
also established that cytokinesis failure has dire consequences with
respect to the maintenance of genomic integrity.15-17

Cytokinetic Actomyosin Ring Assembly

In fission yeast, just as in more developmentally complex
eukaryotes, cytokinesis is achieved through the regulated assembly
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and subsequent constriction of a contractile actomyosin ring. The
fission yeast actomyosin ring includes two type II myosin heavy
chains, Myo2p and Myp2, together with their associated
light chains, Cdc4p (essential light chain) and Rlc1p (regulatory
light chain). In addition, the ring includes the IQGAP related
protein, Rng2p, the PCH domain protein, Cdc15p, Cdc12p
(formin), Cdc8p (tropomyosin), Cdc3p (profilin), as well as the
actin filament cross linking proteins, Ain1p (a-actinin) and
Fim1p (fimbrin). Mutations in essential actomyosin ring genes
(e.g., cdc3, cdc4, cdc8, cdc12, rng2 and myo2) lead to the so-called
“rng” phenotype; a phenotype characterized by the inability to
assemble proper actomyosin rings and the subsequent appearance
of elongated and branched cells with multiple nuclei and
disorganized septal depositions.8,11,12,18

Contractile rings form from pre-cursor “interphase nodes”
containing the analin-like protein Mid1p, the kinesin, Klp8 and
the Rho family guanine nucleotide exchange factor, Gef2. Mid1p,
which exits the nucleus and positions itself at the medial cortex
prior to mitosis, acts as a “marker” for the future site of cell
division (see below).19 In addition to Mid1p, a group of regulatory
kinases, Cdr1p, Cdr2p and Wee1p, are also present in interphase
nodes. These kinases, together with the DYRK kinase, Pom1p,
play a role in co-ordinating ring constriction with entry into
mitosis.8,10,19-24

Pom1p localizes to the cell tips where it inhibits the Cdr1p and
Cdr2p kinases and aids in restricting Mid1p to the medial region
of the cell. As newly divided S. pombe cells grow in length—and
the population of Pom1p molecules moves further from the
medial region—this inhibition is relieved, allowing Cdr1p and
Cdr2p to negatively regulate the Wee1p kinase through phos-
phorylation. In the presence of this negative regulation Wee1p is
no longer able to inhibit the function of the cyclin dependent
kinase, Cdc2p, thereby promoting the G2 to M transition. Thus,
this elegant system allows for the proper spatial positioning of the
ring, as well as for the co-ordination of ring assembly with entry
into mitosis.25-28

Upon entry into mitosis the interphase nodes mature into
“cytokinesis nodes” by the sequential recruitment of myosin II
(along with its light chains), Rng2p, Cdc15p and Cdc12p. Once
recruited, Cdc12p (formin), together with Cdc3p (profilin),
promote actin filament polymerization. With the aid of tropo-
myosin, fimbrin and a-actinin, the actin filaments condense into
an organized, bundled ring. Two non-exclusive models—the
“leading cable” model and the “search, capture, pull and release”
model—have been proposed to explain the condensation and
constriction process.8,10-12,20-24

The Septation Initiation Network

Once formed, the timing of ring constriction is controlled by
an elaborate signaling pathway known as the septation initiation
network (SIN). This network localizes to the spindle pole body
(SPB; the centrosome equivalent in yeast) and triggers ring con-
striction.9,29,30 In the absence of SIN signaling the actomyosin
ring forms upon entry into mitosis, but then disassembles
prematurely in late anaphase.9,18,31-34

The Spg1p GTPase acts as the “on-switch” of the SIN. Spg1p
is negatively regulated by the two component GTPase activat-
ing protein (GAP), Cdc16p-Byr4p. Overexpression of Spg1p, or
deletion of either Cdc16p or Byr4p, leads to multiple rounds of
ring and septum formation without cell separation and interven-
ing nuclear divisions.9,35-39 When in its GTP bound form Spg1p
promotes the recruitment of the Cdc7p protein kinase, which in-
turn recruits the Sid1p-Cdc14p protein kinase complex to the SPB.

The scaffold proteins, Sid4p and Cdc11p also play a crucial
role in SIN signaling as they function together in the recruit-
ment of SIN components to the SPB. The most downstream
component of the SIN is the Sid2p-Mob1p kinase complex whose
enzymatic activity peaks during cytokinesis in a SIN dependent
manner. This complex localizes to the SPB throughout the cell
cycle, but also accumulates at the division site immediately prior
to cytokinesis and is thought to transmit the division signal
from the SPB to the actomyosin ring triggering its constric-
tion.9,29,30,33,40-47 In addition to controlling ring constriction, more
recent work has suggested that the SIN may also play a role in ring
assembly through the recruitment of Cdc15p.48

Regulatory Networks Governing the Linkage
between Mitosis and Cytokinesis in S. pombe

In fission yeast, it is clear that the initiation of cytokinesis is linked
to the completion of the preceding mitosis. This has been demon-
strated by experiments involving the spindle checkpoint effector,
Mad2p, which, when overexpressed, induces a metaphase arrest
with increased levels of the cyclin dependent kinase, Cdc2p.49

Under these conditions septation is normally prevented, however,
in backgrounds where the activity of Cdc2p is reduced, cells are
competent to form septa despite their failure to exit mitosis.31

The mechanism by which this dependency is enforced involves
the SIN components Cdc14p and Sid1p. While the overexpres-
sion of Mad2p has no effect on the localization of upstream SIN
components, it does prevent the localization of Cdc14p and Sid1p
to the SPB. Furthermore, when assayed directly, Cdc14p-Sid1p
localization to the SPB occurs subsequent to Cdc2p kinase inacti-
vation.41 These data suggest that the localization of Sid1p-Cdc14p
to the SPB, and thus activation of the SIN, is linked to mitotic
exit through regulated inactivation of Cdc2p kinase activity.

Regulatory Networks Governing the Faithful
Execution of Cytokinesis in S. pombe

While the mechanism described above ensures that cytokinesis
only begins upon completion of the previous mitosis, it does not
ensure that the completion of cytokinesis precedes entry into the
subsequent mitosis. The remainder of this review will focus on
the mechanisms present in fission yeast which maintain this
dependency.

“Group I” vs. “Group II” Cytokinesis Mutants

The existence of a cytokinesis monitoring system was first
suggested by experiments in which the nuclear cycle kinetics of
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temperature sensitive cytokinesis mutants were carefully ana-
lyzed.50-52 These experiments clearly revealed two classes of
mutant behavior. While SIN mutants accumulate nuclei at a rate
indistinguishable from wild-type cells at the restrictive tem-
perature, rng mutants accumulate nuclei at a reduced rate.
Furthermore, the delay seen in rng mutants is abolished in SIN
mutant backgrounds. This indicates that rng mutants are being
affected by a SIN dependent mechanism capable of delaying
cell cycle progression. Cytokinesis mutants can thus be classified
into two groups: Group I (comprising mutants that exhibit a
delay in nuclear cycle progression upon cytokinetic perturbation),
and Group II (comprising the SIN mutants, which proceed with
the nuclear cycle unhindered upon failure in cytokinesis).53

The Clp1p/Flp1p Phosphatase

The Cdc14p family of phosphatases is comprised of a highly
conserved group of cell cycle regulators that function, at least
in part, through dephosphorylating Cdc2p substrates.54 Interest-
ingly, the fission yeast Cdc14p family ortholog, Clp1p/Flp1p,
has been strongly implicated as being a key regulator of the
cytokinesis monitoring system. First, unlike rng single mutants
(which are delayed in nuclear cycle progression), clp1D rng double
mutants exhibit normal nuclear cycle kinetics upon shift to the
restrictive temperature (thus placing the clp1 gene deletion in the
type II mutant category).50,52 Second, clp1D mutants maintain
a smaller cell size than wild type. This so called “semi-wee”
phenotype is displayed by cells in which the transition from G2-
to M-phase is accelerated and is a strong indication that Clp1p
acts as a negative regulator of Cdc2p in promoting mitotic entry.
Third, in contrast to clp1D and rng single mutants—which are
able to grow and form colonies at semi-permissive temperatures—
clp1D rng double mutants fail in cytokinesis and are inviable
under these same growth conditions.53 Lastly, upon entry into
mitosis, a sub- population of Clp1p re-localizes from the
nucleolus to the cytokinetic ring (as well as to the cytoplasm
and the mitotic spindle).50,52 Taken together, these data point to
Clp1p as being a likely candidate for maintaining the cell cycle
delay observed upon perturbation of cell division structures, and
show that clp1D cells are hyper-sensitive to a variety of muta-
tions that disrupt the function of the actomyosin ring. Further
evidence extending these observations—and showing that Clp1p
confers a definitive survival advantage—has come from experi-
ments utilizing low doses of the actin depolymerizing drug,
latrunculin A (LatA).

LatA is a commonly used drug that acts by sequestering actin
monomers.55 At high concentrations (20–50 mM) this action
prevents the re-assembly of monomers into actin filaments and
results in the complete abrogation of F-actin structures within
20 min (and ultimately in cell death).55,56 However, when used at
low concentrations (0.2–0.5 mM), the drug can be used as a tool
to mildly perturb the ring and activate the cytokinesis monitoring
system. For example, clp1D cells (synchronized in early G2 by
centrifugal elutriation) enter the first mitosis and form actomyosin
rings with similar kinetics to wild-type upon low dose LatA
treatment. However, in contrast to similarly treated wild-type

cells—which maintain the integrity of the ring for up to
120 min—clp1D mutants exhibit ring fragmentation/disassembly
within only 30 min. Furthermore, whereas wild-type cells are
able to delay mitotic entry (of the second mitosis) until the
actomyosin ring slowly constricts, clp1D cells proceed with the
second mitosis (becoming tetra-nucleate) with kinetics indistin-
guishable from mock treated controls.53 Moreover, while clp1D
cells are inviable on solid media containing low dose LatA, wild-
type cells are capable of growth and colony formation.53 Thus,
consistent with earlier genetic analysis, these data strongly indicate
that Clp1p mediates a survival advantage upon LatA treatment
through both delaying cell cycle progression and by stabilizing the
actomyosin ring.

A Dual Role for Clp1p
in Preventing Cytokinesis Failure

An intriguing question that arises when considering the cyto-
kinesis monitoring system concerns the relationship between
Clp1p mediated cell cycle arrest and actomyosin ring stability.
Clp1p plays a definitive role in regulating the transition from
interphase to mitosis. Thus, is increased stability of the actomyo-
sin ring simply the indirect consequence of cell cycle delay, or
does Clp1p play a direct role in stabilizing the ring?

To answer this question temperature-sensitive mutations in
the mitotic inducer cdc25 can be used to provide a Clp1p
independent cell cycle block upon low dose LatA treatment.
Using this strategy it is thus possible to assay actomyosin ring
stability under conditions where Clp1p activity is absent, but an
interphase arrest is still in effect. Intriguingly, actomyosin rings
in cdc25-22 clp1D cells, unlike cdc25-22 controls, do indeed
fragment in the presence of low doses of LatA.53 Thus, Clp1p
functions not only to delay cell cycle progression, but also to
maintain actomyosin ring integrity. These two functions com-
plement one another, providing the cell with a lengthened
duration in which to properly constrict the actomyosin ring and
successfully complete cytokinesis. It is of particular interest to
note the similarity between this bimodal mechanism and other
bimodal responses in other characterized checkpoints. For
example, in budding yeast, the checkpoint kinase Mec1p is
required not only to stabilize slowed or stalled replication forks,
but also to delay progress through S phase.57

Clp1p Increases the Duration of SIN Signaling

One of the most intriguing aspects of SIN mutants is their
ability to form, but not constrict actomyosin rings. Upon shift
to the restrictive temperature SIN mutants form rings which are
similar to those observed in wild-type cells, however, unlike
wild-type cells, these rings disassemble in late anaphase result-
ing in cytokinesis failure.58,59 This phenotype is remarkably
similar to the phenotype displayed by clp1D cells upon treat-
ment with low doses of LatA. Under these conditions clp1D
cells are also competent to form actomyosin rings, but these
rings disassemble in a similar fashion to SIN mutants prior to
constriction.53
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To help shed light on the relationship between Clp1p and the
SIN, the localization of SIN components (Cdc7p and Sid1p) were
examined upon low dose LatA treatment in clp1D and wild-type
backgrounds.53 Cdc7p and Sid1p localize to a single SPB during
late mitosis, and remain there until the completion of cytokinesis.
Thus, the localization of these components to the SPB serves as a
marker of active SIN signaling.60

Interestingly, these studies echoed results obtained when
examining actomyosin ring stability. Cdc7p and Sid1p localize
to the SPB with similar kinetics in synchronized, LatA treated
wild-type and clp1D cells. However, while wild-type cells are able
to maintain Cdc7p and Sid1p to the SPB for prolonged periods
of time (up to 240 min), clp1D cells display a dramatic drop in
the percentage of cells with these components at the SPB.53 In
addition, ring fragmentation in low dose LatA treated clp1D cells
can be rescued by mutations resulting in hyper-activation of the
SIN.53 Thus, taking all data together, these results strongly suggest
that Clp1p functions to extend the duration of SIN signaling
upon cytokinetic perturbations, thereby providing an improved
opportunity to properly constrict the ring.

Interestingly, the Clp1p dependent maintenance of SIN
activity complements work examining the DNA damage check-
point in fission yeast. In this work the authors demonstrate that
checkpoint arrest in the presence of DNA damage must be
actively maintained through the function of the Chk1p protein
kinase.61 This parallels the function of Clp1p in the sense that
Clp1p is not required to activate the SIN (clp1D mutants are
fully capable of constricting rings and forming septa under
normal growth conditions), but is important in extending the
duration of SIN signaling (as needed) in the presence of damage
to the cell division machinery.

Clp1p and the SIN function in a Positive Feedback Loop

Like members of the SIN, Clp1p displays cell cycle regulated
changes in its sub-cellular localization during normal logarithmic
growth. In interphase, Clp1p is present in the nucleolus and
SPB. However, upon mitotic entry, Clp1p re-localizes to the
cytoplasm/mitotic spindle/actomyosin ring and remains at these
locations until the completion of cytokinesis.50,52

Intriguingly, upon LatA treatment Clp1p is retained in the
cytoplasm for prolonged periods of time. This retention is
mediated through the action of the SIN kinase, Sid2p, and the
14-3-3 protein, Rad24p. Upon SIN activation, Sid2p phos-
phorylates Clp1p creating a binding site for the Rad24p, protein.
The interaction between Rad24p and Clp1p thus permits reten-
tion of Clp1p in the cytoplasm (Fig. 1). As expected, rad24D
cells are unable to maintain prolonged SIN signaling upon LatA
treatment leading to inviability and a terminal phenotype
indistinguishable from clp1D cells.62,63

Thus, upon cell division stress, SIN signaling is required for
the prolonged maintenance of Clp1p in the cytoplasm, and
Clp1p is required for the prolonged maintenance of SIN
signaling. These data therefore strongly support a model in
which Clp1p and the SIN act in a positive feedback loop
(cytoplasmic Clp1p promotes SIN activity and active SIN

promotes retention of Clp1p in the cytoplasm). In this way the
cytokinetic phase of the cell cycle may be extended and cell cycle
progress delayed. Together these mechanisms promote the suc-
cessful constriction of the actomyosin ring prior to the initiation
of mitosis.

Regulation of Gene Expression by Clp1p

Interestingly, Clp1p may also aid in maintaining a “cytokinesis
competent” state through affecting cell cycle dependent gene-
expression. In S. pombe, a trans-acting transcription factor com-
plex (pombe cell cycle box binding factor or PBF) controls a wave
of transcription at the M-G1 interval. Not surprisingly, the
genes in this wave encode proteins (including Sid2p and Mid1p)
with roles in cytokinesis and cell division. Remarkably, one

Figure 1. Regulatory dynamics during cytokinesis in S. pombe. (A) During
interphase, Mbx1p, a component of the pombe cell cycle box binding
factor (PBF), is bound and dephosphorylated by Clp1p. In this form
Mbx1p aids in repression of the transcription of a set of genes (including
mid1, sid2, and cdc15) with roles in cytokinesis. (B) During normal
cytokinesis—or upon extension of the cytokinetic (or “C”) phase
of the cell cycle upon perturbation of the cell division machinery—Plo1p
phosphorylates Mbx1p, relieving its inhibitory effect on the transcription
of cytokinesis genes such as sid2. Sid2p phosphorylates Clp1p, creating a
binding site for the 14-3-3 protein, Rad24p. Rad24p binding to Clp1p
promotes the cytoplasmic retention of Clp1p, preventing it from
de-phosphorylating Mbx1p.
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component of this complex, Mbx1p, is a substrate of Clp1p.64

When present in the nucleus, Clp1p, binds to and de-
phosphorylates Mbx1p, thereby aiding in the repression of
transcription of the M-G1 wave. In contrast, when Clp1p is
present in the cytoplasm, Mbx1p is free to be phosphorylated
(by the polo family kinase, Plo1p), thus stimulating transcription
of the M-G1 wave.64,65 Thus, this transcriptional mechanism
provides another avenue by which the cytoplasmic retention of
Clp1p promotes a “cytokinesis competent” state conducive to
the successful completion of cell division (Fig. 1).

Genome Wide Screens Identify Novel Regulatory
Modules with Roles in Preventing Cytokinesis Failure

As described above, the role of regulators such as Clp1p and
Rad24p in monitoring cytokinesis can be revealed experiment-
ally through the treatment of gene deletion mutants with low
doses of LatA. Thus, comprehensive and unbiased genome-wide
screens – based on hyper-sensitivity to LatA—can be used to
identify novel regulatory components of genetic networks with
roles in promoting successful cell division. Just such a screen
identified the lsk1 (latrunculin sensitive kinase knockout) gene.
Similar to clp1D cells, lsk1D mutants appear normal under typi-
cal growth conditions, but display severe cytokinesis defects
upon perturbation of the cell division machinery. Furthermore—
as shown by genetic analysis with various hypo- and hyper-
active SIN mutants—Lsk1p acts as a positive regulator of the
SIN.66

Somewhat surprisingly—given its role in regulating
cytokinesis—the lsk1 gene encodes a kinase that specifically
phosphorylates the Ser-2 residues present in the heptad repeats
(Y1S2P3T4S5P6S7) of the carboxy terminal domain (CTD) of the
largest subunit of RNA polymerase II, Rpb1p.67 Lsk1p displays
significant sequence similarity to human Cdk9p, which, together
with cyclin T, forms the p-TEFb complex that targets Ser-2
residues of the RNA pol II CTD and modulates pre-mRNA
processing.67,68 Importantly, S. pombe cells bearing rpb1 alleles
(rpb1-12XS2ACTD) encoding 12 copies of a mutant heptad in
which alanine is substituted for the second serine (in order to
mimic the non-phosphorylated state) display cytokinesis pheno-
types indistinguishable from lsk1D strains.69 These data are
consistent with a model in which the Ser-2 residues of the CTD
are indeed the biologically relevant targets of Lsk1p with respect
to cytokinesis. Furthermore, these data suggest that upstream
kinases might act through the CTD to selectively control the
transcription of certain gene subsets.

Interestingly, while gene expression profiling of mutants
impaired in Ser-2 phosphorylation display little change with
respect to the transcription of most genes, a small sub-set of
genes affecting cytokinesis—including the actin interacting
protein, Aip1p, the Clp1p interacting protein, Nsk1p, and the
SPB protein, Cut12p—were found to be differentially regu-
lated.70 The identification of these genes (particularly Nsk1p, a
known interactor of the critical Clp1p phosphatase), together
with genetic data showing that Lsk1p is a positive regulator of
SIN signaling, suggests a model in which Lsk1p dependent

modulation of transcription may also contribute to maintaining a
“cytokinesis competent” state.
The final group of regulators to be discussed define com-

ponents of a putative histone de-acetylase (HDAC) complex.
Identified through a comprehensive genome wide screen of
gene deletion mutants, Set3p, Snt1p, and Hif2p, are required
to prevent cytokinesis failure in response to LatA treatment.71

Moreover, consistent with a role in responding to LatA induced
damage to the cell division machinery, the protein levels of
all three regulators increase 2–3 fold upon challenge with the
drug.71

While global gene expression profiling of set3D cells revealed
that cytokinesis genes were not affected, the analysis did show
that Set3p was required to regulate genes with roles in the cellular
response to stress. In contrast to wild-type cells, which respond
to LatA treatment with strong induction/repression of the core
environmental stress response genes (~60% of the CESR genes
differentially regulated), set3D mutants are unable to properly
modulate the CESR genes (only 1% of the CESR genes differ-
entially regulated).71,72 Thus, cytokinetic failure in set3D cells may
be a manifestation of the mutant’s inability to properly adapt to
the presence of LatA leading to direct and/or indirect effects on
the function of the cytokinetic machinery.

When considering this last group of regulators it is particularly
intriguing to note that orthologs of Hif2p, Set3p, and Snt1p
exist in humans (TBL1X, MLL5, and NCOR2, respectively).
Furthermore—as might be expected based on the selection criteria
used in the fission yeast screen—these human orthologs have
themselves been shown to play a role in cytokinesis in human
cells.73 In this study the researchers discovered that the knock-
down of either MLL5, TBL1X, or NCOR2 resulted in defects
in furrow ingression, subsequent cytokinesis failure, and finally
the generation of bi-nucleate (i.e., tetraploid) intermediates with
twice the normal number of centrosomes.

Final Thoughts

The importance of understanding the mechanisms utilized by
eukaryotes to ensure the dependable execution of cytokinesis
was first articulated by Theodor Boveri almost 100 y ago.74 In
his classic work “Concerning the origin of malignant tumours”
Boveri hypothesized that tetraploid intermediates—derived
from either cytokinetic failure or cell fusion—might undergo
chaotic multipolar mitoses leading to numerical and/or structural
chromosomal defects.

Recent evidence provides experimental support for Boveri’s
ideas. For instance, tetraploid mouse mammary epithelial cells
generated by the inhibition of cytokinesis display increased rates
of aneuploidy and (when transplanted into nude mice) give rise
to malignant tumors at greater rates than controls.15-17,75 These
results suggest that mechanisms promoting the dependable execu-
tion of cytokinesis may be important in maintaining genomic
integrity and in preventing carcinogenesis. Thus, in the broadest
sense, an understanding of these pathways may provide a better
understanding of one “route” by which eukaryotic cells become
tumorigenic in multicellular organisms (for reviews on this subject
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and a detailed discussion of further experimental evidence please
see refs. 15–17).

This last thought raises the question of whether these regula-
tory modules—which all seem to promote and/or aid in establish-
ing a cellular state conducive to cytokinesis—are specific to
S. pombe, or whether they may also be of relevance to cytokinesis
in more developmentally complex eukaryotes? While highly
speculative, some work in mammalian cells suggests that a
monitoring system may very well exist in higher eukaryotes. For
example cells deficient for phosphotidylethanolamine are unable
to complete cytokinesis, and arrest with a stable actomyosin ring

and interphase nuclei.76 Furthermore, mammalian cells treated
with a myosin II ATPase inhibitor also arrest with two nuclei
and a stable actomyosin ring.77 In any event, future work will
undoubtedly continue to expand our knowledge regarding these
regulatory systems and provide further insight into their mole-
cular nature and their relationship to genomic stability.
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