
RESEARCH ARTICLE

Bayesian modeling and simulation to inform

rare disease drug development early decision-

making: Application to Duchenne muscular

dystrophy

Janelle L. LennieID
1,2*, John T. Mondick2, Marc R. Gastonguay1,2

1 Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America, 2 Metrum

Research Group, Tariffville, Connecticut, United States of America

* janellelennie@gmail.com

Abstract

Rare disease clinical trials are constrained to small sample sizes and may lack placebo-con-

trol, leading to challenges in drug development. This paper proposes a Bayesian model-

based framework for early go/no-go decision making in rare disease drug development,

using Duchenne muscular dystrophy (DMD) as an example. Early go/no-go decisions were

based on projections of long-term functional outcomes from a Bayesian model-based analy-

sis of short-term trial data informed by prior knowledge based on 6MWT natural history liter-

ature data in DMD patients. Frequentist hypothesis tests were also applied as a reference

analysis method. A number of combinations of hypothetical trial designs, drug effects and

cohort comparison methods were assessed. The proposed Bayesian model-based frame-

work was superior to the frequentist method for making go/no-go decisions across all trial

designs and cohort comparison methods in DMD. The average decision accuracy rates

across all trial designs for the Bayesian and frequentist analysis methods were 45.8 and

8.98%, respectively. A decision accuracy rate of at least 50% was achieved for 42 and 7%

of the trial designs under the Bayesian and frequentist analysis methods, respectively. The

frequentist method was limited to the short-term trial data only, while the Bayesian methods

were informed with both the short-term data and prior information. The specific results of the

DMD case study were limited due to incomplete specification of individual-specific covari-

ates in the natural history literature data and should be reevaluated using a full natural his-

tory dataset. These limitations aside, the framework presented provides a proof of concept

for the utility of Bayesian model-based methods for decision making in rare disease trials.

Introduction

Rare disease drug development challenges

Available treatments exist for only 5% of rare diseases, leaving hundreds of millions of affected

patients worldwide without treatment [1]. Though advances have been made in recent years,
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treatments are needed for most of the 7,000 known rare diseases [1]. Key challenges to rare dis-

ease drug development include but are not limited to low numbers of patients, poor under-

standing of disease pathology and progression, lack of established clinical trial endpoints and

surrogate biomarkers, and high variability in disease progression and presentation [2]. Small

populations lead to poorly powered trials with small sample sizes; between 2006–2014, less

than 50 subjects were recruited in 71.4% of registered rare disease trials [3]. Rare disease trials

may lack placebo-control due to the ethical responsibility to treat patients suffering from life-

threatening serious conditions, half of whom are children [1]. Standard of care or active treat-

ments may serve as the reference arm in clinical trials, but often there is no effective standard

of care. Clinical trials in rare diseases are necessarily constrained by small sample sizes, which

also makes parallel control arms a challenge.

Typical drug development programs for common diseases include a Phase 2 proof-of-con-

cept clinical trial to gain a preliminary understanding of potential clinical efficacy before

investing in larger and more complex dose-ranging and confirmatory clinical trials. While the

same objective is relevant to rare disease drug development, performing multiple, sequential

trials is often not feasible. In many cases, only two trials are conducted for a rare disease: a

combined Phase 1/2 trial to learn about efficacy and safety, and a combined Phase 2/3 trial to

confirm efficacy. The trials are typically small and poorly powered for a clinical outcome end-

point and dose ranging trials are often limited to the objectives of safety, tolerability, and phar-

macokinetics. A central issue with drug approvals in rare diseases is the limited amount of

evidence collected in these small clinical trials.

Despite these challenges, the regulatory standards for approval of rare disease drugs are

similar to those applied to investigational treatments of common diseases; that is the require-

ment of demonstrating “substantial evidence” of efficacy and safety for the intended indication

from adequate and well-controlled investigations [4, 5].

Early decision-making strategies for rare disease drug development

Early decision-making strategies for drug development aim to increase the efficiency of com-

pound selection for late stage development. Analyses of preliminary short-term studies are

performed, yielding predictions of the probability of success in longer, larger scale clinical tri-

als. Informed decisions to either continue (“go”) or terminate (“no-go”) development of the

drug for the specific indication are made. Various statistical methods and decision criteria or

stopping guidelines have been applied to go/no-go decisions [6–8].

Bayesian model-based methods for drug development

The Bayesian statistical paradigm is a formal approach to include information that has been

learned and accumulated prior to performing a new experiment. Prior knowledge is combined

with newly collected data, and inferences are based on posterior probabilities of outcomes or

quantities of interest.

When applied to drug development, Bayesian methods formally incorporate prior knowl-

edge about the disease, drug, endpoints, or other factors with newly collected clinical trial data.

Prior data may be borrowed from sources such as historical controls, disease consortia, patient

registries, or previous trials. The totality of evidence is applied to robustly evaluate drug effects,

bolstering statistical power. This is an appealing factor for rare disease drug development

where limited evidence from small trials is a key challenge.

Bayesian inferences may be posed in terms of posterior probability distributions of model

parameters or other quantities of interest, and predictive probability distributions of future

events. Using Bayesian methods for drug development yields inferences based on clinically
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meaningful quantities specific to the indication. The probabilities are clearly and directly inter-

preted to assess trial results. Inference based on probabilities of meaningful clinical outcomes

is appealing compared to hypothesis tests based on arbitrary levels of statistical significance.

Duchenne muscular dystrophy drug development

Duchenne muscular dystrophy (DMD) is a genetic pediatric rare disease that has recently

faced drug development challenges. The disease is characterized by a lack of endogenous func-

tional dystrophin, which causes progressive muscle weakening and deterioration [9]. The

6-minute walk test (6MWT) has been a routinely utilized primary clinical endpoint for DMD

efficacy trials [10, 11], with a 30-meter placebo-corrected change from baseline (ΔΔ6MWT)

minimal clinically important difference (MCID) [12]. Recent DMD trials have targeted dem-

onstration of the 30-meter MCID in trials ranging between 24–48 weeks long [13, 14].

The first approved drug for DMD was granted conditional accelerated approval in 2016

[15]. The initial attempt to demonstrate clinical benefit based on the primary functional end-

point was not achieved in a study of 12 patients [13, 16]. Instead, the accelerated approval was

based on the effect of treatment on the surrogate biomarker, dystrophin, and was contingent

upon verification of clinical benefits via the functional outcome in future long-term confirma-

tory trials [16]. This set a precedent for DMD drug development, and two more drugs were

later granted the same type of conditional accelerated approval from the results of studies with

12 and 16 total subjects [14, 17].

Hypotheses based on other muscular dystrophies and animal models postulate that recov-

ery of at least 10 [16] or 20 [18] percent of normal dystrophin in a DMD patient would likely

demonstrate a clinical functional benefit. However, the relationship is mostly unclear and the

amount of dystrophin “reasonably likely” to produce a clinical benefit has not been deter-

mined [18]. The percent of normal dystrophin recovered after treatment with each of the three

approved drugs varied widely from a mean range of 0.93–5.7%, with none reaching the 10–

20% range [14, 16, 17]. The challenge remains to achieve DMD drug approval based on a clini-

cally meaningful functional endpoint.

Objectives

This paper proposes a Bayesian model-based framework for early go/no-go decision making

in rare disease drug development, using DMD as an example. Early go/no-go decisions are

based on projections of long-term functional outcomes from a Bayesian model-based analysis

of simulated short-term trial data informed by prior knowledge based on 6MWT natural his-

tory data in DMD patients. Posterior simulations provide predictions of long-term 6MWT dis-

tributions to inform early decision making in the context of a clinically relevant assessment

time frame. A number of hypothetical trial designs and analysis methods are assessed. The

overall goal of this paper is to illustrate an example of early decisions made from projections of

long-term outcomes, informed by prior natural history data. The resulting framework could

be applied to any rare disease drug development program.

Methods

Overview

The methods for the model-based analysis followed a simulation-estimation-simulation arche-

type. A natural history model was augmented with a hypothetical drug effect model to use as a

clinical trial simulation and estimation model in this work (Fig 1).
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First, replicates of short-term clinical trial data of the 6MWT were simulated from the natu-

ral history model. Data were simulated to represent the observed samples from a hypothetical

short-term 6 month DMD trial (Fig 1).

Second, the posterior probability distributions of model parameters for each trial popula-

tion were estimated. The estimation was informed by prior knowledge about 6MWT natural

history, along with the new data from the simulated short-term trials. Distributions of the pop-

ulation as well as individual parameter estimates were obtained for use in posterior simulations

(Fig 1).

Lastly, longer-term projections of the 6MWT at 12 months were made through posterior

simulations. The simulations were performed conditional on the individual parameter esti-

mates (Fig 1).

The projected data at 12 months were analyzed under two different cohort comparison

methods for decision-making: at the mean level or with individual case-matched comparisons.

The short-term trial data were also analyzed using a typical frequentist method to serve as a

comparator to the Bayesian approach.

These methods were applied to assess trials of various designs and three different assumed

drug effect levels. The detailed methods are described in the following sections.

Natural history Bayesian model

A Bayesian natural history model of the 6MWT in pediatric DMD patients was previously

developed using full Markov chain Monte Carlo (MCMC) Bayesian methods [19]. An indirect

response model with a latent process (Fig 2) was fit to literature 6MWT data with vague prior

Fig 1. Overview of the Bayesian early decision-making framework. Individual 6-minute walk test (6MWT) samples

were simulated to represent data from a short-term Duchenne muscular dystrophy (DMD) clinical trial. At completion

of the trial, Bayesian model-based methods were applied to make long-term projections about the outcome at 12

months. The Bayesian model included prior natural history of the 6MWT in DMD boys.

https://doi.org/10.1371/journal.pone.0247286.g001

Fig 2. A schematic of the disease progression for DMD using the 6MWT developed by Lennie et al. [19]. An

indirect response model was developed simultaneously for healthy subject and DMD patient natural history data of the

6MWT. A latent process model described the effect of DMD on the 6MWT.

https://doi.org/10.1371/journal.pone.0247286.g002
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distributions [19]. Variability between subjects was quantified with an exponential random

effects model, and 6MWT measurement noise was described within an additive residual error

model. Refer to Lennie et al. for the full natural history model [19]. The model was validated

through simulation-based methods and provided a reasonable description of the 6MWT in

DMD boys [19].

Individual-specific covariates were incompletely specified in the literature data [19], but a

covariate analysis was performed as an exploratory investigation. The effects of corticosteroid

regimen, genotype, trial type, and last sampling time were considered but none were reliably

estimated given the incomplete nature of the data set. The final model did not include covari-

ate effects.

Hypothetical drug effect model development

A hypothetical drug effect model was developed to simulate a treatment effect on top of the

6MWT natural history trajectory. For the purpose of this paper, it was assumed that a placebo

response was equal to natural history. Model structures were investigated through population

mean deterministic simulations (mrgsolve v0.10.0 [20]) and calibrated to achieve three drug

effect levels: 1) a low drug effect (ΔΔ6MWT <30 meters at 12 months) to represent a drug that

would not meet the MCID target to demonstrate efficacy, 2) a drug effect matching the MCID

of 30-meter ΔΔ6MWT at 12 months, and 3) a high drug effect (ΔΔ6MWT >30 meters at 12

months) that would demonstrate an effect of a relatively large magnitude.

Trial simulation model development

The trial simulation model was constructed from the natural history model augmented with

the hypothetical drug effect model (model file in S1 Appendix). For purposes of trial simula-

tion, the natural history model parameters, both fixed and random effects, were set to the

means of the natural history model posterior probability distributions. The drug effect model

parameters were set to the calibrated values necessary to achieve the three drug effect levels of

interest.

Simulations of short-term clinical trial data

Individual 6MWT trajectories for short-term trials were simulated with between subject vari-

ability and residual error at each of the three drug effect levels (Fig 2). The simulated trial

designs reflected those of recent DMD efficacy trials [14, 16, 17], but observations were limited

to 6 months in duration in order to mimic a situation where early decision making would be

constrained by short term study data. A baseline age inclusion criteria of 7–13 years was

applied to accurately reflect typical study populations. The prior natural history model was not

informed by individual-level genotypes and corticosteroid usage data, and therefore, the simu-

lated trials did not consider these particular inclusion criteria.

Total sample sizes and randomization schemes reflected those of typical trials (Fig 3).

Patients were randomized either equally to both treatment and placebo cohorts, stratified by

baseline age, or to a treatment cohort only (Fig 3). When a trial did not include a placebo arm,

controls were obtained from either model-based predictions or from an external natural his-

tory database (Fig 3). The external database was created from the literature data set which was

previously curated [19]. All curated 6 month samples were included in the natural history

database, as well as any 6 month samples that could be imputed.

A number of trial simulation replicates were performed to make inferences about the popu-

lation mean. Because of the extensive dimensionality of simulation scenarios and the heavy

computational cost of full Bayesian modeling, 20 trial simulation replicates of each case were
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performed. This has been demonstrated to be a sufficient number of samples to make infer-

ences about mean responses [21–23].

Trial estimation model development & Bayesian estimation methods

For the purposes of this work the trial estimation model was assumed to be the same as the

trial simulation model. This allowed for the direct assessment of the performance of the deci-

sion making strategy, unencumbered with potential bias introduced by model misspecifica-

tion. Structurally, both the trial simulation model and the trial estimation model were based

on the natural history model [19] augmented with a hypothetical drug effect model (model file

in S2 Appendix). The estimation model differed in its parameterization, in that it included

specification of informative prior distributions, which were obtained from the final parameter

estimates of the natural history model [19]. A vague prior distribution was specified for the

drug effect parameter in the estimation model, due to lack of prior information, and also to

focus estimation inferences on this component of the model, given the short-term trial data.

The trial estimation model was fit to the 6 month data from each of the 20 trial replicates

for each design (Fig 3). Parameter estimation methods followed those previously described

and implemented to fit the natural history model [19] (full MCMC 184 Bayes estimation,

NONMEM v7.4 [24]). Estimation was executed using the Gibbs/Metropolis-Hastings sam-

pling method [25], four MCMC chains, with 5,000 warm up samples and 10,000 post-warm

up samples. Trace plots were monitored for convergence for a random selection of models

from each of the trial designs.

The joint posterior distributions for the population and individual level parameters were

obtained from the model fits of the 6 month data. The posterior distributions included 40,000

samples (10,000 from each of the 4 chains).

Fig 3. Trial design variations for the simulated short-term DMD trials. Total sample sizes varied between 20, 40 or

80 total subjects. Randomization was either equal to both placebo and treatment cohorts, or to a treatment cohort only.

In the case of no placebo cohort present in the trial, controls were obtained from either a model-based prediction or an

external natural history database. Drug effect (DE) sizes were defined as low, minimal clinically important difference

(MCID), and high.

https://doi.org/10.1371/journal.pone.0247286.g003
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Posterior predictive simulations

Posterior predictive distributions of quantities of interest were generated for each trial repli-

cate, given random draws from the resulting trial estimation model joint posterior distribu-

tion. These involved longitudinal extrapolation of model predicted quantities to time points

extending beyond observed trial data.

The quantity of interest, the ΔΔ6MWT at 12 months, was derived from the posterior pre-

dictive distributions of the individual projections using two main cohort comparison methods:

the mean treatment arm estimate, or from individual case-matching (Table 1). For individual

case-matching, pairs were created based on individual-specific baseline predictors. For trials

with equal randomization to both treatment and placebo cohorts, matched pairs were created

from subjects in the trials. When trials only included a treatment cohort, control subjects for

matching were sampled from the external natural history database. The mean of the matched

pairs was summarized.

Go/no-go decision making

Decision criteria were applied to each trial replicate for go/no-go decision-making. Under the

Bayesian paradigm, a “go” decision was declared if the posterior predictive probability of

reaching the MCID at 12 months was at least 80%, otherwise a decision of “no-go” was

declared. The Bayesian model-based analysis methods were applied to all trial designs

(Table 1).

Frequentist analyses were applied only when observed data for both test and reference

cohorts were available at the 6 month time point. This included trials with randomization to

both treatment and placebo arms, or single treatment arm studies with reference control

groups based on external natural history data (Table 1). Under the frequentist method, a “go”

decision was declared if the 95% confidence interval (CI) lower bound from a t-test of the dif-

ference of cohort means was at least zero, otherwise a decision of “no-go” was declared. Fre-

quentist-based decisions were also made at confidence levels of 80 and 50% to investigate the

frequentist test performance at less stringent CIs.

The percentage of correct decisions under each trial design and cohort comparison method

were summarized for the Bayesian and frequentist methods.

Results

Hypothetical drug effect model

The final hypothetical drug effect (DE) model was a logistic function on the latent process (LP)

in the natural history model [19] (Eqs 1–3). Refer to Lennie et al. [19] for the full natural

Table 1. Conditions of the model-based Bayesian analyses based on the implemented treatment comparison methods and decision-making methods.

Cohort comparison method Randomization scheme Decision-making methods applied Source of placebo reference

Difference between cohort means Treatment & placebo Frequentist & Bayesian model-based Short-term trial placebo cohort

Treatment only Frequentist & Bayesian model-based Model-based simulated placebo reference

Mean of difference between individual case-matches Treatment & placebo Bayesian model-based Short-term trial placebo cohort�

Treatment only Bayesian model-based External natural history database�

�Scenarios where 100 replicates of the placebo cohort source were performed.

https://doi.org/10.1371/journal.pone.0247286.t001
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history model.

If placebo patient : DE ¼ 0 ð1Þ

If treated patient : DE ¼
ey7

1þ ey7

ð2Þ

LP ¼ ai � eðb�timeÞ � ð1 � DEÞ ð3Þ

The parameter θ7 was calibrated to achieve the low, MCID, and high drug effect levels (Fig

4). The calibrated low and high drug effect levels yielded population mean ΔΔ6MWT values of

17.6 and 40 meters at 12 months, respectively. The calibrated MCID drug effect yielded the tar-

geted 30 meter ΔΔ6MWT at 12 months (Fig 3).

Clinical trial simulations & posterior predictions

The trial simulation model performed as expected, with the low, MCID and high drug effects

visibly discernible in the trial data from 0–6 months (Fig 5, left, points). The trial estimation

model was fit to the data from each trial, with convergence confirmed by posterior parameter

trace plots. The predicted individual trajectories based on observed data from 0–6 months (Fig

5, left, solid lines) were extrapolated to 12 months (Fig 5, left, dashed lines). As expected, sepa-

ration between the placebo and treated posterior distributions increased with drug effect size

(Fig 5, middle), as well as the probability of achieving a ΔΔ6MWT of at least 30 meters (Fig 5,

right).

Decision-making performance assessment

Bayesian model-based analysis. Performance of the Bayesian model-based methods var-

ied across trial designs, drug effect size, and cohort comparison methods (Table 2). Overall,

increased sample size resulted in improved performance. Decision-making performance was

highest for the low drug effect across all trial designs and methods. Performance was moderate

for the high drug effect, and poor for the MCID drug effect (Table 2).

Inconsistencies were evident in the case-matched method using the external database con-

trols compared to the other three cohort comparison methods. The external database method

performed markedly better than the others for the MCID and high drug effects. Performance

Fig 4. Population mean simulations of the natural history and hypothetical drug effect model at three drug effect

levels (low, minimal clinically important difference (MCID), and high). The drug effect model was calibrated to

achieve the three desired placebo-corrected change from baseline 6MWT (ΔΔ6MWT) values at 12 months post-

baseline.

https://doi.org/10.1371/journal.pone.0247286.g004
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ranged from 25–30 and 55–100% for the MCID and high drug effects under the external data-

base case, but only 0–10 and 15–25% for the other three cases, respectively.

Frequentist analysis. Performance using the frequentist analysis was poor across all trial

designs and cohort comparison methods. The average decision accuracy rate across all scenar-

ios was 8.98%. Only four cases made correct go/no-go decisions in at least 50% of the repli-

cates, with three of those four cases for the low drug effect. Performance was highest at the

lowest CI level (50% CI). There was no clear pattern of increased performance with increased

sample size or increased drug effect (Table 3).

Fig 5. Simulated trial data, model predictions, and probability predictive distributions for one of the 20 replicates of one of the trial designs: Equal

randomization to both placebo and treatment arms, total sample size of 20. Left: Individual data from the short-term trials (indicated by points) with the model-

predicted trajectories (solid lines indicate the short-term 0–6 month predictions, dashed lines indicate the longer-term 6–12 month predictions). The median of the

posterior predictive probabilities are plotted for each time point along the solid and dashed lines. Black points and lines indicate placebo cohort, gray indicate the

treatment cohort. Center: Corresponding individual posterior predictive distributions of the predicted 6-minute walk test (6MWT) at 12 months for each subject in

the trials. Black lines indicate the placebo cohort, gray indicate the treatment cohort. Right: Corresponding posterior predictive distributions of the predicted mean

ΔΔ6MWT at 12 months. Dashed line indicates the minimal clinically important difference (MCID) of 30 meters.

https://doi.org/10.1371/journal.pone.0247286.g005
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Discussion

This paper presented an early decision-making framework for rare disease drug development.

The framework was applied to hypothetical short-term DMD trials of varying designs to make

go/no-go decisions about continuation to late stage trials. Decisions were informed by prior

natural history combined with newly collected trial data, and based on long-term projections

from Bayesian model-based methods. The probability of achieving the targeted demonstration

of efficacy was determined for 20 replicates of each trial design. Frequentist tests were also

applied to the 20 replicates of each trial design, determining the probability of a difference

between the treatment and placebo cohort means. Performance across the 20 replicates was

summarized. The proposed Bayesian model-based framework was superior to the frequentist

method for making go/no-go decisions across all trial designs and analysis methods in DMD.

The frequentist control method was limited to short-term trial data only, while the Bayesian

methods were powered with both observed and prior information.

As demonstrated, there were inconsistencies evident between the results using the observed

external database versus model-based placebo control data. Performance was markedly

improved when case-matched control subjects were obtained from the external database

(Table 2). The external database consisted of observed data curated from the literature, while

all other cases used model-simulated control data.

Investigations were performed to identify the possible source of the inconsistency between

the observed external database and the model-simulated placebo control data. The results of a

simulation-based evaluation of the natural history model indicated bias in model predictions

that may have propagated into the model-simulated control data. Simulation-based evalua-

tions of the 6MWT change from baseline (CFB) indicated positive bias in the tails of the model

predicted CFB distributions (Fig 6). Positive bias would cause some simulated placebo

Table 2. Performance of the Bayesian model-based go/no-go decision making methods across trial designs and data analysis methods. Criteria for go/no-go decisions

were at least an 80% posterior predictive probability of the CFBCFP�30 meters at 1 year post-baseline.

Cohort comparison method: mean level Cohort comparison method: individual case-matched

Trial design: treatment &

placebo cohorts

Trial design: treatment cohort

only. Placebo reference data from

model-based placebo response

Trial design: treatment & placebo

cohorts. 100 replications of the

placebo cohort simulated from

the natural history model

Trial design: treatment cohort

only. Placebo reference data

from 100 resampled datasets

from external natural history

database

Total N: 80 40 20 80 40 20 80 40 20 80 40 20

DE size: low (no-go) 100% 95% 90% 100% 100% 100% 100% 100% 100% 100% 90% 85%

DE size: MCID (go) 0% 5% 10% 0% 5% 5% 0% 0% 5% 25% 25% 30%

DE size: high (go) 25% 15% 10% 15% 15% 20% 17% 20% 15% 100% 70% 55%

https://doi.org/10.1371/journal.pone.0247286.t002

Table 3. Performance of the frequentist analysis go/no-go decisions across trial designs and analysis methods. Go/no-go decisions were made at frequentist confidence

levels of 95, 80 and 50%.

Cohort comparison method: mean level

Trial design: treatment & placebo cohorts Trial design: treatment cohort only. Placebo

reference data from external natural history

database

Go/no-go decision criteria: Go if the LB� 0 for a CI of: 95% 80% 50% 95% 80% 50%

Total N: 80 40 20 80 40 20 80 40 20 80 40 20 80 40 20 80 40 20

Truth: No-go 5% 0% 10% 15% 0% 35% 25% 0% 65% 0% 15% 5% 0% 40% 0% 85% 65% 20%

Truth: Go, MCID DE 0% 0% 5% 0% 0% 15% 0% 0% 55% 0% 0% 0% 0% 0% 0% 0% 5% 5%

Truth: Go, High DE 0% 0% 0% 0% 0% 5% 0% 0% 10% 0% 0% 0% 0% 0% 0% 0% 0% 0%

https://doi.org/10.1371/journal.pone.0247286.t003
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responses to be less severe than those of the observed data, making the drug effect appear

smaller. Decreases in the apparent drug effect would cause error in decisions for the MCID

and high DE cases, but would still lead to a “no-go” decision for the low drug effect level. This

hypothesis is in accordance with the results: performance was similar across all 4 analysis

methods for the low drug effect, but was markedly higher for MCID and high drug effects

using the external database controls.

The model evaluation results on the CFB scale indicated that a predictor(s) to describe the

relationship between baseline and post-baseline points may be missing. Though the natural

history model was previously validated to predict the 6MWT, it had not been previously evalu-

ated specifically on the CFB scale in the age 7–13 subset of patients [19]. The example using

DMD was limited to the literature data, and covariate models were not supported. When lack-

ing covariates, optimization methods such as the iterative back step method [26] could be

applied to train the model to the dataset, but the ideal simulation model would include individ-

ual-specific covariates. Ideally, complete individual-level data should be collected and the

model should be well validated for its specific use in a drug development program.

Due to issues with model misspecification on the 6MWT CFB scale, inferences about opti-

mal methods for DMD early go/no-go decisions should be viewed as preliminary. Results for

the cases using model-simulated placebo controls may be subject to model bias, while those

using observed external data controls are likely to be reliable. Decision-making performance

was strong for the low and high drug effects when using the external database, and increased

with sample size (Table 2). At the MCID drug effect level, performance was moderate (25–

30%, Table 2). These results indicate that drug effects with larger magnitudes, whether positive

or negative, were well predicted, but accurate decision-making for a minimal drug effect is dif-

ficult. These results align with characteristics of the 6MWT endpoint: the endpoint is highly

variable between patients, so the effects of the MCID drug may be confounded by 6MWT vari-

ability, while drug effects of high magnitudes may be more detectable. The MCID drug effect

may be more readily detected with larger sample sizes or in a longer study. These results may

be considered when designing confirmatory trials in DMD with the 6MWT endpoint; demon-

stration of efficacy at 12 months for a drug whose true population effect is close to the 30

meter ΔΔ6MWT is likely to be challenging given typical DMD sample size constraints.

Fig 6. Predictive check quantile-quantile plot for the natural history model fit to a subset of subjects with baseline

ages between 7–13 years. The simulated 6-minute walk test (6MWT) change from baseline (CFB) is plotted against

the observed 6MWT CFB from 500 Monte Carlo simulations. The 10th, 25th, 50th, 75th and 90th quantiles of the

observed 6MWT CFB distribution are shown with dashed lines. The blue line indicates the line of identity.

https://doi.org/10.1371/journal.pone.0247286.g006
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The specific results of this DMD case study should be reevaluated using a full dataset com-

plete with individual predictors. These limitations aside, the framework presented here pro-

vides a proof of concept for the utility of Bayesian model-based methods for decision making

in rare disease trials.

The small sample sizes, lack of standardized outcome endpoints, and limited clinical trial

data inherent in rare diseases create a unique need for open science collaborations and pre-

competitive data sharing. The results of the DMD example highlight the challenges of validat-

ing a model for its intended use without access to a complete individual level data set. Only

five published DMD studies reported the 6MWT data at the individual level [10, 27–30] and

most studies reported natural history data in summary form only. Open access databases of

individual-level patient data would contribute greatly to the understanding of rare diseases by

facilitating data-driven and model informed trial designs and drug development decision

making.
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