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Sea lettuce (Ulva pertusa) is a nuisance species of green algae that is found all over the world. East-
Asian species of the marine gastropod, the sea hare Aplysia kurodai, shows a clear feeding prefer-
ence for sea lettuce. Compared with cellulose, sea lettuce contains a higher amount of starch as a
storage polysaccharide. However, the entire amylolytic system in the digestive fluid of A. kurodai
has not been studied in detail. We purified a-amylases and a-glucosidases from the digestive fluid
of A. kurodai and investigated the synergistic action of these enzymes on sea lettuce. A. kurodai con-
tain two a-amylases (59 and 80 kDa) and two a-glucosidases (74 and 86 kDa). The 59-kDa a-amylase,
but not the 80-kDa a-amylase, was markedly activated by Ca2+ or Cl�. Both a-amylases degraded
starch and maltoheptaose, producing maltotriose, maltose, and glucose. Glucose production from
starch was higher with 80-kDa a-amylase than with 59-kDa a-amylase. Kinetic analysis indicated
that 74-kDa a-glucosidase prefers short a-1,4-linked oligosaccharide, whereas 86-kDa a-glucosidase
prefers large a-1,6 and a-1,4-linked polysaccharides such as glycogen. When sea lettuce was used as
a substrate, a 2-fold greater amount of glucose was released by treatment with 59-kDa a-amylase
and 74-kDa a-glucosidase than by treatment with 45-kDa cellulase and 210-kDa b-glucosidase of
A. kurodai. Unlike mammals, sea hares efficiently digest sea lettuce to glucose by a combination
of two a-amylases and two a-glucosidases in the digestive fluids without membrane-bound mal-
tase–glucoamylase and sucrase–isomaltase complexes.
� 2014 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction from seaweed. Recently, we purified four cellulases and two
Marine algae can provide a high-yield source of biofuels with-
out compromising food supplies, rainforests, or arable land [1,2].
Sea lettuce (Ulva pertusa) is a nuisance species of green algae that
is found all over the world. Sea lettuce is consumed by sea animals.
Particularly, East-Asian species of the marine gastropod, the sea
hare Aplysia kurodai, shows clear feeding preference for sea lettuce.
Therefore, research on the glucose production system of sea hares
from seaweed polysaccharides could contribute important new
insights into the development of biofuel processing technologies
b-glucosidases from the digestive fluid of A. kurodai, investigated
its entire enzymatic cellulolytic system [3], and showed unique
properties of digestive enzymes that were not predicted from
genetic approaches. The 45-kDa cellulase from A. kurodai possesses
cellobiohydrolase and b-glucosidase activities in addition to
b-1,4-endoglucanase activity. Multicatalytic activities including
b-glucosidase, laminarinase and lactase activities, are possessed
by the 210-kDa b-glucosidase.

During the course of purification of cellulolytic enzymes, amy-
lase and a-glucosidase activities were also found in the digestive
fluid of A. kurodai, suggesting that it utilizes starch in seaweed as
an energy source in addition to cellulose. Sea lettuce, a staple food
of sea hares, is an algae with high starch content [4]. The entire
digestive amylolytic system of marine invertebrates feeding on
seaweed or microalgae is poorly understood. The a-amylase family
(glycoside hydrolase family 13, GHF13) is one of five structural
families (GHF4, GHF13, GHF31, GHF97 and GHF122) of starch-
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degrading hydrolases and includes specifically acting on the a-1,4-
and a-1,6-O-glycosidic linkages of starch [5–7]. The members of
GH13 are multidomain (b/a)8-barrel enzymes and display large
variation on a structural theme providing an array of substrate
specificity. a-Amylases [EC 3.2.1.1] and a-glucosidases
[EC3.2.1.20] cloned from mollusks [8–10] and crustaceans [11,12]
belong to GH13. In contrast to marine invertebrates, the digestive
amylolytic system in mammals has been well characterized
[13–16]. Salivary and pancreatic a-amylase [EC 3.2.1.1] catalyze
random hydrolysis of a-1, 4 bonds and yield dextrin, a mixture
of glucose, maltose, and maltotriose as major products. The mal-
tase [EC 3.2.1.20]–glucoamylase [EC 3.2.1.3] and sucrase [EC
3.2.1.48]–isomaltase [EC 3.2.1.10] complexes located on the brush
border membrane of intestinal mucosal cells catalyze hydrolysis of
starch-derived products to glucose. The maltase–glucoamylase
complex hydrolyzes far larger and more complex glucan struc-
tures, including amylopectin, glycogen, amylose, and a-limit dext-
rins, than does the sucrase–isomaltase complex. The a-1, 6
glycoside bond in limit dextrins is almost exclusively hydrolyzed
by the isomaltase subunit of sucrase–isomaltase, thereby liberat-
ing nonreducing a-1, 6-linked glucose residues from dextrin.

To investigate the digestive amylolytic system in marine inver-
tebrates, comprehensive enzymatic analysis of amylolytic glucan-
ases in A. kurodai was performed. We purified two a-amylases
(59 and 80 kDa) and two a-glucosidases (74 and 86 kDa) from
the digestive fluid of A. kurodai at the mg level and analyzed their
cleavage specificity, synergistic action, and glucose-producing
activities from various seaweeds. Our findings provide the first
example of an enzymatic process of glucose liberation from starch
in the digestive fluid of invertebrates.

2. Materials and methods

2.1. Materials

A. kurodai (body length, 20–25 cm) and sea lettuce (U. pertusa)
were collected on the coast of Naruto, Japan, during April–July.
Sea hare and sea lettuce are not protected in this area. No specific
permissions were required since collection of these species is
allowed. The digestive fluid was obtained from the gastric lumen
by squeezing the stomach after dissection and then fractionated
using ammonium sulfate (0–60% saturation), as described previ-
ously [3]. The sea lettuce was washed with water, dried at 50 �C,
and then minced in a Waring blender. Dried seaweeds (U. prolif-
era, Saccharina sp., and Eisenia bicyclis) and dried microalgae (Chlo-
rella vulgaris) were purchased from a local grocery store and
minced in a Waring blender.

Corn starch, D-(+)-glucose, and the Glucose CII Test Wako were
purchased from Wako Pure Chemicals (Osaka, Japan). Carboxy-
methylcellulose (CMC; sodium salt, low viscosity), laminarin
(b-1,3:1,6-glucan) from Laminaria digitata, and 4-methylumbellife-
ryl (4MU)-a-D-glucoside were from Sigma–Aldrich (St, Louis, MO).
Maltoheptaose and hydroxyapatite were obtained from Seikagaku
Kogyo (Tokyo, Japan). DEAE-Sepharose™ (fast flow), CM-
Sepharose™ (fast flow), phenyl-Sepharose (HiLoad™ 16/10), Seph-
acryl S-100, Sephacryl S-200, and Mono-Q HR5/5 were obtained
from GE Healthcare (Uppsala, Sweden). A peroxidase-labeled lectin
kit was purchased from J-OIL MILLS (Tokyo, Japan). All other chem-
icals used were of analytical grade.

2.2. Enzyme assay

Amylase activity (endo-a�1,4-endoglucanase) was assayed in a
0.2-ml reaction mixture comprising 1% corn starch, 50 mM acetate
buffer (pH 6.0), 10 mM CaCl2 and an appropriate amount of
enzyme at 37 �C. Following incubation at 3 �C for 10–30 min, the
reaction mixture was terminated by heat treatment at 95 �C for
5 min. The quantities of reducing sugars liberated by the hydrolysis
of corn starch were determined by the method of Nelson and
Somogyi [17]. One unit (U) of enzyme activity was defined as that
amount of enzyme that liberates reducing sugars equivalent to
1 lmol of glucose per min at 37 �C. a-Glucosidase activity was
assayed using 4-methylmbelliferyl (4-MU)-a-glucoside, as
described previously [3]. Released 4-methylumbelliferone was
measured fluorometrically (excitation, 365 nm; emission,
450 nm). One unit (U) was defined as the activity that produced
1 lmol of 4-methylumbelliferone per min at 37 �C. Glucose liber-
ated by hydrolysis of substrates was determined by the Glucose
CII Test Wako kit using glucose oxidase. Protein concentration
was determined by the Bradford method using BSA as the standard
[18].

2.3. Purification of amylase and a-glucosidase from the digestive fluid

All purification procedures were performed at 4 �C. Amylase
and a-glucosidase activities were measured by using corn starch
and 4MU-a-glucoside, respectively, unless otherwise stated. A fro-
zen ammonium sulfate fraction from 300 ml of the digestive fluid,
prepared as mentioned above, was thawed and centrifuged at
12,000�g for 10 min. The supernatant was applied to a CM-Sephar-
ose column (2.5 � 20 cm) equilibrated with 20 mM acetate (pH
6.0) and washed with the same buffer. Proteins bound to the
CM-Sepharose column were eluted using a linear gradient of NaCl
(0–0.3 M) in the same buffer as described previously [3]. The
chromatography gave coelution of 59-kDa amylase and 45-kDa
endo-b-1,4-glucanase. The fractions possessing the enzyme activ-
ity were concentrated by ultrafiltration, and ammonium sulfate
was then added to produce the final concentration of 1 M. Follow-
ing centrifugation, the supernatant was applied to a phenyl-
Sepharose (HiLoad™ 16/10) column equilibrated with 20 mM
Tris–HCl (pH 7.0) containing 1 M ammonium sulfate and washed
with the same buffer. A linear gradient of ammonium sulfate
(1–0 M) was used to elute bound proteins, and the eluant was frac-
tionated into eight fractions (A–H), as described previously [3]. The
purity of the enzyme was checked by SDS–PAGE using 10% acryl-
amide gel [19].

2.3.1. 74-kDa a-glucosidase (ApAGL74)
Components showing a-glucosidase activity in the CM-

Sepharose unbound fraction were fractionated by DEAE-Sepharose
chromatography, under conditions as described above. The
a-glucosidase activity was detected in both DEAE-Sepharose
unbound and bound fractions. The a-glucosidase in the DEAE-
Sepharose bound fraction was further purified by phenyl-
Sepharose chromatography, under conditions as described above.
The fractions with a-glucosidase activity were applied to Sephacryl
S-100 gel filtration and eluted with 20 mM Tris–HCl (pH 7.0)
containing 0.1 M NaCl. The fractions with a-glucosidase activity
were concentrated by ultrafiltration and dialyzed against 20 mM
Tris–HCl (pH 7.5). The dialyzate was applied to a Mono Q HR5/5
column equilibrated with the same buffer and eluted with a linear
gradient of NaCl (0–0.2 M) in the same buffer. The fractions
with the activity were concentrated and subjected to a hydroxyap-
atite column (1.0 � 2.5 cm). The column was eluted with 20 mM
Tris–HCl (pH 7.0) (A fraction) and followed by a linear gradient
of sodium phosphate (0–0.2 M) (B fraction). a-Glucosidase
activity was detected in both fractions. The A fraction contained
a 74-kDa protein, and the B fraction contained 74-kDa and
190-kDa proteins. The A fraction was used as purified 74-kDa
a-glucosidase.
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2.3.2. 86-kDa a-glucosidase (ApAGL86)
The DEAE-Sepharose unbound fraction, as described above, was

used for purification of 86-kDa a-glucosidase (ApAGL86). This frac-
tion was subjected to phenyl-Sepharose chromatography. Most
a-glucosidase activity was eluted with 1 M ammonium sulfate
in 20 mM Tris–HCl (pH 7.0). After concentration, the phenyl-
Sepharose unbound fraction was applied to a Sephacryl S-100 col-
umn. The fractions with a-glucosidase activity were concentrated
and applied to a Mono Q HR5/5 column equilibrated with the same
buffer and eluted with a linear gradient of NaCl (0–0.2 M) in the
same buffer. The fraction possessing the activity was eluted as a
single peak and contained an 86-kDa protein.

2.3.3. 59-kDa amylase (ApAmy59)
The G fraction eluted from phenyl-Sepharose [3] was concen-

trated and applied to a Sephacryl S-100 column (2.0 � 105 cm)
equilibrated with 20 mM Tris–HCl (pH 7.0) containing 0.1 M NaCl.
The G fraction was separated into two peaks (G-I and G-II). The sec-
ond peak (G-II fraction) exhibited amylase activity and contained
59 kDa of protein as a major component.

2.3.4. 80-kDa amylase (ApAmy80)
The CM-Sepharose unbound fraction was applied to a DEAE-

Sepharose (2.5 � 20 cm) column equilibrated with 20 mM Tris–
HCl buffer (pH 7.0), and a linear gradient of NaCl (0–0.5 M), as
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Fig. 1. Seasonal changes in the glucose-producing activities from starch and carboxymet
was collected from ten A. kurodai on March 9 and 30; April 13, 20 and 28; May 11 and 18;
the enzyme activities in the three groups of digestive fluid were assayed. The digestive flu
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described previously, was used to elute the bound proteins. Amy-
lase activity was coeluted with 110-kDa b-glucosidase in DE-I frac-
tions, as previously described [3]. The DE-I fraction was applied to
a phenyl-Sepharose column and eluted using a linear gradient of
ammonium sulfate (1–0 M). The fractions possessing amylase
activity were concentrated by ultrafiltration and subjected to
Sephacryl S-200 (3.0 � 95 cm) gel filtration and eluted with
20 mM Tris–HCl (pH 7.0) containing 0.1 M NaCl. The second peak
exhibited a-amylase activity and contained an 80-kDa protein.

2.4. Analysis of degradation products by thin layer chromatography
(TLC)

TLC for analysis of the degradation products of CMC, filter
paper, lichenan, laminarin, disaccharide, and cello-oligosaccha-
rides was performed on TLC Silica gel 60F plates (Merck KGaA,
Darmstadt, Germany), and orcinol-sulfuric acid, as described previ-
ously, was used to detect the products [20].

2.5. Separation of degradation products by gel filtration

Reaction products were applied to a Bio-Gel P-2 column
(1.2 � 81 cm, Bio-Rad Laboratories, CA, USA) equilibrated with
water. Products were eluted with water at a flow rate of 10 ml/h,
and 1.3-ml fractions were collected. The amount of reducing sugar
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acetate buffer at pH 5.5) were incubated with 2 ll of the digestive fluid (collected
h 2 ll of the same digestive fluid. Enzyme activity (mean ± S.D.) was calculated from



A. Tsuji et al. / FEBS Open Bio 4 (2014) 560–570 563
and glucose in the fractions were determined by the Nelson and
Somogyi method [17] and Glucose CII Test Wako.

2.6. Sequence analysis

Purified enzymes separated by SDS-PAGE were electroblotted
onto PVDF membranes (Immobilon™, 0.45 mm, Millipore, Bedford,
MA) according to the manufacturer’s instructions. The protein
band was stained with Ponceau 3R. For the determination of inter-
nal sequences, the protein band was digested by using lysyl endo-
peptidase [21], and the released peptides were purified by
reversed-phase high-performance liquid chromatography, as
described previously [22]. An automated protein sequencer
(Shimadzu PPSQ-10, Kyoto, Japan) was used to analyze amino acid
sequences.

2.7. Analysis of glycoprotein by lectin blot

Lectin blot of glycoprotein was performed by using horseradish
peroxidase-labeled lectin (ConA, LCA, PHA-E4, PNA, RCA120, and
WGA) according to the manufacturer’s protocol. Purified amylases
and a-glucosidases were blotted onto a PVDF membrane after
SDS–PAGE, and the membrane was incubated with 20 lg/ml of lec-
tin for 1 h at room temperature. A lectin-reactive band was then
detected by using 3,30-diaminobenzidine tetrahydrochloride.

3. Results

3.1. Starch and cellulose hydrolysis activities in the digestive fluid of A.
kurodai

We first examined the glucose-producing activity from starch
and cellulose in the digestive fluid of A. kurodai. In the Tokushima
area, A. kurodai appear near seashores in March and grow by feed-
ing on sea lettuce. The spawning season is in May and June. As
shown in Fig. 1A, the glucose-producing activity in the digestive
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at 95 �C in 1% SDS solution containing 10% b-mercaptoethanol and then resolved by elect
Purified 74-kDa a-glucosidase (20 ng) was resolved by electrophoresis in 10% gel. Protein
in Section 2. Marker proteins comprised myosin heavy chain (200 kDa), b-galactosidase
Alignment of (1) N-terminal (ApAmy59 and ApAmy80) and (2) internal sequences (ApA
L8AW48) and 82-kDa amylase (UniProtKB: L8AXN1) from the Japanese abalone, Hali
a-glucosidase HbAGL1 (UnitProtKB, Q17058) and HbAGL2 (UniProtKB, Q25BT8) from ho
idasius (UnitProtKB, P29094); and sucrase PaSUC from pea aphid, Acrythosiphon pisu
sequences of fragments generated by lysyl endopeptidase digestion of purified ApAGL74
numbers of A. kurodai amylases and other enzymes are indicated on both sides of the c
fluid is 3–5-fold higher from starch than from carboxymethylcellu-
lose (CMC) in all months tested. The glucose-producing activities
from starch and CMC were highest at the beginning of spring and
decreased gradually. The glucose-producing activity was also
lower from paper filter than from starch (Fig. 1B). Maltase activity
was higher than cellobiose hydrolase and isomaltase activities
(Fig. 1C). These findings suggested that A. kurodai uses starch in
seaweed as an energy source.

3.2. Purification of 59-kDa (ApAmy59) and 80-kDa (ApAmy80)
amylases

Two amylases, ApAmy59 and ApAmy80, were purified from the
digestive fluid of A. kurodai, as described in Section 2. As shown in
Fig. 2A, both amylases yielded single protein bands corresponding
to molecular masses of 59 kDa and 80 kDa, respectively. Recently,
58-kDa (HdAmy58) and 82-kDa amylases (HdAmy82) were puri-
fied from the digestive fluid of Pacific abalone [9]. The two amy-
lases from both species were purified by similar procedures,
including hydrophobic, anionic ion-exchange, and hydroxyapatite
column chromatography. The amino-terminal sequences of ApAm-
y59 and ApAmy80 were highly homologous with those of the
58 kDa and 82 kDa amylases of Pacific abalone, respectively
(Fig. 2C). These sequence data strongly suggest that ApAmy59
and ApAmy80 are orthologs of abalone 58-kDa and 82-kDa a-amy-
lase, respectively. The sequence, Phe-Glu-Trp located between the
N-terminal a-helix and b-strand of salivary and pancreatic amy-
lases was conserved in ApAmy59 (amino acid residues 17–19)
[23]. The amino-terminal sequences of ApAmy59 and ApAmy80
were highly homologous with the corresponding regions of the
protein sequences of the A. californica genome sequence that
were predicted by automated computational analysis. The
amino-terminal sequences of ApAmy59 and ApAmy80 were highly
homologous with the corresponding sequences of a-amylase-like
proteins, identified as NCBI reference sequence XP_005103373
(amino acid residues, 19–38; amino acid identity, 95%) and
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XP_005089737 (amino acid residues, 18–37; amino acid identity,
90%), respectively. The specific activities of purified ApAmy59
and ApAmy80 were 4.15 and 73.8 U/mg, respectively. Approxi-
mately 6 mg of ApAmy59 and 0.4 mg of ApAmy80 were obtained
from 300 ml of the digestive fluid of A. kurodai.

3.3. Purification of 74-kDa (ApAGL74) and 86-kDa (ApAGL86)
a-glucosidases

Two a-glucosidases (ApAGL74 and ApAGL86) were identified in
the digestive fluid of A. kurodai. ApAGL74 was eluted in the CM-
Sepharose unbound fraction and further purified by employing a
series of column chromatographic procedures using DEAE-
Sepharose, Sephacryl S-100, hydroxyapatite (Fig. S1). Finally,
ApAGL74 was purified to a homogeneous state by hydroxyapatite
column chromatography. The activity was eluted in unbound and
bound fractions of hydroxyapatite (Fig. S1D). a-Glucosidase in
the unbound fraction yielded a single protein band on SDS–PAGE
(Fig. S1E). The molecular mass of the enzyme was estimated to
be 74 kDa by SDS–PAGE (Fig. 2A). The bound fraction contained
another protein band (210 kDa) in addition to the 74-kDa protein;
therefore, the 74-kDa a-glucosidase eluted in the unbound fraction
was used as the purified enzyme. The specific activity of purified
ApAGL74 against 4MU-a-glucoside was 20.0 U/mg. ApAGL86 was
isolated from the DEAE-Sepharose unbound fraction and chro-
matographed on a phenyl-Sepharose column (Fig. S2A). The activ-
ity eluted in the phenyl-Sepharose unbound fraction was further
purified on Sephacryl S-200 and Mono Q (Fig. S2B and C). On Mon-
oQ chromatography, the enzyme activity was correlated with an
86-kDa protein band on SDS–PAGE (Fig. S2D). The fractions with
activity were further purified by Mono Q rechromatography. The
final preparation showed a single band on SDS–PAGE under a
reducing condition (Fig. 2A). The molecular mass of the enzyme
was estimated to be 86 kDa by SDS–PAGE, and the specific activity
of the final preparation was 70.1 U/mg. Approximately 3.5 mg of
ApAGL74 and 0.7 mg of ApAGL86 were obtained from 300 ml of
the digestive fluid of A. kurodai.

In an effort to characterize ApAGL74 and ApAGL86 at the amino
acid sequence level, the N-terminal sequences of the purified
enzymes were examined. Approximately 100 pmol of ApAGL74
was applied to a protein sequencer, but no amino acid sequence
was obtained, which suggested that the N-terminus of ApAGL74
was blocked. Consequently, the sequence of peptide #27 generated
by lysyl endopeptidase digestion was determined. As shown in
Fig. 2C, the internal sequence DFGYDISDQRDVDPMFGTIDDF of
ApAGL74 has a high degree of homology to the corresponding
regions of maltase (amino acid identity: 68%) from fruit fly
[24] and a-glucosidases from honeybee (68%) [25]. Insect
a-glucosidases are found exclusively in family GHF13 [26,27].
Although the N-terminus sequence (IDGQPVEYSPDPSEILTW) of
ApAGL86 could be determined, enzymes containing the sequences
homologous with the N-terminal sequence of ApAGL86 were not
found in glycosidase-related enzymes. In contrast, the internal
sequences #33 (LDYFPYLGVDSVWLSPVYK) and #41 (EQADLNYR-
DYNLRQEIK) of ApAGL86 were found to be homologous with the
corresponding region of oligo-1,6-glucosidase from Geobacillus
thermoglucosidasius [28], a-glucosidase from honeybee [29], and
sucrase from pea aphid [30]. Particularly, the internal sequence
(#33) of ApAGL86 showed the highest homology with the corre-
sponding region of oligo-1,6-glucosidase from G. thermoglucosida-
sius (amino acid identity: 79%) [28]. The sequences, GVDSVWLSP
(#33) and QADLN (#41) were highly conserved in CSR (conserved
sequence region) VI and V of a-amylase family GHF13, respectively
[27]. CSR VI and CSR V cover the strand b2 of the catalytic (b/a)8-
barrel and domain B of GHF13, respectively. These results sug-
gested that ApAGL74 and ApAGL86 belong to GHF13. In contrast,
the internal sequences of ApAGL74 and ApAGL86 were highly
homologous with the corresponding regions of the protein
sequences of the A. californica genome sequence that were pre-
dicted by automated computational analysis. The internal
sequence #27 of ApAGL74 was exactly the same as the correspond-
ing region (87–108) of maltase 1-like protein (NCBI Reference
sequence, XP_005107118). The internal sequence (#33) of
ApAGL86 completely corresponded with the amino acid residue
numbers 102–120 of a-glucosidase-like protein (NCBI Reference
sequence, XP_005105339). The internal sequence (#41) was highly
homologous (88% amino acid identity) with the corresponding
region (187–203) of this a-glucosidase-like protein.

Recently, a 97-kDa a-glucosidase (HdAgl) was purified from the
digestive fluid of Pacific abalone, and its cDNA was cloned [31].
Sequences homologous with the internal sequences of A. kurodai
a-glucosidases were not found in the whole HdAgl sequence.

3.4. Analysis of oligosaccharides bound to the enzyme

To determine whether ApAmy59, ApAmy80, ApAGL74, and
ApAGL86 are glycoproteins, the enzymes were analyzed by lectin
blot. Six lectins comprising concanavalin A (ConA), peanut aggluti-
nin (PNA), lentil agglutinin (LCA), wheat germ agglutinin (WGA),
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caster bean agglutinin (RCA-120), and phytohemagglutinin (PHA)
were used. ConA, LCA, and WGA reactive oligosaccharide were
detected in ApAGL74 (Fig. 2B). ApAmy59, ApAmy80, and ApAGL86
did not react with any lectins examined.

3.5. Characterization of ApAmy59 and ApAmy80

The specific activity of ApAmy59 (4.15 U/mg) was markedly
lower than that of ApAmy80 (73.8 U/mg), abalone amylases,
HdAmy58 (45 U/mg), and HdAmy82 (29 U/mg). Calcium and chlo-
ride ions have important roles in a-amylase activity and stability
[32–35]. We examined the effects of the Ca2+ and Cl� ion on the
activity of ApAmy59. Among the metal ions examined, Ca2+ was
found to be the strongest activator of ApAmy59. As shown in
Fig. 3A, the specific activity of ApAmy59 increased about 70-fold
(282 U/mg) by 10 mM CaCl2. Although ApAmy59 was also acti-
vated by 10 mM MgCl2 (13-fold), the effect was less than that by
CaCl2. CoCl2 and ZnCl2 possessed negative effects on the activity
of ApAmy59. Similarly, Cl� ion also activated ApAmy59 (Fig. 3B).
ApAmy59 was activated maximally by either 0.2 M NaCl (25-fold)
or 0.1 M KCl (21-fold). ApAmy59 activity in the presence of 10 mM
CaCl2 was not activated further by addition of NaCl. In contrast,
ApAmy80 activity was not affected significantly by Ca2+ and Cl�,
as observed for ApAmy59. We next examined the Ca2+ binding
activity of ApAmy59. ApAmy59 was incubated with 50 mM acetate
(pH 6.0) containing 10 mM CaCl2 at 0 �C for 15 h, and the activity
was examined in the absence and presence of 10 mM CaCl2. When
the enzyme activity was assayed in the absence of Ca2+, ApAmy59
activity was 1/20 relative to the activity in the presence of Ca2+.
These results indicated that the Ca2+ binding activity of ApAmy59
was very weak.

The optimal pH ranges for ApAmy59 and ApAmy80 were pH
6.0–6.5 and 5.5–6.0, respectively. The optimal temperatures for
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Fig. 4. Degradation of maltoheptaose and starch by ApAmy59 and ApAmy80. Maltohepta
CaCl2) were incubated with 0.18 U of ApAmy59 and ApAmy80 at 37 �C for the time indic
The reaction was terminated by heat treatment (95 �C for 2 min) and analyzed by TLC.
ApAmy59 and ApAmy80 were 40 �C and 55 �C, respectively. Both
enzymes were stable at pH 5.0–7.0. The heat stability of ApAm-
y59 was increased by Ca2+ (Fig. 3C). Although ApAmy59 was com-
pletely inactivated by treatment at 50 �C for 10 min, ApAmy59
treated in the presence of Ca2+ retained 60% of the activity. The
heat stability of ApAmy80 was not affected by the addition of
Ca2+. The km values of starch for ApAmy59 and ApAmy80 were
0.37 ± 0.03 and 1.42 ± 0.06 mg/ml in the presence of 10 mM CaCl2.
When the enzyme was incubated in the absence of CaCl2, the km
of starch for ApAmy59 increased 9.5-fold (3.50 ± 0.3 mg/ml). The
km for ApAmy80 was not affected by CaCl2. The Vmax values for
ApAmy59 in the absence and presence of CaCl2 were
38.3 ± 2.4 U/mg and 370.4 ± 28.7 U/mg, respectively, and the val-
ues increased 9.7-fold by CaCl2. The Vmax value (101 ± 12.1 U/
mg) for ApAmy80 increased 2-fold by CaCl2. Thus, the presence
of Ca2+ in the reaction mixture is required for expression of the
maximum activity of A. kurodai ApAmy59, whereas Ca2+-depen-
dency of abalone HdAmy58 was not reported [9]. Fig. 3D shows
the reaction products of starch, glycogen, and dextran by ApAm-
y59 or ApAmy80 digestion. ApAmy59 digested starch and glyco-
gen and produced maltotriose as a major product, whereas
maltotriose, maltose, and glucose were produced by ApAmy80,
which indicated distinct cleavage specificity. Neither ApAmy59
nor ApAmy80 digested dextran.

To investigate the mode of hydrolysis of maltoheptaose and
starch, the ApAmy59 and ApAmy80 degradation time courses of
these substrates were analyzed (Fig. 4). As a control, the action of
a-amylase from Aspergillus oryzae was also examined. All ApAm-
y59, ApAmy80, and A. oryzae amylase degraded maltoheptaose
and starch and produced maltotriose, maltose, and glucose. Trace
amounts of oligosaccharides longer than maltotriose were also
detected in digestion of starch. The ratio of final major products dif-
fered. The relative amounts of reaction products of maltoheptaose
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Fig. 5. Comparison of the enzymatic properties of ApAGL74 and ApAGL86. (A-1)
Maltose and maltoheptaose (0.2 ml, 1 mg/ml in 10 mM acetate, pH 6.0) were
incubated with 0.03 U of ApAGL74 or ApAGL86 at 37 �C for 24 h. (A-2) Cellobiose,
lactose, laminarin, lichenan, sucrose, and starch (0.2 ml, 10 mg/ml in 10 mM
acetate, pH 6.0) were incubated with 0.03 U of ApAGL74 or ApAGL86 at 37 �C for
24 h. Reaction products were analyzed by TLC. (B-1) Time-course hydrolysis of
maltoheptaose by ApAGL74. ApAGL74 (0.1 U) was incubated with celloheptaose
(1.0 ml, 5 mg/ml in 10 mM acetate, pH 6.0) at 37 �C for the time indicated. The
reaction products were analyzed by TLC (B-1) and glucose content was determined
by the Glucose CII Test Wako (B-2). (C) Hydrolysis of starch by the synergistic action
of amylase and a-glucosidase. Incubation of 0.08 U of ApAmy59 and ApAmy80 with
starch (1.0 ml, 2 mg/ml in 50 mM acetate, pH 5.5 containing 10 mM CaCl2) in the
absence or presence of ApAGL74 (0.08 U) at 37 �C for the time indicated. Glucose
(mean ± S.D.) was determined by at least three separate experiments. ApAmy59
(opened circles), ApAmy80 (closed circles), ApAGL74 (open diamonds), ApAm-
y59 + ApAGL74 (opened squares), ApAmy80 + ApAGL74 (closed squares), and
ApAmy59 + ApAmy80 + ApAGL74 (opened triangles). (D) Hydrolysis of sea lettuce
by the synergistic action of amylase and a-glucosidase. Sea lettuce (1.0 ml, 20 mg/
ml in 50 mM acetate containing 10 mM CaCl2) was incubated with 0.1 U of
ApAmy59 and ApAmy80 in the absence and presence of ApAGL74 at 37 �C for 24 h.
Aspergillus amylase was incubated in the absence of CaCl2. Glucose (mean) was
determined by two separate experiments.
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and starch incubated with ApAmy59 were maltotriose >
maltose > glucose. ApAmy80 hydrolyzed maltoheptaose or starch
and produced maltose > glucose P maltotriose. Although the
major product of A. oryzae amylase was maltose as observed for
ApAmy80, the glucose-producing activity was markedly lower for
A. oryzae amylase than for ApAmy80. Thus, ApAmy80 possessed
the highest glucose-producing activity from maltoheptaose and
starch among the three enzymes tested. Both ApAmy59 and
ApAmy80 did not hydrolyze maltose, cellobiose, CMC, laminarin,
lichenan, and 4MU-a-glucoside.

3.6. Characterization of ApAGL74 and ApAGL86

ApAGL74 and ApAGL86 exhibited optimal hydrolytic activity
towards 4MU-a-glucoside at pH 5.5–6.0. The optimal temperatures
for ApAGL74 and ApAGL86 were 35 �C and 40 �C, respectively. Both
enzymes were unstable at temperatures >45 �C and stable at pH
5.0–7.5. Hydrolysis of 4MU-a-glucoside by ApAGL74 and ApAGL86
was not inhibited by 0.2 M glucose. The substrate specificities of
ApAGL74 and ApAGL86 were first compared briefly using TLC
(Fig. 5A). ApAGL74 completely hydrolyzed maltose and maltohep-
taose to produce glucose. Sucrose was also hydrolyzed by ApAGL74,
whereas starch was not a good substrate for ApAGL74. In contrast,
the hydrolysis activity of ApAGL86 against these natural substrates
was not detected by TLC. Both enzymes exhibited no activity
toward cellobiose, lactose, laminarin, lichenan, 4MU-b-glucoside,
4MU-a-galactoside, 4MU-a-mannoside, and 4MU-b-xyloside.

To investigate the mode of hydrolysis of maltoheptaose by
ApAGL74, the time-course of degradation was analyzed (Fig. 5B).
Maltoheptaose was completely hydrolyzed to glucose within 1 h.
Trace amounts of maltose and maltotriose were detected. The km
and kcat values of ApAGL74 for maltoheptaose were estimated to
be 31.7 ± 2.1 mM and 40.2 ± 1.2 s�1, respectively.

To compare the substrate specificities of ApAGL74 and
ApAGL86 precisely, the km and kcat values toward 4MU-a-
glucoside, maltose, isomaltose, sucrose, dextran, glycogen, and
starch for ApAGL74 and ApAGL86 were determined (Table 1).
Although a-glucosidase I from Japanese honeybee showed unusual
kinetic features toward maltose, p-nitrophenyl-a-glucoside, and
sucrose [36], ApAGL74 and ApAGL86 exhibited normal Michae-
lis–Menten-type kinetics for all substrates tested. Judging from
the kcat/km, it is likely that ApAGL74 prefers short a-1,4-linked oli-
gosaccharides. In contrast, ApAGL86 is likely to prefer long a-1,6
and a-1,4-linked polysaccharides, such as glycogen.

The synergistic effects of a-amylases and ApAGL74 on glucose
production from starch were examined (Fig. 5C). Starch (2 mg)
was incubated with ApAmy59, ApAmy80, ApAGL74, ApAm-
y59 + ApAGL74, ApAmy80 + ApAGL74, and ApAmy59 + ApAm-
y80 + ApAGL74 in 50 mM acetate (pH 6.5) containing 10 mM
CaCl2. Although glucose production from starch by reaction with
amylase or b-glucosidase only was very low (ApAmy59, 0.12 mg
glucose; ApAmy80, 0.2 mg; ApAGL74, 0.15 mg; after 8 h), glucose
production was markedly increased by incubation with a-amylase
and ApAGL74. After 8 h, 80% of starch was converted to glucose.
When two types of a-amylases and ApAGL74 were incubated
together, the glucose production rate was slightly increased. Next,
the effect of ApAGL74 on glucose production from sea lettuce by
a-amylase treatment was investigated (Fig. 5D). Sea lettuce is
the primary food of sea hares. Approximately 0.6 mg of glucose
was liberated from sea lettuce (20 mg dry weight) when 0.1 U of
ApAmy59 or ApAmy80 was incubated in the presence of 0.02 U
of ApAGL74. Further glucose production from sea lettuce by
a-amylase from A. oryzae and ApAGL74 was also examined.
Although the same amount of activity of fungal a-glucosidase
was used, glucose production (0.2 mg) was markedly decreased
compared with that from treatment with A. kurodai enzymes.
3.7. Glucose production from sea lettuce by ApAmy59, ApAmy80, and
ApAGL74

To understand the physiological role of the digestive enzymes,
we compared the glucose productivities between the cellulose
digestion system and the starch digestive system from various
seaweeds and microalgae (Fig. 6A). A pair comprising 45-kDa
cellulase and 210-kDa b-glucosidase purified from the digestive
fluid of A. kurodai [3] was used as the cellulose digestive system.
In the digestive fluid of A. kurodai, 45-kDa cellulase and 210-kDa



Table 1
Substrate specificities of ApAGL74 and ApAGL86.

Substratesa AGL Km kcatb kcat/Km

4MU-a-glucoside (lM) (s�1)
ApAGL74 47.9 ± 10.6 27.1 ± 3.32 0.566
ApAGL86 412 ± 6.0 3.02 ± 0.03 0.0073

Maltose (mM) (s�1)
ApAGL74 4.98 ± 0.06 89.0 ± 20.8 17.9
ApAGL86 1.86 ± 0.11 3.83 ± 0.15 2.06

Isomaltose (mM) (s�1)
ApAGL74 14.2 ± 0.90 0.535 ± 0.02 0.0377
ApAGL86 16.5 ± 0.05 24.5 ± 0.015 1.48

Sucrose (mM) (s�1)
ApAGL74 31.7 ± 2.10 40.2 ± 1.15 1.27
ApAGL86 33.6 ± 1.55 11.7 ± 0.42 0.348

Dextran (%) (s�1)
ApAGL74 6.30 ± 1.31 0.348 ± 0.024 0.0552
ApAGL86 5.38 ± 0.37 16.5 ± 0.98 3.07

Glycogen (%) (s�1)
ApAGL74 1.42 ± 0.20 0.592 ± 0.153 0.417
ApAGL86 0.052 ± 0.005 2.93 ± 0.30 56.3

Starch (%) (s�1)
ApAGL74 0.819 ± 0.08 2.16 ± 0.14 2.64
ApAGL86 0.098 ± 0.01 2.30 ± 0.14 23.5

a The kinetic data and SDs were calculated from at least three times of
experiments.

b Based on a molecular mass of 74 kDa and 86 kDa.
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b-glucosidase are the most abundant cellulase and b-glucosidase,
respectively. A pair comprising ApAmy59 + ApAGL74 and ApAm-
y80 + ApAGL74 was used as the starch digestive system. Enzyme
digestions of U. pertusa (sea lettuce), U. prolifera, E. bicyclis, Saccha-
rina sp., and C. vulgaris were performed at 37 �C and pH 5.5, which
is the pH of the digestive fluid of A. kurodai in the presence of
10 mM CaCl2. When the algae were treated by the cellulose
digestive system, the amount of glucose liberated was highest for
U. pertusa and U. prolifera digestion. In contrast, the amount of
glucose liberated from U. pertusa by the starch digestive system
was markedly higher than that by the cellulose digestive system.
C. vulgaris was also a good substrate for the starch digestive sys-
tem, as was sea lettuce. Glucose was not produced from E. bicyclis
by either the cellulose or starch digestive systems. Thus, a greater
amount of glucose was produced from sea lettuce by amylase
and a-glucosidase treatment than by digestion with cellulolytic
enzymes.

In an effort to understand the synergistic effects of ApAmy59,
ApAmy80, ApAGL74, and ApAGL80 on glucose production from
sea lettuce, sea lettuce was incubated with various combinations
of A. kurodai amylase and a-glucosidase, and then the reaction
products were analyzed by gel filtration and TLC. Degradation
products were detected in tube numbers 50–64 on gel filtration
by measuring the amount of reducing sugar formed (Fig. 6B).
ApAmy59 and ApAmy80 displayed distinct cleavage specificities
toward starch in sea lettuce, as in the case of starch digestion.
When sea lettuce was digested with ApAmy59, three spots corre-
sponding to maltotriose, maltose, and glucose were detected. Malt-
ose was the major spot. ApAmy80 hydrolyzed starch in sea lettuce
to maltose and glucose. The addition of ApAGL74 resulted in an
increase in glucose productivity. Thus, A. kurodai amylase can pro-
duce glucose from sea lettuce without a-glucosidase, and glucose
yield was markedly increased by the combination of a-amylase
and a-glucosidase. To identify the minimum combination of a-
amylase and a-glucosidase for maximizing glucose productivity,
the glucose-producing activities of the various enzyme mixtures
toward sea lettuce were compared (Fig. 6C). Sea lettuce (20 mg/
dry weight) was digested by various mixtures of purified enzymes
(2 lg of enzyme) at 37 �C for 20 h. The reaction using three
enzymes (ApAmy59, ApAmy80, and ApAGL74) gave approximately
84% of the glucose productivity obtained from the same reaction
using all enzymes (1.05 mg of glucose production).
4. Discussion

In the present study, two a-amylases, ApAmy59 and ApAmy80,
and two a-glucosidases, ApAGL74 and ApAGL86, were isolated
from the digestive fluid of A. kurodai. The amino-terminal
sequences of ApAmy59 and ApAmy80 were highly homologous
with the amino-terminal sequence of the mature form of abalone
58-kDa (HdAmy58) and 82-kDa amylases (HdAmy82), respectively
[9]. Sequence data strongly suggested that ApAmy59 and ApAm-
y80 are orthologs of HdAmy58 and HdAmy82, respectively. The
two a-glucosidases possess sequences homologous with those of
glycosidases belonging to GHF13 [5–7,26,27]. The internal
sequence of ApAGL74 was homologous with that of the fruit fly
maltase [24] and honeybee a-glucosidase [25]. The internal
sequences of ApAGL86 were homologous with the corresponding
region of Geobacillus oligo-1, 6-glucosidase [28], honeybee
a-glucosidase 2 [29], and pea aphid sucrase [30]. In contrast, the
amino terminal sequences of ApAmy59 and ApAmy80 and internal
sequences of ApAGL74 and ApAGL86 were exactly the same or
highly homologous with the corresponding sequence regions of
the maltase 1-like (NCBI: XP_005107118), a-amylase-like (NCBI:
XP_005105339), a-glucosidase-like (NCBI: XP_005103373), and
a-glucosidase-like (NCBI: XP_005089737) gene products predicted
by automated computational analysis of the A. californica genome
sequence, respectively. These results strongly suggest that ApAm-
y59, ApAmy80, ApAGL74, and ApAGL86 are produced by A. kurodai
itself and not by gut-resident bacteria and protists.

Enzymatic properties, including optimal pH, optimal tempera-
ture, and cleavage specificity of ApAmy59, were similar to those
of HdAmy58; however, a remarkable difference in specific activity
between ApAmy59 and HdAmy58 was found. The specific activity
of ApAmy59 (4.15 U/mg) was remarkably lower than that of
HdAmy58 (45 U/mg). As a consequence of screening of the ApAm-
y59 activator, Ca2+ and Cl� were found to activate ApAmy59 activ-
ity markedly. The activity of ApAmy59 was activated to 70-fold
and 25-fold by the addition of 10 mM CaCl2 and 0.2 M NaCl,
respectively. All known a-amylases belonging to a group of metal-
loenzymes contain a conserved calcium ion [32]. Removal of cal-
cium from the enzyme results in decreased enzyme activity and
stability [33,34]. Further, several a-amylases, including mamma-
lian pancreatic and insect a-amylases, have been found to require
chloride to show full catalytic activity [37,38]. In contrast, most
microbial amylases are not affected by the presence of chloride.
It is likely that the Ca2+ binding activity of ApAmy59 is very weak
compared with those of other eukaryotic amylases. Considering
the concentrations of Ca2+ (10 mM) and Cl� (0.5 M) in sea water
and the calcium content (4.9 mg/g dry weight) in sea lettuce,
ApAmy59 is likely to be fully activated in the stomach of A. kurodai.
ApAmy80 possesses higher glucose-producing activity from malto-
heptaose, starch, and glycogen than does ApAmy59.

Compared with bacterial and fungal a-glucosidase reports,
there are very few reports concerning enzymatic characterization
of a-glucosidase purified from invertebrates. To date, invertebrate
a-glucosidase has been purified from honeybee (Apis cerana) [39],
(A. mellifera) [25,29], fruit fly (Drosophila melanogaster) [40], aba-
lone (Haliotis discus hannai) [31], mottled sea hare (A. fasciata)
[41], and shrimp (Penaeus vannamei and P. japonicus) [12,42]. These
enzymes belong to GHF 13 but differ in substrate specificity and
molecular mass. The best substrates for honeybee and shrimp
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Fig. 6. Saccharification of algae with cellulase, b-glucosidase, amylase, and a-glucosidase purified from A. kurodai. (A) Macroalgae, sea lettuce (Ulva pertusa), green lavor (U.
prolifera), Eisenia bicyclis, Saccharina sp. and the microalgae, Chlorella vulgaris (10 mg in 0.5 ml of 50 mM acetate, pH 5.5, containing 10 mM CaCl2), were incubated with
purified enzyme (5 lg) at 37 �C for 20 h. Glucose content was then determined (A-1). TLC analysis of reaction products of algae treated with purified enzymes (A-2). (B) Gel
filtration analysis of reaction products of algae treated with amylase (ApAmy59 or ApAmy80) in the absence and presence of ApAGL74. Sea lettuce (50 mg in 1.5 ml of 50 mM
acetate, pH 5.5, containing 5 mM CaCl2) was incubated with amylase (20 lg) in the absence and presence of ApAGL74 (20 lg) as indicated at 37 �C for 24 h. After
centrifugation, the supernatants were fractionated by gel filtration through a Bio-Gel P-2 column, as described in Section 2. Eluants (0.5 ml, tube number 50–64) were
lyophilized and dissolved in 20 ll of H2O. A 2-ll aliquot was used for TLC. (C) Sea lettuce (20 mg in 1.0 ml of 50 mM acetate, pH 5.5, containing 10 mM CaCl2) was incubated
with various mixtures of purified enzymes (2 lg) at 37 �C for 20 h. Glucose content (mean ± S.D.) in the supernatant of the reaction mixtures was determined by three
separate experiments. TLC analysis of reaction products (inset).
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a-glucosidase were shown to be sucrose and maltose, respectively.
Sucrose was not hydrolyzed by shrimp a-glucosidase. The molecu-
lar masses of shrimp and honeybee a-glucosidase were estimated
to be approximately 105 kDa [12] and 68 kDa [29], respectively.
The 98-kDa abalone a-glucosidase (98-kDa HdAgl) preferably
hydrolyzed smaller substrates such as maltose and maltotriose
[31]. Starch was also hydrolyzed to glucose by the abalone
enzyme; however, sucrose and isomaltose were not cleaved by
abalone a-glucosidase. Its ortholog was not found in A. kurodai.
Further analysis is necessary.

Although the molecular mass of a-glucosidases from A. fasciata
(69 kDa) [41] and A. kurodai (ApAGL74, 74 kDa) were similar, their
cleavage specificities clearly differed. The former enzyme hydro-
lyzed maltose and maltotriose but not starch and sucrose.
ApAGL74 prefers smaller substrates, such as maltose; however, it
can hydrolyze sucrose, unlike a-glucosidase from A. fasciata. In
contrast, ApAGL86 is the first purified a-glucosidase from an inver-
tebrate that prefers hydrolysis of the a-1, 6 glycoside bond of glu-
cose. The kcat/km values for ApAGL86 towards isomaltose, dextran,
and glycogen were 39, 56, and 135-fold higher than those for
ApAGL74, respectively.

In an effort to understand the seaweed starch digestive system
of A. kurodai and identify the best combination of amylases and
a-glucosidases to maximize glucose productivity, the glucose-
producing activities of the various enzyme mixtures on sea lettuce
were investigated. Sea lettuce is the best substrate for A. kurodai
a-amylase and a-glucosidase. When 20 mg of sea lettuce was
digested by four enzymes, ApAmy59, ApAmy80, ApAGL74, and
ApAGL86, at 37 �C for 24 h, approximately 1 mg of glucose was
produced. However, almost the same amount of glucose (0.8 mg)
was produced even by reaction with ApAmy59, ApAmy80, and
ApAGL74 without ApAGL86. These results suggested that sea let-
tuce contains an amylose-type starch. ApAGL86 might have a role
in digestion of amylopectin-type starch. In contrast to the amylo-
lytic system, the sea hare cellulolytic system comprised four
endo-b-1,4-glycosidases (95-kDa, 65-kDa, 45-kDa and 21-kDa cel-
lulases) and two b-glycosidases (210-kDa and 110-kDa b-glucosi-
dases) [3]. The core components of the sea hare cellulose
digestive system are a 45-kDa cellulase and a 210-kDa b-glucosi-
dase. The starch and cellulose concentrations in sea lettuce (U. per-
tusa Kjellman) were estimated to be 20% and 8%, respectively [4]. It
is noteworthy that approximately a 3- to 5-fold greater amount of
glucose was produced from starch by incubation with the digestive
fluid of sea hare relative to that from CMC. The specific activity of
ApAmy59 (282 U/mg in the presence of Ca2+) toward starch is
16.5-fold higher than the specific activity of 45-kDa cellulase
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(17.1 U/mg), which is the most abundant cellulase in the digestive
fluid, toward CMC. The km value of starch for ApAmy59
(0.37 ± 0.03 mg/ml) is markedly lower than the km of CMC for
45-kDa cellulase (81.3 ± 14.0 mg/ml). Thus the higher concentra-
tions of starch relative to those of cellulose in sea lettuce and the
higher catalytic efficiency of the amylolytic system relative to that
of the cellulolytic system may lead to better digestion of starch. It
is highly likely that starch in sea lettuce is a predominant glucose
source for sea hare.

In mammals, two membrane-bound enzyme complexes, mal-
tase–glucoamylase and sucrase–isomaltase belonging to GHF31,
hydrolyze starch-derived products to glucose monomer in the
small intestine [13,14]. Previously, we showed the similarity of A.
kurodai 210-kDa b-glucosidase with human intestinal lactate-
phlorizin hydrolase in terms of molecular mass, amino acid
sequences, and catalytic properties [3]. In contrast, the correspond-
ing region homologous with the internal amino acid sequences of
the two A. kurodai a-glucosidases are not found in sequences
of maltase–glucoamylase and sucrase–isomaltase. The sequences
of A. kurodai a-glucosidases are highly homologous with inverte-
brate or bacterial a-glucosidases belonging to GHF13.

In conclusion, our work provides the first comprehensive anal-
ysis of the digestive amylolytic system of A. kurodai. Our results
clearly showed that A. kurodai can digest starch and produce glu-
cose efficiently by the combination of two a-amylases and two
a-glucosidases in the stomach, suggesting that 74-kDa and 86-
kDa a-glucosidases can substitute for the maltase–glucoamylase
and sucrase–isomaltase complexes. Further, the starch digestive
system of A. kurodai may contribute important insights into the
development of biofuel processing of seaweed.
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