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Background: In Parkinson’s disease, reaching movements are conditioned by motor

planning and execution deficiency. Recently, rehabilitation, aided by high technological

devices, was employed for Parkinson’s disease.

Objective: We aimed to (1) investigate the changes in the upper limb motor

performances in a sample of a patient with Parkinson’s disease after a weightless

training, with a passive exoskeleton, in an augmented-feedback environment; (2) highlight

differences by motor parameters (performance, speed, and movement accuracy) and by

type of movement (simple or complex); and (3) evaluate movement improvements by

UPDRS II–III.

Methods: Observational pilot study. Twenty right-handed patients with Parkinson’s

disease, Hohen and Yahr 2, Mini Mental State Examination ≥ 24 were evaluated.

All patients underwent 5 day/week sessions for 4 weeks, 30min for each arm; the

training was performed with 12 exercises (single and multi-joints, horizontal and vertical

movements). All the patients were assessed by UPDRS II–III and the evaluation tests

provided by the device’s software: a simple movement, the vertical capture, and a

complex movement, the horizontal capture. For each test, we analyzed reached target

percentage, movement execution time, and accuracy.

Results: After training, a significant improvement of accuracy and speed for simple

movement on the dominant arm, of reached targets and speed for complex movement

on both sides were shown. UPDRS II and III improved significantly after training.

Conclusions: In our study, a motor training aided by a high technological device

improves motor parameters and highlights differences between the type of movement

(simple or complex) and movement parameters (speed and accuracy) in a sample of

patients with Parkinson’s disease.

Keywords: Parkinson’s disease, upper limb rehabilitation, high technology rehabilitation, augmented feedback

exercises, outcome measures
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INTRODUCTION

Parkinson’s disease (PD) is a chronic progressive movement
disorder, particularly affecting the reaching and grasping upper
limb movements, which progressively become slow and difficult
(1, 2), greatly impairing the activities of daily living (3, 4).
Upper limb involvement in PD essentially regards deficiency in
planning and in executing both voluntary simple and complex
movements, as well as a lack in repeating motor poly-articular
rapid sequences, attributed to dopaminergic pathway damage
(5–7). This deficit produces slow and less precise reaching
movements with a higher percentage of errors in movement
accuracy as speed of action increases (8–10).

In the last few years, new models of PD rehabilitation were
introduced, based on compensatory strategies, that are able to
promote movements by bypassing the dopaminergic damage
pathways (11). With these premises, upper limb rehabilitation,
supported by a robotic or mechanic device, often in a virtual
reality or augmented feedback environment, was proposed
in order to execute intensive, repetitive, and task-oriented
training in Parkinson’s disease (11). These devices were originally
employed in the rehabilitation of hemiplegia following brain
vascular damage (12). Later, a similar training was subsequently
first adopted for gait PD rehabilitation (13, 14).

At the best of our knowledge, few clinical studies in PD exist,
which involve the adoption of a robotic or a mechanic device
in order to improve upper limb mobility (15–17). Among these,
exoskeleton devices aided by augmented feedback exercises,
actually available for routine use, demonstrated successful results
particularly in stroke rehabilitation (18, 19).

In addition, standardized outcome measures, in order
to quantify rehabilitative training effects (3), are crucial in
rehabilitation for Parkinson’s disease as well and also when
aided by robotic or mechanic devices (20). Precise and
sophisticated movement analysis of motor performance achieved
with instrumental rehabilitative devices, such as for instance
kinematic analysis, was mostly carried out in the laboratory
setting and are not easily adaptable for clinical routine (21, 22).
For this purpose, the device used in our study was already used
in patients with stroke to assess changes as outcome motor tasks
after upper limb rehabilitation (23).

In this pilot study, we aimed to (1) investigate the changes
in upper limb motor performances in a sample of a patients
with PD after upper limb training with an exoskeleton device in
an augmented feedback environment; (2) highlight differences
by motor parameters (performance, speed, and movement
accuracy) and type of movement (simple or complex); (3)
evaluate ability and movement improvements by the Unified
Parkinson Disease Rating Scale (UPDRS) II and III score.

Abbreviations: PD, Parkinson’s disease; H&Y, Hoehn and Yahr; MMSE, Mini

Mental State Examination; VC, vertical capture; VCt, vertical capture total time

execution; VCa, vertical capture accuracy; VC%, vertical capture percentage; HC,

horizontal capture; HCt, horizontal capture total time execution; HCa, horizontal

capture trajectory accuracy; HC%, horizontal capture percentage; UPDRS, Unified

Parkinson’s Disease Rating Scale; UPDRS II and III, Unified Parkinson’s Disease

Rating Scale sections II and III; VR, virtual reality; LD, levodopa; DA, dopamine

agonist; LED, levodopa total daily dose.

METHODS

A sample of patients with PD, performing an in-patient
rehabilitative training in the Neurorehabilitation and
Neurophysiology Units of Montescano Medical Centre,
ICS Maugeri, were enrolled in this pilot open study. The
inclusion criteria were diagnosis of idiopathic Parkinson’s
disease according to the UK Brain Bank Criteria (24), bilateral
disease symptoms [Hohen and Yahr (H&Y) stage 2] (25),
and Mini Mental State Examination (MMSE) ≥ 24 (26). The
exclusion criteria were severe dyskinesia or invalidating tremors,
concomitant severe visual deficits, or neurological and/or
orthopedic affections involving the upper limb, which could
interfere with the use of the device.

The study was approved by our institutional review board
and Central Ethical Committee (CEC) (approval number: CEC
N.2042). All patients signed a consent form upon authorization
to participate in the study and to access their medical records;
in addition, data was managed anonymously. Patients continued
their usual dopaminergic medications that remained unchanged
during the duration of the study and for at least 4 weeks prior to
its starting.

They were trained and tested during the “on” phase [after
roughly 1.5 h from the last use of levodopa (LD)].

All exercises and evaluation tests were applied to the right and
left arm for all patients.

Participants did not perform any type of rehabilitation in the
3 months before the study.

Treatment Procedures
All patients underwent 5 day/week sessions of bilateral upper
limbmechanic-aided treatment for 4 weeks, 30min for each arm.

The training was performed with the Armeo Spring R© System
(Hocoma, Zurich, Switzerland). Armeo Spring R© is a mechanic
exoskeleton device that reproduces the anatomical structure of
the upper limb. The mechanical support is equipped with eight
joints and with a handle with which the patient can execute a
grab gesture; it is a gravity support instrument with a graduated
spring system (Figure 1). The adjustment of the device was
carried out according to the anthropometric features of the
patient’s limb; the easing of the weight of the arm and forearm
was set through the spring system, adapting it to the strength
and ability of the user. The device allows flexion/extension of
the shoulder and elbow, abduction/adduction of the shoulder,
protraction/retraction of the shoulder, prono-supination of the
wrist, and grasping movements.

Armeo R©’s software is provided with several goal-oriented
training exercises in an augmented feedback environment,
implemented with visual and acoustic stimuli and with a system
that records the data in order to allow for further analysis.

An explanation and demonstration of the requested
movement by a physiotherapist preceded the execution of the
exercise, which was carried out without additional help.

Twelve functional goal-oriented exercises in an augmented
feedback environment were employed with the involvement
of different joints (single joint–three exercises—two
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FIGURE 1 | Armeo Spring®, patient position in the mechanical arm support and horizontal movement (HC) are represented. Patients sit on a non-slip chair; the device

is linked to a screen, placed at 1.5m in front of the patient, allowing for simultaneous reproduction of movements performed by the patient; a photographic sequential

representation of horizontal capture movement is also displayed. The patient depicted in the figures has provided consent to publish his image.

for the shoulder and one for the elbow; multi-joints–
nine exercises—four for the shoulder/elbow, one for
the shoulder/wrist, one for the shoulder/grasping, one
for the shoulder/elbow/wrist/grasping, and two for the
shoulder/elbow/grasping), employing single movement, vertical
or horizontal (seven exercises, four vertical, and three horizontal)
plane or multi-plane motion (five exercises; Figure 2).

The exercise difficulty level during training, based on the
number of targets to achieve, was selected from two (easy) to
three (medium) according to this criterion: when 50% of the
targets was reached, patients moved on to the next difficulty level,
maintained until the end of the training.

Each functional exercise was selected with the same duration
time of 2min. Each patient carried out the same exercises in the
same order of presentation from single to multi-joint exercises.

Testing Procedures
The UPDRS II and III (27) administration and the evaluation
tests provided by Armeo Spring R©’s software (see below) were
carried out by all the patients at T0, before the start of the
training, and at T1, 1 day after the end of the training.

Outcome Measures
The UPDRS II–III (27) (range, respectively: 0–52, 0–108) was
used to evaluate the disease severity and disability. The same rater
evaluated the patients at T0 and T1.

The motor performance measures were provided by the
Armeo R©’s software. These tests were vertical capture (VC) and
horizontal capture (HC).

In the vertical capture test (VC), the patients have to reach a
target (represented by a ladybird) by vertical movement. A simple
movement with flexion–extension of the scapula–humerus joint
and flexion–extension of the elbow is required to reach the target
in the frontal plane.

In the horizontal capture test (HC), the patients must reach a
target (billiard ball) by a horizontal movement, moving the arm
in a transverse plane represented by a billiard ball. The required
movement is complex, multi-articular, and composed of multi-
stage sequential sub-movements (flexion–extension/abduction–
adduction of the gleno-humeral joint, the protraction and
retraction of the shoulder, and a repeated flexion–extension
movement to reach the target; Figure 1).

For the evaluation test, a level 2 difficulty (scale 1–4, from very
easy to difficult, equivalent to the number of targets to achieve)
was chosen (23) for all tests both in T0 and T1, in order to ensure
that the results of the evaluation were comparable over time. For
level 2, 20 targets have to be reached in a time frame of 2 min.

Outcome measures for VC and HC are the number of the
vertical and horizontal targets reached out of 20, expressed as
percentage (%), i.e., VC and HC%; trajectory accuracy (a) for
vertical and horizontal movements, respectively, measured as the
ratio between the patient’s hand trajectory in length and the ideal
distance among the targets to reach, set by the device’s software,
where 1 is the best performance possible and where values higher
than 1 indicate lower performance, i.e., VCa and HCa; the total
time (t) of test execution for vertical and horizontal movements
is expressed in seconds, i.e., VCt and HCt.

Statistical Analysis
Descriptive statistics are given as mean ± SD (normally
distributed data) or as median (lower quartile, upper quartile)
(non-normally distributed data). Data from the Armeo Spring R©

device was analyzed by one-way ANOVA for repeated measures
or the Wilcoxon signed-rank test, when appropriate. All tests
were two-sided, and p < 0.05 was considered statistically
significant. Analyses were performed using the SAS/STAT
statistical package, release 9.2 (SAS Institute Inv., Cary,
NC, USA).
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FIGURE 2 | Exercises for training described by plane of movement, joints involved, and progressive complexity of the exercises.

RESULTS

Twenty right-handed subjects suffering from PD (five women
and 15 men) were selected. The demographic and clinical
characteristics of the patients are reported in Table 1.

All the patients at the time were under pharmacological
therapy: all subjects under LD, for 10 subjects in association with
dopamine agonists (DA) (five patients with pramipexole,

three with rotigotine, two with ropinirole); 10 patients
were also under rasagiline therapy. Therapy is expressed
as the total daily levodopa equivalent dose (LED)
(see Table 1) (28).

Regarding the UPDRS II–III score, significant improvement
is observed from baseline to post-training, respectively, with a
reduction from 14.3 ± 5 to 10.8 ± 4 (p < 0.0001) and 29.1 ±

12.5 to 22.3± 10.8 (p < 0.0001; see Table 1).
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TABLE 1 | Description of the population and data results.

Demographic and clinical

characteristics of the patients

ANOVA results of the analysis of Armeo® parameters of right and left arms as a function of time

(post-training vs. baseline) during vertical (VC) and horizontal capture (HC) tests

Armeo Spring®

parameters

Side treated Baseline (T0) Post-training (T1) 1T1–T0 P (T1 vs. T0)

NR 20 VC% Right

Left

100 (90, 100)

100 (95, 100)

100 (95, 100)

100 (97, 100)

0 (0, 5)

0 (0, 0)

0.20

0.53

Disease side onset Left onset side 5

Right onset side 15

VCa Right

Left

1.27 ± 0.17

1.22 ± 0.06

1.20 ± 0.09

1.23 ± 0.10

−0.06 ± 0.16

0.02 ± 0.09

0.009

0.56

Gender M15; F5 VCt Right

Left

63.8 ± 17.0

52.5 ± 12.4

52.6 ± 17.0

49.0 ± 9.4

−11.2 ± 15.8

−3.5 ± 11.2

0.006

0.19

UPDRS II 14.3 ± 5 (T0)

10.8 ± 4 (T1)

HC%* Right

Left

72 (61, 77)

75 (66, 83)

80 (77, 94)

83 (72, 88)

14 (0, 28)

6 (0, 11)

0.003

0.03

UPDRS III 29.1 ± 12.5 (T0)

22.3 ± 10.8 (T1)

HCa* Right

Left

1.44 ± 0.45

1.59 ± 0.24

1.60 ± 0.29

1.61 ± 0.27

0.15 ± 0.49

0.03 ± 0.28

0.20

0.70

Disease duration 4.9 ± 2.2 HCt* Right

Left

89.7 ± 21.6

85.1 ± 20.8

76.6 ± 15.1

76.4 ± 19.8

−13.1 ± 14.9

−8.7 ± 12.7

0.002

0.01

LED 664.5 ± 240.9

The sample’s clinical characteristics (gender, disease onset side, disease duration expressed in years, UPDRS II–III, levodopa daily total dosage LED expressed in mg) are reported; all

the results are reported: data are expressed as mean ± SD (normally distributed data), or as median (lower quartile, upper quartile; non-normally distributed data). VC%, % of targets

reached (ordinal number); VCa, trajectory accuracy (ordinal number); VCt, time execution test in seconds (s); HC%, % of targets reached (ordinal number); HCa, trajectory accuracy

(ordinal number); HCt, time execution test in seconds (s).

*Analysis was performed in 18 subjects owing to failure to execute the baseline evaluation in two subjects.

Armeo Spring R© evaluation parameters and ANOVA results
for vertical capture (VC) and horizontal capture (HC) tests
performed at baseline and after training are reported in Table 1

and Figure 3.
The following is a detailed description of each test.

Vertical Capture Baseline Measurements
The percentage of targets reached at baseline was close to 100%
in each side. There were no significant differences regarding
trajectory accuracy between the right and left sides. The execution
time (VCt) was higher on the right side (p= 0.006).

Vertical Capture Post-training
Measurements
The percentage of targets reached close to 100% at baseline and
did not significantly increase at the end of the training program.

A significant improvement in trajectory accuracy (VCa) and
execution time test (VCt) on the right side (p = 0.009 and p =

0.006, respectively) was noted, while no significant differences
were observed on the left side.

Horizontal Capture Baseline
Measurements
We clarify that analysis of the data from the HC test was
performed in 18 subjects only, due to failure to execute baseline
evaluation in two subjects; these patients, however, were able to
fulfill the test at post-training evaluation.

All baseline measurements presented no significant
differences between the right and left sides (p ≥ 0.08 for
all comparisons).

The percentage of targets reached (HC%) at baseline was lower
than that observed in the VC tests.

Overall, the HC results were characterized by a larger inter-
and intra-subject variability compared to those from the VC tests,
as evidenced by the magnitude of standard deviations.

Horizontal Capture Post-training
Measurements
The percentage of targets reached (HC%) improved significantly
after training on both sides (right p = 0.003, left p = 0.03).
A significant bilateral improvement was also observed in the
execution time test (HCt) (right p = 0.002, left p = 0.01).
No significant change was observed in trajectory accuracy
after training.

DISCUSSION

In our study, motor training aided by an upper limb mechanic
exoskeleton in an augmented feedback environment improves
motor parameters (performance, speed, and accuracy) and
highlights the differences between the type of movement (simple
or complex) and movement parameters (speed and accuracy) in
a sample of patients with PD.

In detail, at baseline, motor performances in simple
movements were close to 100%, while in complex movements
(HC test), the percentage of targets reached was clearly lower
than that observed in the simple movements (VC test); the
execution time in VC was higher on the right side. After training,
a significant improvement in accuracy and speed for simple
movement (VC) on the dominant arm of reached targets and
speed for complex movement (HC) were bilaterally shown;
in complex movements, accuracy did not show significant
improvements after training.
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FIGURE 3 | Result representation (VCa, VCt at T0–T1, HC%, HCa, HCt at T0–T1) in both sides; the right side is represented with a circle and the left side with a

square; in ordinate percentage of success completion expressed in %, trajectory accuracy expressed as ordinal number, total time execution expressed as seconds,

and in abscissa the baseline and final time evaluation; VC% percentage of success completion is not represented (100% for the right and left sides at T0 and T1).

Training Efficacy
Generally, regarding these findings, our data show an overall
positive training effect in patients with PD as expressed in the
literature (29).

This motor improvement is in agreement with the existing
literature suggesting the involvement of complex and multiple
motor learning mechanisms (30, 31), enhanced by numerous
systems such as visual and acoustic cues or feedback stimuli (32,
33), repetition of focused tasks (34), reinforcement of attention
skills (35), and a process arguably similar to action observation

movements (36). In our opinion, many of thesemechanisms were
involved in mechanic or robotic rehabilitation with augmented
feedback stimuli.

Complex vs. Simple Movements
In a more in-depth analysis of each specific evaluation test, our
data show several differences in movement characteristics related
to the type of movement requested.

In the baseline vertical capture test, where a simple movement
of the scapula humeral articulation is requested, all patients
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completed the task easily, as a rapid change in motor strategy was
not needed (37). On the contrary, at baseline in the horizontal
capture test movement, where a fast and sequential multi
articular movement is necessary to reach the target, our data
showed increased difficulty for patients with PD. Nevertheless,
this measure also improved significantly after training.

After training, in the horizontal and vertical capture tests,
an improvement in movement speed was observed, while an
enhancement of trajectory accuracy was highlighted only in the
simple movement of the vertical capture test.

In PD, deficiency in dopaminergic pathways produces slow
and less precise reaching movements (38) with a higher
percentage of errors as speed of action increases (8, 9). Various
interpretations are currently under debate regarding how this
deficit may impair movement by employing inadequate motor
programs like incorrect muscular activation and impairment in
motor learning (30).

It is well-known that patients with PD are able to complete
tasks with adequate speed, at the cost of less accurate movements
(10); in particular, it appears that this inability is more evident
in complex multi articular efforts (8, 9). In other words, patients
with PD were able to learn new motor strategies (30, 33, 39)
and implement speed movements especially when supported
by external stimuli during training (40), although accuracy of
complex movements was not improved (8, 9, 38).

Device as Assessment Tool
In addition, the possibility to measure the accuracy and time
execution of movement is particularly relevant in Parkinson’s
disease, where these aspects represent the core of motor deficit
and disability.

Clinical evaluation of motor performances after rehabilitative
training is crucial for the possibility to quantify motor learning
effect and need specific and objective instruments. In fact,
the only use of a clinical scale—UPDRS—as a rehabilitative
measure as well shows relevant limits; in fact, UPDRS, in itself,
is not able to show specific differences regarding movement
characteristics after rehabilitation. As a consequence, in order to
better and more objectively describe movement improvement,
other measure systems associated with UPDRS are often used in
previous studies, i.e., kinematic analysis of movement (41, 42) or
quantitative digitography for finger tapping testing (43) or the
wearable motion capture system (44) were used.

In this direction, technologies may also be applied in order to
assess bradykinesia in PD (45).

Movement Side Differences in Parkinson’s
Disease
To conclude, in our results, the Armeo R©’s evaluation software
appears to underline certain differences in movement between

disease sides: in vertical capture time execution, the upper
right limb resulted mostly compromised at baseline (46,
47). The literature shows that the onset side in Parkinson’s
disease is the most compromised through all the patient’s
life (48) and the onset predominant side in PD patients
is perhaps correlated to handedness (49, 50); in line with
this account, in our right-handed subjects, most (15 subjects)
were right-side onset. The pathophysiology background of
the asymmetric motor impact in PD is, however, currently
unsolved (51).

Limits
Finally, some limits in our study may be stressed:
first, being a pilot study on daily care clinical data, no
control group is available; moreover, the small sample
makes these results also preliminary and require further
analysis, particularly for reproducibility. Starting from
these considerations, future studies properly sized,
controlled, or compared to another type of training
and with a long-term follow-up evaluation would be
of interest.
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