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Abstract: The pentatricopeptide repeat (PPR) gene family is one of the largest gene families in
plants and plays important roles in posttranscriptional regulation. In this study, we combined whole
genome sequencing and transcriptomes to systematically investigate PPRs in Salvia miltiorrhiza,
which is a well-known material of traditional Chinese medicine and an emerging model system for
medicinal plant studies. Among 562 identified SmPPRs, 299 belong to the P subfamily while the
others belong to the PLS subfamily. The majority of SmPPRs have only one exon and are localized in
the mitochondrion or chloroplast. As many as 546 SmPPRs were expressed in at least one tissue and
exhibited differential expression patterns, which indicates they likely play a variety of functions in
S. miltiorrhiza. Up to 349 SmPPRs were salicylic acid-responsive and 183 SmPPRs were yeast extract
and Ag+-responsive, which indicates these genes might be involved in S. miltiorrhiza defense stresses
and secondary metabolism. Furthermore, 23 salicylic acid-responsive SmPPRs were co-expressed with
phenolic acid biosynthetic enzyme genes only while 16 yeast extract and Ag+-responsive SmPPRs
were co-expressed with tanshinone biosynthetic enzyme genes only. Two SmPPRs were co-expressed
with both phenolic acid and tanshinone biosynthetic enzyme genes. The results provide a useful
platform for further investigating the roles of PPRs in S. miltiorrhiza.

Keywords: Salvia miltiorrhiza; pentatricopeptide repeat gene; expression analysis; yeast extract and
Ag+; salicylic acid

1. Introduction

Salvia miltiorrhiza Bunge, which is a well-known traditional Chinese medicine (TCM), is widely
used to treat the cardiovascular and cerebrovascular diseases [1]. With the completion of the genome
sequencing, S. miltiorrhiza has been considered an ideal model species for genomic and genetic
studies of medicinal plants. Hydrophilic phenolic acids and lipophilic diterpenoids are the main
active pharmaceutical compounds of S. miltiorrhiza. Hydrophilic phenolic acids such as salvianolic
acid A, salvianolic acid B, and rosmarinic acid are derived from the phenylpropanoid pathway and
the tyrosine-derived pathway [2,3]. Lipophilic diterpenoids such as tanshinone I, tanshinone IIA,
tanshinone IIB, dihydrotanshnone I, and cryptotanshinone are diterpene quinines derived from the
2-C-methyl-D-erythritol 4-phosphate (MEP) pathway and/or the mevalonate (MVA) [4,5]. Due to
great economic and medicinal value, the biosynthesis of bioactive components and its regulation
mechanism in S. miltiorrhiza have attracted widespread interest [2–12]. Many genes related to the
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biosynthetic pathways of tanshinones and phenolic acids have been identified [4,5,13] (see Figure 1).
Understanding the regulatory mechanism of phenolic acid and tanshinone biosynthesis is important
for S. miltiorrhiza quality improvement.
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Figure 1. Biosynthethsis of salvianolic acids and tanshinones in S. miltiorrhiza. (a) Biosynthethsis
of salvianolic acids in S. miltiorrhiza. SmPAL: phenylalanine ammonia-lyase, SmC4H: cinnamic
acid 4-hydroxylase, Sm4CL: 4-coumarate: CoA ligase, SmTAT: tyrosine aminotransferase, SmHPPR:
4-hydroxyphenylpyruvate reductase, SmRAS: rosmarinic acid synthase; (b) Biosynthethsis of tanshinones
in S. miltiorrhiza. SmAACT: acetyl-CoA C-acetyltransferase, SmHMGS: hydroxymethylglutaryl-CoA
synthase, SmHMGR: hydroxymethylglutaryl-CoA reductase, SmMK: mevalonate kinase, SmPMK:
5-phosphomevalonate kinase, SmMDC: mevalonate 5-diphosphate decarboxylase, SmIPI: isopentenyl
pyrophosphate isomerase, SmDXS: 1-deoxy-D-xylulose 5-phosphate synthase, SmDXR: 1-deoxy-D-
xylulose5-phosphate reductoisomerase, SmMCT: 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase,
SmCMK: 4-(cytidine 5’-diphospho)-2-C-methyl-D-erythritol kinase, SmMDS: 2-C-methyl-D-erythritol
2,4-cyclodiphosbphate synthase, SmHDS: 4-hydroxy-3-methylbut-2-enyl diphosphate synthase,
SmHDR: 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, SmGPPS: geranyl diphosphate
synthase, SmGGPPS: geranylgeranyl diphosphate synthase, SmCPS: copalyl diphosphate synthase,
SmKSL: kaurene synthase-like cyclase.

The pentatricopeptide repeat (PPR) gene family exists widely in most eukaryotes including
plants, mammals, and protists [14]. The number of PPR genes in Trypanosoma brucei, yeast, drosophila,
and human is relatively small. It is 28, 5, 2, and 6, respectively. Physcomitrella has over 100 PPRs [15].
However, PPR gene numbers in plants are greatly expanded. Terrestrial plants such as Arabidopsis,
rice, maize, and foxtail millet have 450, 477, 521, and 486 genes, respectively [16–19]. Aquatic plant
duckweed has 556 genes [20]. Poplar has up to 626 genes [21]. They play a broad and essential role
in posttranscriptional processes within organelles including plant growth, development, and stress
responses [22]. For instance, Rf1a/b, RF5/6, and Rfn are involved in cytoplasmic male sterility
and fertility restoration in rice and Brassica napus [23–26]. PPR8522 and GRP23 are necessary for
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embryogenesis in Arabidopsis and maize [27,28]. EMP4, Dek36, and PPR78 are required for seed
development in maize [29–31]. WSL4 is involved in early leaf development in rice [32]. OsPPR676 is
required for both pollen development and plant growth in rice [33]. PPR40, PPR96, PGN, and SOAR1
play significant roles in response to biotic and abiotic stresses in Arabidopsis [34–37]. MEF9, EMP5,
CRR4, and PPR2263 are required for posttranscriptional processes of RNA in organelles of Arabidopsis
and maize cells [38–41]. In addition, LOI1 regulates cytosolic and plastidial isoprenoid biosynthesis
in Arabidopsis [42,43]. Although the physiological significance of some PPRs has been shown,
no information is available for PPRs in S. miltiorrhiza.

In this study, 562 SmPPRs were genome-wide identified and characterized in S. miltiorrhiza.
Different expression patterns were investigated. The majority of elicitor-responsive SmPPRs and
subsets of SmPPRs co-expressed with phenolic acid and tanshinone biosynthetic genes were shown.
Our results provide some references to further functional studies of this family gene in S. miltiorrhiza.

2. Results

2.1. Genome-Wide Identification and Bioinformatic Analysis of 562 SmPPRs

Through BLAST analysis of Arabidopsis thaliana PPRs against the current assembly of the
S. miltiorrhiza genome and subsequent gene prediction of the retrieved genomic DNA sequences,
a total of 562 SmPPR genes were identified. They were named SmPPR1–SmPPR562, respectively
(Supplementary Table S1). These sequence data have been submitted to the GenBank databases under
an accession number MH004461–MH005022. The number of PPR genes in S. miltiorrhiza is comparable
with that in other plants such as Arabidopsis, rice, maize, and foxtail millet [16–19]. It indicates that the
identified SmPPRs represent an almost complete set of PPRs in S. miltiorrhiza even though it may be
not a fully complete set. The number of introns in SmPPR coding regions varied from 0 to 9 with about
88% (495/562) containing no intron, about 10% (57/562) containing one intron, and only 2% (10/562)
more than one (See Supplementary Table S1). It was accorded with the previous studies showing
that a noticeable feature of PPR genes is that most of them do not contain introns within the coding
sequence [16–21]. The deduced SmPPR proteins have amino acid numbers widely ranging from 243 to
1486, theoretical pI values ranging between 4.47 and 9.69, and predicted molecular weights ranging
from 29.98 kDa to 168.15 kDa (see Supplementary Table S1), which suggests the divergence of SmPPRs.

Generally, PPR proteins have 2–26 tandem arrays of a degenerate 35 amino acid repeat motif and
are split into two major subfamilies including P and PLS based on the feature of motifs. P subfamily
proteins have the typical P motif while PLS subfamily proteins contain the P motif and P motif-derived
variants (the short (S) and the long (L) motifs). Furthermore, based on the C-terminal motifs, the PLS
subfamily could be further divided into the P-L-S, E, E+, and DYW subgroups [16]. Motif analysis using
the HMMER3.0 package showed that 299 of the 562 identified SmPPRs belonged to the P subfamily
while the other 263 were members of the PLS subfamily. Among the 263 PLS SmPPRs, 11 were members
of the P-L-S subgroup, 107 belonged to the E subgroup, 53 were included in the E+ subgroup, and the
other 92 were members of the DYW subgroup (see Figure 2). We failed to construct a phylogenetic tree
via the neighbor-joining method, which was consistent with previous studies that found an attempt to
relate PPR genes with a phylogenetic tree was not meaningful since the PLS has multiple motifs that
are homologous within and among them and the remaining sequences are too divergent to be aligned
correctly [20].

The subcellular localization prediction showed that SmPPRs were widely located in chloroplast,
mitochondrion, secretory pathway, and other locations (see Supplementary Table S1) with the majority
(410/562) to be localized in the mitochondrion or chloroplast.
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2.2. Expression Patterns of SmPPRs in Different Tissues

It has been shown that many PPR proteins are involved in plant developmental processes [23–33].
In order to preliminarily know the role of SmPPRs in S. miltiorrhiza growth and development,
the expression of SmPPRs in roots, stems, leaves, and flowers of S. miltiorrhiza was analyzed
transcriptome-wide of which 546 were expressed (see Supplementary Table S2). Among the
546 expressed SmPPRs, 217 exhibited tissue-specific expressions (see Figure 3a). These include
142 expressed mainly in leaves, 29 in flowers, 27 in stems, and 19 in roots. Among these tissue-specific
expression SmPPRs, six belong to PLS subgroup, 16 belong to E+ subgroup, 44 belong to DYW
subgroup, 46 belong to E subgroup, and the remaining 105 belong to P subgroup (see Supplementary
Table S1). These genes probably play tissue-specific roles. The other 329 were highly expressed in
at least two tissues (see Figure 3b) of which five belong to the PLS subgroup, 37 belong to the E+

subgroup, 47 belong to the DYW subgroup, 60 belong to the E subgroup, and the remaining 180 belong
to the P subgroup (see Supplementary Table S1). It indicates that they have more ubiquitous roles in
S. miltiorrhiza. A total of 16 SmPPRs had RPKM (reads per kilobase of exon model per million mapped
reads) values less than one in all tissues analyzed. They are pseudogenes or expressed only at specific
developmental stages or under special conditions [19].
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To confirm the results from RNA-seq data, eight genes were selected for qRT-PCR analysis.
It includes SmPPR195 and SmPPR554 mainly expressed in roots, SmPPR158 and SmPPR401 mainly
expressed in stems, SmPPR312 and SmPPR420 mainly expressed in leaves, and SmPPR271 and
SmPPR278 mainly expressed in flowers (see Figure 4). The results showed that these genes had
similar trends between the results from qRT-PCR analysis and RNA-seq data, which validates the
RNA-sequence results.
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2.3. Expression of SmPPRs in Response to Salicylic Acid, Yeast Extract, and Ag+ Treatments

PPR genes play significant roles in plant response to stress [34–37]. However, no information is
available for SmPPRs. In this study, to investigate the roles of SmPPRs, we mapped RNA-sequence
data of S. miltiorrhiza suspension cells treated with or without salicylic acid for 0 h, 2 h, and 8 h
to SmPPRs using the SOAP 2.0 software. A total of 558 SmPPRs were found to be expressed
(see Supplementary Table S3). Compared with the levels in non-treated control, 349 were differentially
expressed at least at one time point (see Supplementary Table S3) of which 186 belong to the P subfamily
and the other 163 belong to the PLS subfamily (see Supplementary Table S1). Among them, 62 were
up-regulated and 223 were down-regulated with the regulation significant in at least a time-point
(see Figure 5a,b). The other 64 were up-regulated at a time-point and down-regulated at the other
(see Figure 5c). The results suggest that over 62% (349/562) of SmPPRs are salicylic acid-responsive of
which the majority were down-regulated after treatment.
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Similarly, we mapped RNA-sequence data of S. miltiorrhiza hairy roots treated with or without
yeast extract and Ag+ to SmPPRs for 0 h, 12 h, 24 h, and 36 h using the SOAP 2.0 software. A total of
241 SmPPRs had RPKM value greater than one in at least a time-point (see Supplementary Table S4).
Compared to the levels in non-treated control, 183 SmPPRs were differentially expressed at least at
one time point (see Supplementary Table S4) of which 131 belong to the P subfamily and the other
52 belong to the PLS subfamily (see Supplementary Table S1). Among them, 27 were up-regulated
with the regulation to be statistically significant at least at one-time point, 83 were down-regulated,
and 73 were fluctuated (see Figure 6a–c). The results suggest that over 32% (183/562) of SmPPRs are
developed with yeast extract and Ag+-responsive.
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Among the 349 salicylic acid-responsive and 183 yeast extract and Ag+-responsive SmPPRs,
121 responded to both salicylic acid treatment and yeast extract and Ag+ treatment, 228 only responded
to salicylic acid, and 62 only responded to yeast extract and Ag+. It brings the total number of
elicitor-responsive SmPPRs to 411 (see Figures 5 and 6; Supplementary Tables S3 and S4). In poplar,
on the basis of genome-wide transcriptomic analysis, 154 of the PtrPPR genes were induced by biotic
and abiotic treatments of which 11 were chosen for verification by qRT-PCR [21]. This suggested that
transcriptomic analysis was feasible. In addition, 14 of the 16 SmPPRs with RPKM less than one in
roots, stems, leaves, and flowers of normal plants were expressed in suspension cells treated with
salicylic acid and/or hairy roots treated with yeast extract and Ag+. It suggests that these genes are
only expressed at specific developmental stages or under special conditions.

2.4. Co-Expression Pattern Analysis of SmPPRs with Phenolic Acid or Tanshinone Biosynthetic Genes

Phenolic acids are a class of bioactive compounds in S. miltiorrhiza. Previous studies have shown
that salicylic acid affects the expression of genes involved in phenolic acid biosynthesis and leads
to the accumulation of these compounds in S. miltiorrhiza [7,9]. In this study, we found that more
than 62% of the identified 562 SmPPRs responded to salicylic acid treatment. In order to gain insight
into the relationship between SmPPRs and phenolic acid biosynthetic genes, we investigated the
co-expression patterns of 349 salicylic acid-responsive SmPPRs and phenolic acid biosynthetic genes
including SmPAL1, SmC4H1, Sm4CL1, SmTAT1, SmHPPR1, SmRAS1, and SmCYP98A14 [13]. As a result,
25 co-expressed SmPPRs were identified (see Figure 7a).

Tanshinones are the other class of bioactive substances in S. miltiorrhiza. Many tanshinone
biosynthetic enzyme genes responded to yeast extract and Ag+ treatment [6,44]. In this study,
we identified 183 yeast extract and Ag+-responsive SmPPRs. The relationship between SmPPRs
and tanshinone biosynthetic genes were investigated. It results in the identification of 18 co-expressed
SmPPRs [13] (see Figure 7b).
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Co-expression pattern analysis showed that 23 SmPPRs were co-expressed with phenolic acid
biosynthetic enzyme genes only, 16 SmPPRs were co-expressed with tanshinone biosynthetic enzyme
genes only, and two SmPPRs were co-expressed with both phenolic acid and tanshinone biosynthetic
enzyme genes (see Figure 7).

3. Discussion

In this study, 562 SmPPRs were identified genome-widely in S. miltiorrhiza of which 299
members belong to the P subfamily and the others were members of the PLS subfamily. Among the
263 members of the PLS subfamily, 11 were members of the P-L-S subgroup, 107 belonged to the
E subgroup, 53 were included in the E+ subgroup, and the other 92 were members of the DYW
subgroup (see Figure 2, Supplementary Table S1). However, in Arabidopsis, 251 members are from
the P subfamily and 199 members are from the PLS subfamily including six members of the P-L-S
subgroup, 47 members of the E subgroup, 59 members of the E+ subgroup, and 87 members of the DYW
subgroup [16]. Comparative analysis of PPR numbers in each subfamily showed that S. miltiorrhiza
had more P, P-L-S, and E PPRs than Arabidopsis and the number of P-L-S SmPPRs was about twice
that of P-L-S AtPPRs and the number of E SmPPRs was more than twice that of P-L-S AtPPRs, which
suggests the member of these subfamilies expanded in S. miltiorrhiza.

It has been reported that some PPRs play important roles in plant developmental
processes including cytoplasmic male sterility and fertility restoration, embryogenesis, and seed
development [45]. In this study, the tissue-specific expression patterns of SmPPRs in roots, stems,
leaves, and flowers in S. miltiorrhiza were investigated based on transcriptome data, which shows that
the majority of SmPPRs were expressed ubiquitously with the exception of a few genes expressed
in specific tissues (see Figure 3, Supplementary Table S2). It is in line with previous studies in
maize [19], which suggests that SmPPRs are multifunctional and are involved in a wide range of
biological processes.

More research has shown that PPRs are involved in plant responses to stresses and secondary
metabolism [34–37,42,43]. However, the function of many PPRs is still unknown and there is a
lack of knowledge about SmPPRs. Previous studies suggested that salicylic acid could inhibit the
activity of plasma membrane H+-ATPase, could make cell generate oxidative stress, could promote
the synthesis of phenolic acids, and up-regulate the expression of PAL, TAT, and RAS in S. miltiorrhiza
cell culture [7,9]. Ag+ could trigger a burst of reactive oxygen species (ROS) and yeast extract could
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improve the antioxidant defense of S. miltiorrhiza hairy roots [6,11]. The combined use of yeast
extract and Ag+ was more effective than single yeast extract or Ag+ in the hairy root cultures of
S. miltiorrhiza [44,45]. They could promote the accumulation of tanshinones in S. miltiorrhiza and
stimulate the activities of HMGR and DXS enzymes [6]. These results suggest that salicylic acid,
yeast extract, and Ag+ are effective elicitors for bioactive compound production and related gene
expression in S. miltiorrhiza. In this study, 349 SmPPRs were responsive to salicylic acid treatment
and 183 SmPPRs were responsive to yeast extract and Ag+ treatment, which indicates the importance
of SmPPRs in S. miltiorrhiza stress responses and secondary metabolites. Co-expression analysis has
previously been described to be a suitable tool for gene function identification [46]. Various genes
such as Arabidopsis starch metabolism-related genes [47], rice cell-wall formation-related genes [48],
and potato starch biosynthesis-associated transcription factor genes [49], were identified based on
co-expression analysis. Gene co-expression analysis showed that 25 salicylic acid-responsive SmPPRs
were co-expressed with phenolic acid biosynthetic genes and 18 yeast extract and Ag+-responsive
SmPPRs were co-expressed with tanshinone biosynthetic genes (see Figure 7). It includes two
co-expressed with both phenolic acid and tanshinone biosynthetic enzyme genes, which brings
the total number of co-expressed SmPPRs to 41. These SmPPRs could be involved in phenolic acid
and/or tanshinone biosynthesis in S. miltiorrhiza. Subcellular localization prediction showed these
SmPPR proteins mainly located in mitochondrion and chloroplast (see Supplementary Table S1).
They could be related with the respiratory cytochrome pathway or the photosynthesis of chloroplasts
to regulate the biosynthesis of phenolic acid and tanshinone [42,43]. They also could be through
the mitochondrial electron transport system or hormonal responses to regulate plant environmental
stresses - responsive [35–37]. Further physiological and biochemical analysis will be performed to
verify the functions of these SmPPRs in the future.

4. Materials and Methods

4.1. Plant Materials

Salvia miltiorrhiza Bunge (line 993) with whole genome sequence available was grown in a
field nursery at the Institute of Medicinal Plant Development (Beijing, China). Roots, stems, leaves,
and flowers were collected from two-year-old plants and stored in liquid nitrogen until use.

4.2. Genome-Wide Identification of SmPPRs

Arabidopsis PPR (AtPPR) protein sequences were downloaded from TAIR (http://www.
arabidopsis.org/). BLAST analysis of AtPPR proteins against the genome database of S. miltiorrhiza
(line 993) [50] was carried out using tBLASTn. An e-value cut-off of e−10 was applied. Gene models
of SmPPRs were predicted based on the alignments between the retrieved DNA sequences and
PPR proteins from other plant species via BLASTx. The predicted gene models were examined and
comparatively analyzed with the genome database of the other S. miltiorrhiza line (http://www.herbal-
genome.cn). The domain information of SmPPR proteins was analyzed using the software package
HMMER 3.0 (http://hmmer.janelia.org/software/archive). The HMMbuild program in the HMMER
3.0 package was used for producing the matrices specific to each type of SmPPRs. Motifs were searched
using the HMMsearch program in the HMMER 3.0 package. The gene structures were analyzed using
the Gene Structure Display Server (GSDS 2.0, http://gsds.cbi.pku.edu.cn/index.php). Subcellular
localization of SmPPR proteins was predicted with TargetP version 1.1 (http://www.cbs.dtu.dk/
services/TargetP/). The molecular weight (MW) and theoretical isoelectric point (pI) were predicted
via the compute pI/MW tool on the ExPASy server (http://web.expasy.org/compute_pi/).

4.3. Expression Analysis of SmPPRs

Expression patterns of SmPPR genes in different organs were analyzed using the transcriptome
datasets of roots, stems, leaves, and flowers of S. miltiorrhiza downloaded from GenBank (SRP051564,

http://www.arabidopsis.org/
http://www.arabidopsis.org/
http://www.herbal-genome.cn
http://www.herbal-genome.cn
http://hmmer.janelia.org/software/archive
http://gsds.cbi.pku.edu.cn/index.php
http://www.cbs.dtu.dk/services/TargetP/
http://www.cbs.dtu.dk/services/TargetP/
http://web.expasy.org/compute_pi/
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SRP028388). The changes of SmPPR expression levels in response to stress treatments were analyzed
using the transcriptome datasets of suspension cells treated with salicylic acid (SA, 0.16 mM)
(SRX1423774) for 0 h, 2 h, and 8 h and hairy roots treated with yeast extract (100 µg/mL) and Ag+

(30 µM) (SRR924662) for 0 h, 12 h, 24 h, and 36 h. RNA-sequence reads were mapped to SmPPRs using
SOAP 2.0 [51] and analyzed as described previously [12]. Co-expression pattern analysis of SmPPR
genes with phenolic acid and tanshinone biosynthetic genes in S. miltiorrhiza was analyzed using
the software package of Co-expression Pattern Clustering Analysis in the BMKCloud cloud server
(http://www.biocloud.net/). The abundance of transcripts was estimated by RPKM. Genes with
RPKM value greater than one in at least a tissue was considered to be expressed. To draw heat maps,
the value of RPKM for each gene was normalized between −1.0 and 1.0 using the R package version
3.4.1 and analyzed for differential expression by the Fisher’s exact test. p < 0.05 was considered as
differentially expressed.

4.4. Quantitative Real-Time Reverse Transcription-PCR (qRT-PCR)

Gene expression was analyzed using qRT-PCR. Total RNA was extracted from prepared samples
using the Plant RNA EASYspin Plus (Aidlab biotech, Beijing, China). RNA integrity was analyzed
on a 1.2% agarose gel and its quantity was determined using a NanoDrop 2000C Spectrophotometer
(Thermo Scientific, Waltham, MA, USA). Reverse transcription was carried out using the PrimeScript™
RT reagent kit with gDNA Eraser (Perfect Real Time) (Takara, Dalian, China). PCR was performed
using the SYBR® Premix Ex Taq™ II (Tli RNaseH Plus, Shiga, Japan) (TaKaRa) as described
previously [12]. Gene-specific primers for SmPPRs were listed in Supplementary Table S5. The length
of amplicons was between 80 bp and 250 bp. SmUBQ10 was used as an internal control. qRT-PCRs
were performed in three biological replicates with three technical replicates each. The expression level
in stems was set to one and the levels in other tissues were given relative to this. The relative expression
levels of genes were calculated by the 2−∆∆Ct method. ANOVA (analysis of variance) was calculated
using SPSS (Version 19.0, IBM, Chicago, IL, USA). p < 0.05 was considered statistically significant.

5. Conclusions

In this study, bioinformatic analysis for PPR gene family in S. miltiorrhiza was performed. A total
of 562 PPR protein genes were identified in S. miltiorrhiza genome. Gene structure and classification
showed important features for this family. Tissue-specific expression analysis indicated that SmPPRs
have more ubiquitous roles in S. miltiorrhiza. The expression pattern in response to different elicitors
revealed SmPPRs might be involved in stress defense and secondary metabolites. Furthermore,
some SmPPRs co-expressed with phenolic acid and tanshinone biosynthetic genes were shown.
The results provide valuable information for future studies on characterizing the biological functions
of PPR protein genes in S. miltiorrhiza.

Supplementary Materials: The following are available online. Table S1: Sequence features of the PPR gene family
members in S. miltiorrhiza. Table S2: The expression levels of SmPPR genes in different tissues (RPKM). Table S3:
RPKM value for SmPPR expression in S. miltiorrhiza suspension cell treated with or without salicylic acid. Table S4:
RPKM value for SmPPR expression in hairy roots treated with or without yeast extract and Ag+. Table S5: Primers
used for qRT-PCR.
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